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ABSTRACT
An important aspect in short dialogues is attention as is
manifested by eye-contact between subjects. In this study
we provide a first analysis whether such visual attention is
evident in the acoustic properties of a speaker’s voice. We
thereby introduce the multi-modal GRAS2 corpus, which
was recorded for analysing attention in human-to-human in-
teractions of short daily-life interactions with strangers in
public places in Graz, Austria. Recordings of four test sub-
jects equipped with eye tracking glasses, three audio record-
ing devices, and motion sensors are contained in the corpus.
We describe how we robustly identify speech segments from
the subjects and other people in an unsupervised manner
from multi-channel recordings. We then discuss correlations
between the acoustics of the voice in these segments and the
point of visual attention of the subjects. A significant rela-
tion between the acoustic features and the distance between
the point of view and the eye region of the dialogue partner
is found. Further, we show that automatic classification of
binary decision eye-contact vs. no eye-contact from acoustic
features alone is feasible with an Unweighted Average Recall
of up to 70%.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures
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1. INTRODUCTION
An important aspect in short person to person dialogues is

attention as is manifested by eye-contact between subjects.
Thus, to replicate human-like behaviour for artificial systems
(e. g., humanoid robots or virtual agents) it is believed to
be highly important to implement natural patterns of eye
contact [4]. Furthermore, consistency between eye contact
and acoustic cues emitted by a system, e. g., by means of
speech synthesis, should be ensured.

In this study we verify the correlation between visual at-
tention and acoustic cues of a speaker’s voice in human to
human dialogues. Such information could be used in low-
resource, or speech only systems which do not have a camera
or eye-tracking device available, e. g., in voice conversations
and chats the other partner could be informed about the
eye-gaze behaviour of the first partner without actually see-
ing him/her. Also in forensic analysis these methods could
be applied. Further, psychological studies may profit from
such knowledge.

The paper is structured as follows: first, we introduce
and describe the GRAS2 database in Section 2. It con-
tains multi-sensor recordings of subjects engaged in a real-
life short dialogue (typically one short question and a short
answer). Then, we discuss automatic identification of speech
segments in the continuous recordings and labelling of them
as speech from the test subject (referred to as subject in the
ongoing) and speech from dialogue partners (referred to as
partner in the ongoing) in Section 4. Next, we present an
analysis of the correlations of acoustic features with the eye
contact between subject and partner in Section 5 as well as
results of experiments where we try to predict whether the
subject is looking at the partner’s eyes/face or somewhere
else just from the acoustics of his/her voice in Section 6. We
summarise our findings in Section 7.
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2. THE GRAS2 DATABASE
The Graz Real-Life Affect in the Street & Supermarket

(GRAS2) corpus is – to the authors’ best knowledge – the
first database of visual attention recordings with multiple
audiovisual, physiological, and movement sensory cues in
real-life conversations.

Four subjects took part in the recordings (3 female, 1
male, cf. Figure 1). These were all native Austrian students
and they filled a BFI-11 personality questionnaire [7]. The
male subject usually wears glasses, the female subjects did
not wear glasses.

2.1 Recording Devices
All four subjects were equipped with SMI Eye Tracking

Glasses able to record both the eyes of the person wear-
ing these and what the person is looking at (static frontal
camera, not affected by eye tracker result). They allow for
precise measurement of visual attention focus (30 Hz binoc-
ular with automatic parallax compensation; pupil/CR by
dark pupil tracking, spatial resolution 0.1o, gaze position
accuracy 0.5o over all distances from 40 cm to infinity with
a gaze tracking range of 80o horizontal and 60o vertical) in
the simultaneously recorded field of vision (recorded in HD
1 280 x 960 pixels at 24 fps compressed with the H.264 codec;
viewing field of 60o horizontal and 46o vertical). They also
feature a monophonic microphone on the left earpiece of the
glasses that records in 16 kHz, 16 bit.

The recording of the data from these glasses was carried
out on an SMI-ETG laptop (1.3 kg) worn in a backpack. The
USB-Cable connection was hidden under hair and clothing
as much as possible. Further, subjects were equipped with
the Affectiva Q Sensor 2.0, a wearable sensor that measures
Electro-Dermal-Activity (EDA) and skin temperature [6] to
capture indication on arousal during attention. It was worn
on the left hand to resemble a watch in appearance.

To record additional audio data without particularly de-
manding hardware conditions, an Android smart phone Sam-
sung Galaxy Nexus was used similar as in [8]: The phone
was loosely located in a front-pocket of a shirt worn by the
subjects. The standard media recording APIs of Android
use an AMR codec with poor quality. Therefore, the au-
dio stream was accessed directly and saved uncompressed
at 44.1 kHz, 16 bit. The recording component was imple-
mented as a service and thus could run in the background
with the phone locked and the screen off. In addition to this,
limited motion sensing on the phone is available through an
InvenSense MPU-3050 accelerometer unit. This sensor con-
tains a MEMS accelerometer and a gyroscope. Linear and
angular accelerations can be captured at a sampling rate
of up to 100 Hz. Since the audio recording already puts
the processor under considerable load, the actual achievable
sampling rate was 10–20 Hz. The MARIA application [5] for
public transport guidance was adjusted in a way to log the
audio alongside acceleration data from the motion sensor. In
addition, a Zoom H2 four-channel recording device record-
ing at 48 kHz, 16 bit was worn on the for high quality audio.
Finally, a secondary accelerometer sensor was worn in the
backpack: It was contained in the NAVIN Mini Homer GPS
tracker that was operated at a sample rate of 0.2 Hz. With
this setup, 2-way video, 6 channel audio, EDA, tempera-
ture, and twice 3D motion is measured from the subjects.
However, in the ongoing only video and audio from the eye
tracker glasses and the smart phone will be used.

2.2 Recording Protocol
The subjects were accompanied by a supervisor (27 years,

male) who helped with the setup and monitored the progress
from a distance. The equipment setup and 3-point cali-
bration was carried out on a parking lot of the Citypark
in Graz/Austria. Three-times hand-clapping looking at the
hands is used as anchor point for synchronization between
those units that are not directly connected. The subjects
had to search three stores as a first ‘warm-up’ task (Le Clou
Jewelry, Oxyd fashion store, and the Golden Sun Solarium)
to familiarize with the worn equipment that was hidden as
much as possible (cf. Figure 1).

The recordings of interest then took place in the Inter-
SPAR supermarket, where the subjects engaged in dyadic
discourse exclusively with female persons shopping in this
supermarket. These are referred to as (dialogue) “partners”
in the ongoing as opposed to the knowingly involved and
equipped four “subjects”. These had no knowledge at first
that they were part of the study – 28 persons agreed to
provide their recorded audiovisual-footage for scientific pur-
pose (cf. examples in Figure 1, two bottom rows) – data
of subjects not agreeing was deleted by the recording sub-
ject. The limitation to female subjects was decided upon
to reduce gender effects. Further, permission from the site-
holders was given to carry out the recordings and use the
material.

The subjects followed a study protocol as follows to en-
gage in discussion in German language (Graz-region Styrian
dialect) with subjects: They needed to search for Sauerkraut
and a Swiss chocolate drink (Ovomaltine, or US: Ovaltine),
ask for a SPAR chocolate, a specific Calculator available
in the supermarket, a “typical Austrian product”, Turkish
Ayran, denture adhesive for third teeth, and anti-athlete’s
foot cream. Thereby, they stuck with one dialogue partner
as long as she was willing to help. Subsequently, they imme-
diately asked for written consent explaining the experiment
which was also recorded and usually consumed the larger
partition of the time. This included a questionnaire on the
demographics of the dialogue partners.

The choice of items to ask for and the sequential ask-
ing for continued help as well as the surprising revealing of
them being recorded in an experiment are intended to elicit
a range of affect including besides neutral also joyful, uncer-
tain, surprised, confused, and negative emotional behaviour
in diverse real-life blend.

This was further benefited by the condition that the sub-
jects addressed their dialogue partners with the second per-
sonal pronoun “Du” (you) as usually used with friends and
familiar persons as opposed to the formal and polite German
“Sie” (also translates as you in English–but usually equiva-
lent to addressing a person with the last name only). In
the questionnaire, five dialogue partners would usually pre-
fer the casual form “Du”, four the formal “Sie”, two would
not have cared, and 17 made no statement.

The age range of the dialogue partners that agreed is as
follows (in years): 18–25 (3x), 26–35 (2x), 36–45 (4x), 46–55
(6x), 56–65 (4x), and no mention (9x). The four subjects
which carried out the recordings are referred to as subjects
A, B, C, and D in the ongoing, where A is the male subject
and the other three are female subjects.
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Figure 1: Top-most row: Recording equipment worn by the subjects (from left to right: eye tracking glasses,
audio recorder and smart phone, GPS tracker (used for extra accelerometer in backpack), EDA sensor
(Affectiva) – details in the text). Second row: The four participating subjects as equipped on site. Bottom
two rows: Examples of recorded dialogue partners as seen by the four subjects through their worn eye
tracking glasses.

3. AUDIO TRACK ALIGNMENT
The audio tracks from the eye tracker and the smart phone

(and also the Zoom H2 recorder – however, this is not used
here) needed to be aligned for three reasons: a) the start
time of the recordings differs, as recording on the devices was
started sequentially by hand, b) the sampling clocks of the
devices were not synchronized and thus drifted significantly
over the course of a one hour recording, and c) the recording
app on the mobile phone occasionally dropped audio frames
at random locations – presumably due to high system load –
of more than 1 second. To be able to process as much audio
data as possible and ideally have all audio tracks aligned
as perfectly as possible at every time instant, we used an
automatic alignment algorithm. This algorithm is capable
of aligning the audio tracks completely unsupervised. We
consider two tracks, where one is referred to as the master
track, and the other as slave track. The goal is to align the
slave track to the master track. The master track is not
modified in any way. The algorithm consists of three steps:

1. Finding the initial displacement of the tracks at the
beginning of the recording

2. Finding frame drops and sudden misalignments within
the recording

3. Estimating sample-wise displacements (compensating
drift of sampling clocks).

Once the displacement values for each sample are known,
spline interpolation is applied on a sample level to align the
slave track to the master track. The initial displacement
is estimated via a window based cross-correlation search,
which finds the position of the first 8 seconds of master audio
in the slave signal. The slave audio before this position is
truncated before the other two steps are executed. In step
(2) a large sliding window (8 s) is used for cross-correlations.

The windows of the master signal are sampled at a con-
stant rate of 8 s, while the corresponding windows in the
slave signal are dynamically shifted by the current displace-
ment, which is initially 0 for the first window, and for the
second window equal to the displacement found by cross-
correlation of the first window of master and slave, etc. Due
to the large window, discontinuities caused by frame drops
of up to 2 seconds in both directions can be robustly de-
tected, which is sufficient for the GRAS2 corpus. As an ex-
ample, the result of the displacement analysis between the
eye tracker’s audio (master) and the Phone’s audio (slave)
is shown in Figure 2 for subject A. In step (3) the locations
of the frame drops causing jumps in the track displacement
function (Figure 2) are estimated with a better temporal
resolution by a smaller search window (0.25 s). Next, the
accuracy of the small drift occurring by the sample clock
de-synchronization is refined with the same 0.25 s search
windows in regions where no jump occurs. The lag of the
cross-correlation thereby is constrained by the upper and
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Subject A (m) B (f) C (f) D (f)
Recording duration [min] 85 61 81 67
# Subject speech segments 611 480 566 329
Subject speech segments duration [min] 20 14 20 13
% segments with face present 91.2 92.5 95.1 95.1
Duration face detected [min] 9.5 7.1 11.1 7.9
% segments with eye – eye view (Vc) 10.3 5.6. 3.0 13.7
% segments with eye – face view (Vb+c) 47.5 27.3 24.9 37.1
% segments with eye – near face (Va+b+c) 64.0 56.9 48.6 58.4
Per turn mean length of case Vc [s] .39 .11 .11 .16
Per turn mean length of case Vb [s] .57 .21 .20 .48
Per turn mean length of case Va [s] .30 .23 .24 .34
Mean speech segment length [s] 2.0 1.8 2.1 2.3
Max speech segment length [s] 15.6 12.5 14.5 19.0
Std. dev. of speech segment length [s] 1.8 1.7 1.9 2.4
Energy difference (M-S) bias .006 -.012 .007 .022

Table 1: Data statistics for the four subjects A-D (1 male (m), 3 female (f)). The last row gives energy
difference threshold between two recording microphones which was used for the automatic segmentation of
subject utterances (see text on automatic segmentation for details).

Figure 2: Displacement between eye tracker and
Phone audio signals. The amount of samples by
which the Phone audio signal needs to be shifted
to match the eye tracker audio signal is shown on
the y-axis. The x-axis shows the time in units of 8 s
windows.

lower bounds estimated for the previous and the following
frame in step (2).

4. AUTOMATED SEGMENTATION
As can be seen in Table 1, the time the subjects talk

is much less than the total recording time. Therefore an-
notations are needed for speech and non-speech segments
as well as whether speech comes from the subject (wear-
ing the eye tracking glasses) or the partner or some other
person close by. To be able to annotate large amounts of
data in a short amount of time, we used an automated an-
notation method: To robustly detect speech segments in a
high level of background noise (supermarket) we used our

highly accurate Long Short-Term Memory Recurrent Neu-
ral Network (LSTM-RNN) multi-condition Voice Activity
Detector (VAD), pre-trained as described in [1]. The back-
ground noise contains babble from other people in the store,
announcements, background music, children playing, and
shopping carts moving around. For increased robustness,
we apply the VAD to both, the phone and eye tracker audio
track.

To detect whether the subject or someone else is speak-
ing, we rely on the relative energy differences in voice seg-
ments between the phone and the eye tracker audio tracks.
For this, both audio tracks were normalized to 0 dB peak
amplitude before frame-wise (25 ms, sampled every 10 ms)
root-quadratic energy was computed. In the cases where
the subject is speaking, the energy level in a 500 ms slid-
ing window is generally larger for the eye tracker recordings
than for the phone recordings. A small adjustment of a bias
of the level differences was needed independently for each
subject. These biases were found by empirically looking at
the number of detected segments and the balance between
subject and other segments for energy level biases in the
range from -0.05 to +0.05. The threshold yielding the max-
imum number of segments and at the same time yielding a
higher number of subject segments than partner segments
was used (cf. Table 1, last row). As the segmentation is au-
tomatic and unsupervised, there are errors in the detected
segments. However, a manual inspection of a subset of the
detected segments confirmed that the automatic segmenta-
tion has a high accuracy and the segments can be used in
further experiments.

5. EYE CONTACT AND ACOUSTICS
From the eye tracking glasses we can extract the position

where the subject is looking at in the coordinate system of
the eye tracker frontal camera. From the video of the frontal
camera we detect the presence of a face (frontal view) with
the openCV face detector based on Local Binary Pattern
(LBP) features and try to estimate the eye region within the
face with a Haar-wavelet based eye detector also available
in openCV. If no eye region was detected in the face (e. g.,
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if people wear glasses), we estimate the eye region from the
face region as:

Xe = xf + 0.25wf (1)

Y h = yf + 0.25hf (2)

We = 0.5wf (3)

He = 0.16hf, (4)

where the subscript e indicates the eye region bounding box
and the subscript f the face region bounding box. X, y,
w, and h are the coordinates of the upper left corner, the
width, and the height of the bounding box, respectively.

By combining the eye tracker coordinates with the de-
tected face and eye region, we can define three classes for
where the subject is looking with respect to the partner:
Direct eye contact – i. e., looking into the eye region (Vc),
looking into the face region (Vb), or looking next to the face
region in a corridor with 0.5 width/height to the left, top,
right, bottom of the face region (Va). Additionally, we com-
pute the Euclidean distance between the centre of the de-
tected eye region and the point the subject is looking at.
This is referred to as eye-eye distance in the following. If no
face is detected in the image, a maximum value is filled in
for this distance.

To produce an eye-contact ground truth per speech seg-
ment, we apply the following rule in this particular order:
If for at least 2 frames there is direct eye contact (Vc), we
assign the Vc label to the whole segment. Otherwise, if for
at least 2 frames there is case Vb, we assign label Vb, and
otherwise the same for Va. If neither case is present in the
segment we assign the label Vn for no eye contact. Detailed
statistics on the amount of eye contact in the segments where
the subject is talking are found in Table 1. There are no-
table differences between the subjects in terms of eye contact
behaviour. Subject A apparently has the most eye contact
with his partners, durations of cases Va and Vb are almost
1 second on average for a two second average segment du-
ration, while for subjects B and C it is only .3 seconds and
for D .7 seconds.

6. EXPERIMENTS AND RESULTS
In order to explore correlates between the acoustic and

vocal properties of speech with the location of where the
subject is looking at in a conversation with another person,
we present an analysis of the correlations between acoustic
features and the eye-eye distance. The audio recorded via
the eye tracker microphone is used for this purpose. As
acoustic feature set, we use a large standard set of acoustic
features, as used for the baseline results in the Interspeech
2013 ComParE Challenge [9].

The features were extracted with our open-source fea-
ture extraction and affect recognition toolkit openSMILE
[2]. The ComParE feature set contains 6 373 features, which
are functionals of acoustic low-level descriptors (LLDs). The
LLDs include prosodic features (signal energy, perceptual
loudness, fundamental frequency), voice quality features (jit-
ter and shimmer of the fundamental frequency, voicing prob-
ability, and the harmonics-to-noise ratio), spectral features
(spectrum statistics such as variance and entropy and en-
ergies in relevant frequency bands), and cepstral features
(Mel-Frequency cepstral coefficients – MFCC). From these
LLDs, the first order delta coefficients are computed and
both LLDs and delta coefficients are smoothed with a 3 tap

moving average filter over time. Then, functionals are ap-
plied to the LLDs and their delta coefficients over a com-
plete speech segment resulting in one final 6 373 dimensional
feature vector for the particular segment. The functionals
include statistical measures such as moments (means, vari-
ances, etc.), statistics of peaks (mean amplitude of peaks,
mean distance between peaks, etc.), distribution statistics
such as percentiles (especially quartiles and inter-quartile
ranges), regression coefficients obtained by approximating
the LLD over time as linear or quadratic function and the
errors between the approximation and the actual LLD, tem-
poral characteristics such as positions of maxima and the
percentage of values above a certain threshold, and modu-
lation characteristics expressed as linear predictor (autore-
gressive) coefficients of a predictor of five frames length.

In this study, rather than simply computing the Pearson
correlation coefficients (CC) across all subjects and taking
those with the highest absolute correlation, we use a se-
lection criterion that rewards consistent correlation across
subjects and penalizes inconsistencies such as a feature be-
ing correlated for one person yet inversely correlated for an-
other. This leads to the following criterion for feature f:

CC
′
f =

∑S
s=1

∑S
t=s+1

(
|CC

(s)
f + CC

(t)
f | − |CC

(s)
f − CC

(t)
f |
)

S (S − 1)
(5)

where S is the number of subjects. This criterion ranges
from -1 to +1, with -1 indicating strong inconsistency, zero
indicating low correlation or medium inconsistency, and one
indicating perfect and consistent correlation across all sub-
jects. One of the best correlated acoustic features from the
ComParE set (CC’ = 0.21; max. CC = 0.37 for subject B)
is the gain of the linear prediction on the voicing proba-
bility. In speech analysis this gain resembles the energy of
the ‘predictable’ (i. e., correlated and generated by the hu-
man vocal tract) signal parts. As we are applying linear
predictive coding to the contour of the voicing probability,
the gain has a different meaning: it resembles the energy
of predictable modulation of the voicing probability and is
therefore related to speech rhythm caused by the sequence
of voiced and unvoiced phonemes. The more regular the
rhythm, the higher the gain is. The best negatively corre-
lated feature (CC’ = -0.22) is the range of the peak am-
plitudes relative to the arithmetic mean for the 6th critical
band (approximately 500 – 620 Hz) of an auditory filter bank
after applying a RASTA-style band-pass filter to emphasize
speech-rate modulations in the range from 4 – 8 Hz. This
frequency range corresponds to a frequency relevant for the
first formant of vowels. Thus, if the range of peaks in this
frequency band is high, there is a high variation of articu-
latory strength of individual vowels, which corresponds to a
sloppy style of articulation, or might resemble general level
variations due to quickly changing acoustic conditions (e. g.,
a person moving relative to the microphones). Altogether
the results indicate that modulation descriptors (function-
als) are the most relevant. This might indicate that if we
have eye contact with a person, we articulate clearer and
with a different rhythm than if we do not have eye contact.

Let us now turn to the feasibility of fully automatic at-
tention recognition based on selected acoustic features. In
preliminary experiments, we found regression on the actual
eye-eye distance too challenging, and four-way classification
of Va, Vb, Vc and Vn to suffer from data sparsity in the Vb and
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Subject A B C D Mean
UAR [%] 69.6 67.0 64.8 68.2 67.4 ± 2.0
AUC .765 .707 .679 .775 .732 ± .046

Table 2: Results of automatic classification of Va,b,c

(Looking at eyes, head, or near head) vs. Vn (look-
ing somewhere else) on the GRAS2 corpus, us-
ing leave-one-subject-out cross-validation and SVM
classifiers. Evaluation in terms of unweighted aver-
age recall (UAR) and area under the receiver op-
erating curve (AUC). Mean and standard deviation
across four subjects (A–D). Chance level for AUC
and UAR is .5 and 50 %, respectively.

Vc classes. Hence, we unified the Va, Vb, and Vc classes and
considered their discrimination from Vn as a binary classifi-
cation task. For choosing the most relevant features for the
attention recognition task at hand, we perform a straightfor-
ward ranking based selection, taking into account the CC’
criterion with the minimum eye-eye distance as in the fea-
ture relevance analysis described above, but applying feature
selection in a cross-validation scheme (leave-one-person out)
to reduce the danger of over-fitting to the four test subjects.
In particular, for testing on each of the four subjects in the
database, we use the remaining three subjects as training
data. In this way, we select the 200 most relevant features
by CC’ on the training data, and train a support vector ma-
chine (SVM) classifier using the Sequential Minimal Opti-
mization (SMO) algorithm implemented in the Weka toolkit
[3]. SVMs are particularly suited to learn from large feature
sets with probably inter-correlated features. After classifica-
tion, the unweighted average recall (UAR) of the classes is
computed, as well as the area under the receiver operating
curve (AUC). We obtain the results shown in Table 2. Both,
UAR and AUC are significantly above chance level (.5) ac-
cording to a one-tailed z-test (p < .001), indicating that the
selected features generalize across recordings from different
subjects. The low inter-subject deviations of the UAR and
UAC further indicate the robustness of the obtained classi-
fication results.

7. CONCLUSIONS
We have introduced the GRAS2 corpus, a multi-modal

and multi-sensory corpus of real-life interactions of people
seeking for help and directions from strangers in a public
shopping centre. The corpus has been recorded for the pur-
pose of analysing the role of visual attention and dialogue
behaviour in such interactions. Using information from mul-
tiple audio tracks we were able to automatically label when
the subject carrying the recording equipment or his or her
dialogue partner is talking. The analysis of correlations be-
tween acoustic features of the voice of the subject and the
visual attention (eye contact with dialogue partner) has re-
vealed a low, but meaningful correlation between the acous-
tics and the distance of the point at which the subject is
looking and the eye region of the dialogue partner. Yet,
the correlations are strong enough, such that an automatic
classification of whether a subject is looking at or close by
the head of the dialogue partner or somewhere else based
only on automatically extracted acoustic speech parameters
is feasible with up to 70 % unweighted average recall rate
(the chance level would be 50 %).

In future work we aim at significantly increasing the size
of the corpus by conducting new recordings with the same
setup. We will further manually correct the automatic seg-
mentation and conduct experiments on the short interac-
tions to look at the style of the interactions and analyse the
reactions and emotions of the dialogue partners.
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