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A Multitask Approach to Continuous Five-Dimensional Affect
Sensing in Natural Speech

FLORIAN EYBEN, MARTIN WÖLLMER, and BJÖRN SCHULLER, Institute for
Human-Machine Communication, TUM, Germany

Automatic affect recognition is important for the ability of future technical systems to interact with us
socially in an intelligent way by understanding our current affective state. In recent years there has been
a shift in the field of affect recognition from “in the lab” experiments with acted data to “in the wild”
experiments with spontaneous and naturalistic data. Two major issues thereby are the proper segmentation
of the input and adequate description and modeling of affective states. The first issue is crucial for responsive,
real-time systems such as virtual agents and robots, where the latency of the analysis must be as small as
possible. To address this issue we introduce a novel method of incremental segmentation to be used in
combination with supra-segmental modeling. For modeling of continuous affective states we use Long Short-
Term Memory Recurrent Neural Networks, with which we can show an improvement in performance over
standard recurrent neural networks and feed-forward neural networks as well as Support Vector Regression.
For experiments we use the SEMAINE database, which contains recordings of spontaneous and natural
human to Wizard-of-Oz conversations. The recordings are annotated continuously in time and magnitude
with FeelTrace for five affective dimensions, namely activation, expectation, intensity, power/dominance, and
valence. To exploit dependencies between the five affective dimensions we investigate multitask learning of
all five dimensions augmented with inter-rater standard deviation. We can show improvements for multitask
over single-task modeling. Correlation coefficients of up to 0.81 are obtained for the activation dimension
and up to 0.58 for the valence dimension. The performance for the remaining dimensions were found to be
in between that for activation and valence.
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1. INTRODUCTION

As the number of technical gadgets and electronic devices, which play a role in our
everyday lives, constantly grows, intuitive and easy interaction becomes more and
more an essential factor. The way we interact with computers, service machines, and
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household appliances, for example, is far from being as convenient as interacting with
fellow humans. We spend unnecessary time by adapting to different user interfaces
and learning how to control devices. Often, malfunction or nonobvious functionality
leads to anger and frustration of users. Many people, especially elder ones, thus are
afraid of using modern computer technology.

A key in achieving faster, more intuitive interaction is to make machines understand
our intentions in a similar fashion as our human peers do. That is, there is a need
for socially intelligible machines, which robustly accept multimodal and sometimes
even ambiguous input, and deduce the user’s intention based on, for example, his/her
verbal and nonverbal behavior, affective state, situational context, and background
knowledge. This article focuses on detecting the user’s affective state. Affect plays a
major role in human-machine interactions since it can be a very reliable indicator
for inappropriate machine responses and wrong-goings in the interaction, for example.
Moreover, being aware of the user’s affective state to a certain degree can enable virtual
agents and service robots to react more appropriately to the current situation.

While Automatic Emotion Recognition (AER) from acted, emotionally prototypical
read speech gives results comparable to human performance (refer to Burkhardt et al.
[2005] and Schuller et al. [2009c]) and thus seems to be solved, reliable affect recogni-
tion in natural, changing environments from spontaneous—and maybe also nonacted—
speech, in contrast, remains a challenge at present [Schuller et al. 2009b, 2010a]. There
are numerous reasons why automatic recognition of spontaneous emotions poses such
a challenge. First, the spoken content in the natural utterances is not fixed, which
makes it harder, if not impossible, to train word-dependent emotion models as can be
done for corpora like the Berlin Speech Emotion Database (EMO-DB) [Burkhardt et al.
2005], for example. Next, the full continuum of possibly expressible emotions can occur
and must be discriminated, that is, fine-grained differences between often very simi-
lar and subjective nonprototypical emotions must be handled. This cannot be done by
categorical modeling of emotions, instead an approach for continuous representation
of affect in a dimensional space is usually chosen [Cowie et al. 2000; Douglas-Cowie
et al. 2007a; Grimm et al. 2007a; Wöllmer et al. 2008]. Different approaches which try
to mitigate the problmes of both categorical and dimensional approaches are presented
in Mower et al. [2011] and Mower and Narayanan [2011]. Both the categorical label-
ing approach and the dimensional approach suffer from the partly subjective nature
of affect, that is, large inter-subject variations in perceived affect type and strength,
which leads to moderate or low inter-labeler agreement. In the past, segments with
low inter-labeler agreement were removed, yielding only prototypical emotions, which
fitted the categories well. For spontaneous affective speech, this approach seems not
feasible, since a system “in the wild” has to deal exactly with these ambiguous cases.

Another important issue for AER in natural environments is the segmentation of
the input. Especially for real-time interactive systems this is a crucial issue. AER
mostly deals with recognizing emotion from large units of speech [Zeng et al. 2009], for
example, complete sentences or fragments of sentences [Schuller et al. 2006; Wöllmer
et al. 2008]. The fragments in most cases are presegmented and all results obtained
have the precondition of perfect segmentation. In reality perfect segmentation is not
possible. Moreover, the segments are quite long, which adds a considerable latency
to the recognition system, since the complete segment must be recorded before it can
be analysed and a prediction can be produced. Studies on the influence of the unit
length on recognition performance have been conducted in Batliner et al. [2010] and
Mower and Narayanan [2011]. The shortest feasible unit of analysis used was the
word level. To obtain a perfect segmentation in a live system for the word level is
near to impossible and requires a full-blown ASR system running and consuming
computational resources. Thus, we will investigate alternate methods of segmentation
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which are invariant to segmentation errors, consider a sufficient amount of context,
and can be adapted to output emotions at any given rate.

All those aspects highlight how important it is to move forward in the field of robust
incremental affect recognition in natural environments. In this article we go beyond
the simple evaluation of features at the end of a speech turn as it is applied in various
conversational systems (e.g., Streit et al. [2006]). We modify the existing turn-based
approach to an incremental supra-segmental approach (see Section 2.3 for details on
the supra-segmental approach), and use a model (Long Short-Term Memory Recurrent
Neural Networks, LSTM-RNN) that is able to utilize long-range dependencies between
consecutive segments. With the same network we move another step forward and
evaluate and discuss the potential of this method to predict trace-style dimensional
affect labels directly from low-level audio feature frames. In a multitask learning setup
we estimate the confidence of the automatic predictions by training the networks with
inter-rater standard deviations as additional target, which also brings a mutual benefit
to the original single target. Further, we evaluate a novel method for multidimensional
affect recognition: a multitask learning setup where five affective dimensions and the
corresponding inter-rater standard deviations are modeled by a single network. In
contrast to previous work [Wöllmer et al. 2008; Eyben et al. 2010a], where only two
affective dimensions, namely, activation and valence, were used, we herein evaluate
performance for three additional affective dimensions, namely expectation, intensity,
and power. The use of these dimensions is motivated in more detail in Section 2.2.

The remainder of this article is structured as follows: In the next section (2) we
give a more extensive overview on related work and challenges of automatic recog-
nition of natural, spontaneous affect from speech audio input. A large-scale database
of spontaneous affective interactions, which has been recorded in the course of the
SEMAINE project, is used for evaluations in this study. It is described in Section 3.
Our proposed methods towards robust, low-latency, continuous multidimensional af-
fect recognition, which are based on multitask learning with Long Short-Term Mem-
ory Recurrent Neural Networks, are introduced and described in Section 4. The ob-
tained evaluation results are discussed in Section 5, and conclusions are drawn in
Section 6.

2. STATE-OF-THE-ART AND RELATED WORK

In the Introduction three major issues were mentioned which are crucial for emotion
recognition in real-world deployable applications. Related work and current approaches
to these issues will be discussed throughout this section. Section 2.1 contrasts emotion
recognition experiments performed under highly restricted conditions with those per-
formed on real-world data, and highlights the challenges of the latter case. The current
state-of-the art in dimensional affect recognition is summarized in Section 2.2, and
issues concerning the trade-off between the analysis segment length and the accuracy
and latency in an online system are discussed in Section 2.3.

2.1. Affect: “in the Wild” vs. “in the Lab”

It is often believed that emotion recognition from speech is solved because numerous
publications in the past have reported high accuracies (above 80%) for Ekman’s basic
six emotions [Ekman and Friesen 1975], for example. Most of these have analysed
read speech, where prototypical emotion categories were acted out. The most well-
known and widely used such dataset is the Berlin Speech Emotion database (EMO-
DB) [Burkhardt et al. 2005]. Ambiguous sentences, with low interlabeler agreement,
were removed from the dataset resulting only in prototypical samples. These samples
can be identified with high accuracy with models trained on different data from the
same corpus [Vlasenko and Wendemuth 2007; Schuller et al. 2009c]. When performing
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cross-corpus experiments, even between corpora with acted and prototypical emotions,
accuracies drop significantly [Schuller et al. 2010c]. This shows that the models are
very corpus-specific or even specific to the linguistic content. In the case of EMO-DB, for
example, only a small set of different sentences are spoken with different emotions. The
same sentences occur in test and training splits. Another reason for the performance
drop might be that practically no two corpora with exactly the same categories exist. In
Schuller et al. [2010c] similar categories are mapped to related categories or a binary
grouping into positive and negative valence and high/low arousal. In this light, the
dimensional representation seems to be more universal when it comes to cross-corpus
and cross-domain experiments.

Recent work has tackled the challenge of automatically identifying natural affect.
In Devillers et al. [2005], turns are assigned multiple targets (mixtures of emotion
categories) based on a realistic affective speech dataset with nonacted speech. Schuller
et al. [2007a] also investigate the issue of emotion recognition on realistic and nonpro-
totypical data. Recent INTERSPEECH challenges have attracted great interest and
advances in the field and demonstrated how challenging the matter is [Schuller et al.
2009b, 2010a, 2010b, 2011].

2.2. Affect Representation in a Five-Dimensional Space

Automatic dimensional affect recognition is still in an early stage [Grimm et al. 2007b;
Wöllmer et al. 2008; Schuller et al. 2009a; Gunes and Pantic 2010b, 2010a]. The most
commonly employed strategy is to reduce the dimensional emotion classification prob-
lem to a two-class problem (positive versus negative or active versus passive classifi-
cation, for example, Nicolaou et al. [2010], Schuller et al. [2009c], and Wöllmer et al.
[2010a]), a four-class problem (classification into the quadrants of 2D V-A space, for
example, Caridakis et al. [2006], Fragopanagos and Taylor [2005], Glowinski et al.
[2008], and Ioannou et al. [2005]), or to automatically identify clusters in the emo-
tional space [Wöllmer et al. 2009, 2010b; Lee et al. 2009]. Introducing fixed clusters or
categories brings up the problem of ambiguity again. Instances originally rated with
a dimensional label on or near to the cluster boundary are much more likely to be
assigned to the wrong cluster in the evaluation step. The results are degraded because
during evaluation it is generally not distinguished between confusion of neighboring
clusters and confusion between clusters further apart in the dimensional space. A fea-
sible solution is a regression model which directly predicts the continuous values of the
dimensions. Only very few works on this topic exist so far: For example, Grimm et al.
[2007a] use Support Vector Regression to predict affect in three dimensions (activation,
valence, power/dominance), Wu et al. [2010a] attempt fusion of three methods: robust
regression, Support Vector Regression, and locally linear reconstruction, Wöllmer et al.
[2008] use Long Short-Term Memory Neural Networks and Support Vector Machines
for Regression (SVR), and the work presented in Wöllmer et al. [2010b] utilizes a
Bidirectional Long Short-Term Memory Neural Networks performing regression for
emotion dimensions and quantizing the results into four quadrants (after training).
Our previous work in Eyben et al. [2010a] also investigates a regression technique
for continuous dimensional affect recognition. Alternative methods to Support Vector
Regression include linear regression [Cohen et al. 2003], radial base function networks
[Yee and Haykin 2001], or standard feed-forward perceptron networks (standard neu-
ral networks). In the context of emotion-related virtual agents Recurrent Neural Net-
works with Long Short-Term Memory [Hochreiter and Schmidhuber 1997] have been
suggested [Peters and O’Sullivan 2002; Eyben et al. 2010a]. An approach incorporating
body language for recognition of continuous emotion states is reported in Metallinou
et al. [2011].
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However, all the previous approaches have reported results on no more than three
affect dimensions. With the availability of the SEMAINE database (refer to Section 3),
experiments with two new and unexplored dimensions, expectation and intensity, are
possible. The choice of these dimensions is explained in McKeown et al. [2010]. It is
based on psychological findings reported in Fontaine et al. [2007]: There, the dimensions
activation, valence, expectation, and power were obtained by a Principal Component
Analysis (PCA) applied to 144 hand-assigned “emotion features” derived from terms
people use to describe emotional events. Activation indicates the level of arousal, that
is, the level of active engagement or readiness for action, versus passiveness as found
in contentment or boredom, for example. On the valence dimension pleasant versus
unpleasant emotions are contrasted, that is, valence is an indication of how positive
(pleasant) or negative (unpleasant) the emotion is. The dimension “power” character-
izes whether the emotion is related to a feeling of power and control or weakness. Pride
and anger are opposed to sadness and despair, for example. Expectation is a measure
of unpredictability versus expectedness or familiarity. Surprise, fear, and disgust, for
example, are thus characterized by a low expectation value, while all other emotions,
such as stress and contempt, are associated with a higher expectation value as they oc-
cur in contexts more familiar to the subject. The fifth dimension (intensity) was added
by the creators of the database as an overall measure of perceived emotional inten-
sity, that is, the distance of the current sample from the center of general neutrality,
regardless on which dimension.

The only other database so far, as known to the authors, that contains more than
three annotated dimensions is the CINEMO database [Schuller et al. 2010d]. One of
the first publications reporting on experiments with all of these five dimensions on
the SEMAINE database is Gunes and Pantic [2010c], which focuses on dimensional
prediction of emotions from spontaneous conversational head gestures by mapping
the amount and direction of head motion, and occurrences of head nods and shakes
into activation, expectation, intensity, power, and valence level of the observed subject
using Support Vector Regression. All existing multidimensional affect recognition ap-
proaches use a separate model for each dimension. However, dimensions are often cor-
related to some extent (e.g., activation and intensity), thus a joint modeling might boost
performance.

When moving away from categorical affect recognition and classification methods
towards regression analysis of dimensional affect, we at first lose an important output
measure: the classifier’s confidence. Although Support Vector Regression models as
in Chang and Lin [2001] do support probability estimates, this information is of limited
practical use. So far, in closely related affect recognition literature (to the best of our
knowledge) no experiments on confidence estimation of regression predictions have
been reported. A technique for dimensional music mood prediction has been introduced
in Schmidt and Kim [2012]. The authors use linear regression to estimate the mood
coordinates of a song excerpt in a 2D activation-valence space and the uncertainty
is thereby modeled as an additional regression target. For training the system the
authors collected a continuously annotated database through an online game in which
participants had to label the current mood of a song on an activation valence map.
They thereby competed against other players. Those players whose labels were most
similar to their opponent’s labels were awarded the highest score. In this article we
propose a similar attempt to estimate the confidence for speech affect by multitask
learning with neural networks as regressors. The networks thereby model the human
inter-rater standard deviation of the training data along with the mean label. The idea
of using multitask learning also promises to boost performance for the main task. The
multitask approach is also inspired by the work presented in Steidl et al. [2009], where
a similar technique is employed for estimating class confidences.
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2.3. The Unit of Analysis

As opposed to speech recognition, emotion recognition from isolated short-time audio
frames is virtually impossible: While single phonemes are highly correlated to a specific
spectral representation in short signal windows, speech emotion is a phenomenon
observed over a longer time window (typically more than 1–2 seconds). Typical units of
analysis are complete sentences, sentence fragments (i.e., chunks, e.g., by syntactical
rules) or words [Steidl 2009]. The term “segment” will be used in the ongoing referring
to a general unit of analysis. Finding the optimal unit of analysis is still an active area
of research [Schuller and Rigoll 2006; Schuller et al. 2007b, 2008; Busso et al. 2007;
Mower and Narayanan 2011]. As stated in Zeng et al. [2009], the segmentation is one
of the most important issues for real applications but has been “largely unexplored so
far”. An in-depth study on the effect of the analysis unit length can be found in Batliner
et al. [2010].

Traditional audio feature extraction approaches are based on short-time spectral
analysis, where windows of typically 25 ms, in which the signal is assumed more or
less stationary, are used as low-level analysis frames. Features on this level are re-
ferred to as low-level features or Low-Level Descriptors (LLD). Classifying low-level
feature vectors directly and independently with respect to their emotional content is
not feasible, since emotion is mainly expressed by the evolution of these features over
a certain time period (e. g., prosody!). Thus, a context spanning multiple feature vec-
tors must be considered. To do so, the most widespread method is the mapping of the
sequence of LLD belonging to a segment to a single high-dimensional vector by apply-
ing statistical functionals, such as mean and moment. This technique is referred to as
supra-segmental modeling. It enables mapping of sequences of variable length to a vec-
tor of fixed dimensionality. Both classification (for affect classes) and regression (affect
dimensions) tasks can be solved by this approach, given suitable modeling, for exam-
ple, Support Vector Machines (SVM) for classification and Support Vector Regression
(SVR) for regression. A major drawback of these approaches is that one complete input
fragment is required for analysis and only a single output can be produced at the end
of every input fragment, which is typically a sentence or part of sentence. Thus, true
continuous output at a fixed rate in the second or sub-second region is not possible with
this approach, except by interpolation of the output from higher levels, which gives no
new information. Alternative approaches do not model the long-range dependencies
on the feature level but instead use hidden Markov modeling. As feature vectors the
low-level descriptor frames are used (refer to, e.g., Schuller et al. [2003] and Vlasenko
et al. [2007]). Yet, these approaches also require the complete input fragment at hand
to perform a best-path decoding. Moreover, they can only produce one discrete class
output per fragment and are therefore unsuited for dimensional emotion recognition.

For fully continuous emotion recognition we must ideally abandon the requirement
of defining a suitable unit of analysis, within which the emotional state is assumed as
quasi-stationary. Under ideal circumstances, only frame-wise features should be used,
the long-range dependencies must be modeled by the classifier/regressor, and it should
be possible to obtain an output of the current state for every input frame. In Section 4.1
we will present a classifier which meets all these requirements. We evaluate to what
extent such an approach is feasible, or whether a modified supra-segmental approach
is better.

3. THE SEMAINE DATABASE

The SEMAINE database [McKeown et al. 2010] was recorded to study natural social
interaction that occurs in conversations between humans and the future generation of
artificially intelligent agents, and to collect training data for such intelligent agents,
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especially the SEMAINE system. The database is freely available for scientific research
from http://semaine-db.eu. The scenario used for provoking emotionally colored, nat-
uralistic interactions is the Sensitive Artificial Listener (SAL) scenario. It involves a
user interacting with emotionally stereotyped “characters” whose responses are stock
phrases provoked by the user’s emotional state rather than the content of what he/she
says. The model is a style of interaction observed in chat shows and parties, which
aroused interest because it seems possible that a machine with some basic emotional
and conversational competence could sustain such a conversation, without needing to
be competent with fluent speech and language understanding.

In the recording scenario, the participants are asked to talk to each of the four emo-
tionally stereotyped characters in turn. These are Prudence, who is even-tempered and
sensible, Poppy, who is happy and always outgoing, Spike, who is angry and confronta-
tional, and Obadiah, who is depressive and sad. The study presented in this work
is based on the first part of the SEMAINE database, the Wizard-of-Oz part. In this
part, human operators pretended to be the artificial agents. This type of interaction is
called Solid-SAL. Because we assume that an automatic SAL agent has no language
understanding, a few rules govern this type of interaction. The most important of these
is that the agent is not allowed to answer questions. However, the operators are in-
structed that the most important aspect of their task is to create a natural style of
conversation; strict adherence to the rules of a SAL engagement was secondary to a
conversational style that would produce a rich set of conversation-related behaviors
and therefore transgressions occasionally occur, however, only very rarly (roughly less
than 1–2% of sentences), most of the time due to subjects asking questions, and the
operator answering them.

Audiovisual recordings of the full Solid-SAL interactions exist of both the user and
the operator, each with a color and greyscale frontal-view camera and an additional
side-view camera for the user. Collar and table microphone recordings were conducted
for both user and operator. The audio was recorded at 48 kHz with 24 bits per sample.
For research in audio-visual fusion on the feature level, the audio and video signals
were synchronized with an accuracy of 25 μs using the system developed by Lichtenauer
et al. [2010]. For this study we use only the audio portions, specifically the user’s speech
turns, of the Solid-SAL part of the database.

The Solid-SAL part of the database holds recordings of 20 trials of the SAL exper-
iment, split into over 100 character conversations of approximately 5 minutes each.
All recorded conversations have been fully transcribed and annotated for five affective
dimensions and partially annotated for 27 other dimensions, using trace-style contin-
uous ratings (similar to FeelTrace [Cowie et al. 2000]). Thereby the annotators could
move a slider continuously in a given range while listening to the recording in order
to rate their current opinion regarding a single affective dimension at a time. The
ratings from the slider were sampled at a rate of 50 per second and with a granularity
of 0.001. The five core dimensions are those that psychological evidence suggests are
best suited to capture affective coloring in general [Fontaine et al. 2007]. They are va-
lence, activation, power, anticipation/expectation with the addition of overall emotional
intensity. We would like to note at this point that the dimension intensity in the SE-
MAINE database appears to be highly correlated with arousal (correlation coefficient
of 0.67; see Table V). We still decided to report results on this dimension, as it has been
chosen as fith dimension in the SEMAINE project and the annotations are available in
the SEMAINE database. However, the reader is to mind the high correlation between
these dimensions when interpreting the results. More details on these dimensions are
given in Section 2.2. In total, trace-style ratings for all five affective dimensions exist
from eight raters. However, at the time of writing not all raters had rated all sessions,
thus we chose to include only those sessions in our experiments where the minimum
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Table I. Summary of the SEMAINE Database Statistics

Subjects 21 ()
Characters 4 (Poppy, Spike, Obadiah, Prudence)
Recordning Sessions 57
User speech turns 2 189
User speech total time 5̃ hours

number of raters was three. Moreover, categorical labels were assigned to segments in
the database in a tag-like manner. As they are not used in this article, we refer the
reader to McKeown et al. [2010] for details.

The raters were all experienced psychology students and were all instructed about
the meaning of these dimensions. They were instructed to provide ratings for their
overall sense of where an individual at any instant in time should be placed along
a given dimension. They did this by watching the video and listening to the audio
of one recording session and adjusting the trace slider for one selected dimension
accordingly as the video went along. Corrections were not possible. The raters had to
watch each video once for every dimension that was annotated. It is important to note
that the judgements of the raters are based on the video and audio at the same time.
Unfortunately, no separate ratings exist. Therefore we can expect certain regions in
the ratings to be more correlated to the audio and others more correlated to the video.
Further details on the annotation guidelines can be found in Douglas-Cowie et al.
[2007b].

To obtain a single target value for each dimension, the values of the individual raters
were averaged. For all evaluations we use this mean label as target, which is referred
to as mean label or mean dimension label in the ongoing. In addition to this mean
label, the standard deviation of all 3–4 raters is computed as a inter-rater confidence
measure. In Wöllmer et al. [2008], we performed a normalization of the labels for each
rater before computing the average to compensate for inter-rater scale mismatches and
offsets. In contrast to the SAL database, we did not observe large-scale differences and
offsets for the SEMAINE database, and thus decided not to normalize the data.

In total there are 20 recordings with 3–4 sessions on average. After sorting out
those with two or less raters, 57 sessions remain. From these, 36 sessions are used for
training, 14 sessions for evaluation, and 7 sessions as a development set. The sequence
IDs of the training sessions as used in the publicly available SEMAINE database are
34–37, 40–43, 46–49, 58–61, 70–73, 76–79, 82–85, 88–91, and 94–97. Those of the
development set are 19–22, and 29–31, and those of the evaluation set are 13–16, 25–
27, 52, 53, 55, and 64–67. In total there are 2 189 user speech turns. Table I gives a
summary of the corpus statistics. We ensured gender balance of the subjects in the
evaluation set by including sessions from four subjects in total, two males and two
females. The training, development, and evaluation sets are subject disjunctive, that
is, data from no subject occurs in more than one set.

The training set contains 1 584 user speech turns, where a turn is defined as a
continuous segment of user speech bounded either by initial or final silence or a segment
of operator speech. The turns have been manually annotated in the database. The
development set contains 169 user speech turns. Table II shows detailed statistics
concerning the distribution of the “ground truth” dimensional affect labels for all the
user speech turns in the training and development set of the SEMAINE database.
The evaluation set contains 436 user speech turns. Table III shows detailed statistics
concerning the distribution of the “ground truth” dimensional affect labels for the
evaluation set only. The figures roughly correspond to those of the whole corpus, which
shows that the data in the test set reflects the overall conditions of the corpus relatively
well.

                                                                                      



A Multitask Approach to Continuous Five-Dimensional Affect Sensing in Natural Speech 6:9

Table II. Statistics of the Dimensional Affect Ratings for the Joint Training,
and Development Set of the SEMAINE Corpus as Used in This Article

Dimension: Min. value Max. value Mean μ Std. deviation σ

Aμ −0.798 0.656 −0.043 0.222
Aσ 0.000 0.594 0.259 0.102
Eμ −0.769 0.604 −0.358 0.190
Eσ 0.000 0.720 0.223 0.127
Iμ −0.899 0.697 −0.144 0.188
Iσ 0.000 0.597 0.254 0.105
Pμ −0.747 0.749 0.417 0.189
Pσ 0.000 0.664 0.165 0.116
Vμ −0.965 0.887 0.040 0.320
Vσ 0.000 0.499 0.124 0.075

Five dimensions A(ctivation), E(xpectation), I(ntensity), P(ower),
V(alence). Mean of all raters of the mean turn label (μ subscript),
inter-rater standard deviation for the mean turn label (σ subscript).
Minimum/Maximum value, mean, and standard deviation of μ and σ

for each dimension.

Table III. Statistics of the Dimensional Affect Ratings for the Evaluation Set of
the SEMAINE Corpus Used in this Article

Dimension: Min. value Max. value Mean μ Std. deviation σ

Aμ −0.582 0.480 −0.027 0.250
Aσ 0.000 0.547 0.247 0.087
Eμ −0.730 0.441 −0.351 0.229
Eσ 0.000 0.773 0.254 0.140
Iμ −0.548 0.648 −0.118 0.270
Iσ 0.000 0.425 0.189 0.080
Pμ −0.350 0.718 0.339 0.237
Pσ 0.000 0.610 0.220 0.141
Vμ −0.715 0.659 0.008 0.321
Vσ 0.000 0.401 0.119 0.075

Five dimensions A(ctivation), E(xpectation), I(ntensity), P(ower),
V(alence). Mean of all raters of the mean turn label (μ subscript), stan-
dard deviation of the raters for the mean turn label (σ subscript). Mini-
mum/Maximum value, mean, and standard deviation of μ and σ for each
dimension.

Please note that the minimum values of the inter-rater standard deviation for each
dimension appear very close to zero in Tables II and III. In theory this indicates perfect
rater agreement at some points throughout the sessions. While this can happen at
random, we more likely attribute this to the fact that during the process of rating the
trace sliders were often initialized to the same value at the beginning of the session.
This remained for a few seconds until the raters decided to move the sliders to a
different position. Therefore these low values are supposedly not a good indicator of
the actual minimal values of the inter-rater standard deviations.

Additionally, note that the dimension expectation was scaled from its original range
([0; 100]) according to Eq. (1) in order to be in the same range ([−1; +1]) as the other
four dimensions.

E∗ = E
50

− 1.0 (1)

From Table II we can see that for the training and development set the average
inter-rater standard deviation (σ subscript) for each turn is approximately 0.2 with
a maximum up to approximately 0.7. This highlights the issue of subjectivity of the
problem and the great variance among individual rater opinions, which is far more
pronuounced on some sentences than others. Moreover, the numbers show that there
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Table IV. Correlation Coefficients (CC) between Raters for Each of the Five Dimensions,
Computed on the Evaluation Set Sessions.

Dimension: / Rater: R1-R3 R1-R5 R1-R6 R3-R5 R3-R6 R5-R6 Avg
A 0.655 0.552 0.541 0.667 0.494 0.495 0.567
E 0.331 0.116 0.216 0.394 0.233 0.212 0.250
I 0.694 0.635 0.401 0.696 0.576 0.535 0.590
P 0.306 0.172 0.217 0.452 0.064∗ 0.156 0.228
V 0.756 0.720 0.750 0.790 0.829 0.779 0.771

Correlations marked with ∗ are not statistically significant on a level of p = 0.05 using a
2-tailed test.

Table V. Correlations between the Five Dimensions (CC),
Computed on the Evaluation Set Sessions

Dimension: E I P V
A −0.136 0.673 0.126 −0.125
E 0.132 −0.659 0.004
I −0.287 −0.496
P 0.220

All correlations, except for valence for dimension E) are
significant on a level of p = 0.05 based on a 2-tailed
test.

are turns with higher rater agreement and turns with substantially lower agreement
(higher standard deviation) than the mean agreement.

Another method to asses global inter-rater agreement is to compute correlation co-
efficients between the rater’s labels. Table IV shows a pairwise correlation between
four raters (R1,R3,R5,R6). The names of the raters are the same as those used in the
SEMAINE database, thus there are jumps in the rater ID numbers. The correlation
coefficients are reported for the evaluation set sessions, to enable direct comparison
of these results with the automatically obtained results in Section 5. Notably, human
agreement is highest for valence and lowest for power (also referred to as dominance).
For machine-based recognition it is commonly observed (and also found in this article)
that valence is one the most difficult dimensions to predict correctly from acoustic pa-
rameters alone. People, in many cases, rely on the meaning of the words in the sentence
to asses whether it has positive or negative valence. The acoustic parameters, on the
other hand, are very good indicators of arousal and intensity.

Given the fact that the inter-rater correlations for expectation and power are very low
(roughly 0.25), we must question whether they provide a reliable ground truth to train
models on. While on the one hand it certainly is not overly reliable, there is still some
valid ground as some raters agree far better than others. This might indicate that every
rater might have judged the levels of these dimensions based on different acoustic cues.
Every one of them could be consistent with itself, though. As the approach presented in
this article is in principle capable of modeling the behavior of every single rater, it will
be part of follow-up work to analyse the performance when building and evaluating
models for every single rater. Moreover, we decided to include the results for the power
and valence dimensions, despite the poor rater agreement on these dimensions, to
investigate the automatic classification performance in the multitarget learning and to
verify whether the ground truth provides some value or must be regarded as invalid.

To better understand the relations between the five dimensions, Table V shows
the inter-dimension correlation coefficients on the evaluation set. The most obvious
correlation can be seen between activation and intensity (0.673), which shows that a
high overall emotional intensity often occurs together with high arousal of the subject.
Next, we see that expectation and power are anti-correlated, that is, a high value of
expectation is often associated with a low value power/control. An anti-correlation can
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also be observed for intensity and valence, which means that negative emotions are
expressed with a higher intensity than positive emotions in the SEMAINE set. The
remaining emotion pairs can be considered as uncorrelated.

4. PROPOSED APPROACH

To achieve the goal of incremental affect recognition in real time we chose Long Short-
Term Memory (LSTM) Recurrent Neural Networks (RNN) as regressors. These neural
networks are able to successfully model long-term dependencies between inputs, which
makes them suitable for the supra-segmental approach as well as for the low-level
feature frame modeling. Moreover, the networks, as any neural network, are able to
handle multidimensional target patterns enabling multitask learning for estimation
of a confidence measure and true multidimensional affect prediction. While emotion
theory does not tell us explicitly that long look back ranges are necessary, our experience
teaches us that in conversation as found in the SEMAINE data, for example, emotion
does on the one hand not change too rapidly and on the other hand is dependent on
the current context of the discussion (refer to, also Lee et al. [2009]). For example, the
four SEMAINE characters are supposed to pull participants into a certain mood (one
of the four activation-valence quadrants for each of the characters). As the emotion of
some utterances (background noise, poor pronunciation, etc.) might be hard to classify
from acoustic features, previous and past utterances might be easier to identify and
thus help to clarify the more ambiguous cases in between.

The basic principles of LSTM-RNN are explained in Section 4.1. Next, we introduce
the acoustic features in Section 4.2, and describe the proposed method for incremental
supra-segmental modeling (Section 4.3) as well as affect modeling on the timescale of
low-level feature frames (Section 4.4). In the last part of this section, 4.5, we propose a
way of automatically predicting the confidence for the dimensional emotion predictions
based on multitask learning of target labels and inter-rater agreement and describe
the multitask learning of all five dimensions by one model.

4.1. Long Short-Term Memory Recurrent Neural Networks

As a well-suited technique for online regression of emotion dimensions we consider
a specialized Recurrent Neural Network (RNN) architecture called Long Short-Term
Memory (LSTM) RNN [Hochreiter and Schmidhuber 1997]. Traditional feed-forward
neural networks such as the multilayer perceptron are not suitable for classification
of connected time series (especially the low-level feature modeling), as they are static
classifiers which classify data frame by frame without considering neighboring frames.
In order to use neural networks for classification of connected time series, recurrent
networks can be used. There, one or more of the hidden network layers is connected
to itself. Thus, the network can learn to model past events by adjusting the weights of
the feed-back connection(s).

Analysis of the error flow in traditional recurrent neural nets resulted in the finding
that long time lags are inaccessible to existing RNN since the backpropagated error
either blows up or decays over time (vanishing gradient problem) [Hochreiter et al.
2001]. This led to the introduction of LSTM-RNNs, which are able to store information
in linear memory cells over a longer period of time. An LSTM layer is composed of
recurrently connected memory blocks, each of which contains one or more recurrently
connected memory cells (refer to Figure 1), along with three multiplicative “gate” units:
the input, output, and forget gates.

The cell input is multiplied by the activation of the input gate, the cell output by that
of the output gate, and the previous cell values by the forget gate. Their effect is to allow
the network to store and retrieve information over long periods of time, thereby giving
access to long-range context information, which in turn is essential when trying to
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Fig. 1. LSTM memory block consisting of one memory cell: the input, output, and forget gates collect
activations from inside and outside the block which control the cell through multiplicative units (depicted
as small circles); input, output, and forget gate scale input, output, and internal state respectively; g and h
denote activation functions; the recurrent connection of fixed weight 1.0 maintains the internal state.

recognize emotion on a frame level. A more detailed explanation of the LSTM principle
can be found in Hochreiter and Schmidhuber [1997].

In LSTM networks, standard feed-forward layers, standard recurrent layers, and
LSTM layers can be combined. Thus, a typical network using LSTM memory cells
consists of a standard feed-forward input layer with Ni units, where Ni is equal to
the number of input features, one or more LSTMs (and optionally standard recurrent)
hidden layers consisting of 50–200 memory blocks containing 1–8 LSTM cells each,
and one feed-forward output layer with No units, where No is equal to the number of
desired output dimensions or classes.

A further extension of LSTM-RNN is the use of bidirectional networks (see
Figure 2), resulting in Bidirectional Long Short-Term Memory Recurrent Neural Net-
works (BLSTM-RNN) [Schuster and Paliwal 1997]. This method is applied especially
for speech recognition tasks [Graves and Schmidhuber 2005; Fernandez et al. 2008],
to model anticipatory co-articulation effects. Thereby each hidden layer is duplicated,
while one layer processes the inputs forward and the other backward. This results in
twice the number of weights in the network, that is, twice the number of parameters
to estimate during training. The two hidden layers are connected to the same output
layer, which is a standard feed-forward layer and serves the purpose of combining the
activations from the forward and the backward hidden layer(s).

One major drawback of this architecture is that the entire input sequence
must be available beforehand, which makes this architecture unsuitable for online
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Fig. 2. Bidirectional Recurrent Neural Network.

classification. Therefore, we will not put our primary focus on this architecture, even
though we will show by a few exemplary results that this bidirectional network ar-
chitecture in some cases yields better results than the unidirectional architecture
(Section 5). Details on the configurations of the specific networks used for evaluations
within this work can be found in Sections 4.3 and 4.4.

LSTM-RNN and BLSTM-RNN can both be trained via standard BackPropagation
Through Time (BPTT) [Werbos 1990]. A variant of the standard backpropagation al-
gorithm is resilient Propagation (rProp) [Riedmiller and Braun 1993], where only the
sign of the error gradient is considered for network weight updates and not the absolute
value of the error multiplied by the learn rate. Resilient propagation produces more
stable results and thus has outperformed standard backpropagation on many tasks,
especially with respect to the number of training iterations required. For affect recog-
nition no study exists which compares the two training algorithms, thus we include
a comparison in this article. The error function used as an objective function during
training (BPTT and rProp) is the quadratic error regarding the output target (the
mean dimension label(s), and/or the inter-rater standard deviation). To avoid overfit-
ting, the best networks are determined by evaluating the correlation coefficients on the
development set after each training iteration (epoch), and then choosing the networks
which produce the highest correlation coefficient on the development/validation set.
The training process is aborted when no improvement over 20 consecutive epochs is
observed.

In contrast to the BLSTM-RNN which requires future speech frames, and is there-
fore more suited for offline processing, the (unidirectional) LSTM-RNN can operate in
real time at a real-time factor of 0.085 on an AMD Phenom 64 bit CPU at 2.2 GHz.
The asymptotic computational complexity of the LSTM network for recognition of un-
known data is O(n) with respect to both number of input samples and feature vector
dimensionality. Bidirectional networks have the same complexity (as they are from
that point of view nothing else than two unidirectional networks together), but cannot
be used in an online system without significant modifications because they require the

                                                                                      



6:14 F. Eyben et al.

Table VI. Feature Set A (SEMAINE system, release 3.0 and 3.1)

Low-level descriptors Functionals
Intensity, Loudness, RMS & LOG energy Max. and min. value
F0, prob. of voicing Range (Max-Min)
MFCC 0–12 Relative position of max. and min. in turn
RASTA-PLP 0–7 Arithmetic mean
log. Mel-Freq. bands 1–14 Linear regression (slope, offset, quadratic/linear error)
95% spectral roll-off point Standard deviation, Skewness, Kurtosis
Spectral flux, entropy, and variance % of values > a · range + min, a ∈ {0.25, 0.50, 0.75, 0.90}
Zero-crossing rate % of values < a · range + min, a ∈ {0.50}

% of rising/falling values

47 low-level descriptors, 20 functionals.

end of a sequence (a 5-minute recording session in our case) before they can process
the sequence.

4.2. Acoustic Feature Sets

There is no universally best feature set for affect recognition, and the task and data
used is new and quite unexplored by the community. On other databases and tasks
many publications exist tackling the issue of feature relevance: Oudeyer [2003] gives a
general overview on the topic, Vogt and Andre [2005] compare a broad range of feature
sets for acted versus spontaneous emotions, Wu et al. [2010b] investigate different types
of acoustic features and find that Mel-Frequency Cepstral Coefficients are among the
most relevant feautres, and Batliner et al. [2011] present a quite general, large-scale
study contudcted by people from multiple sites aimed at finding relevant features.

As this article is not dealing with finding the best feature set for affect recognition,
we use a standard feature set, namely the one we had provided as the official baseline
set for the INTERSPEECH 2010 Paralinguistic Challenge. We refer to this as set B
in the ongoing, and show in comparison to the feature set we have assembled for the
SEMAINE demonstrator system (referred to as set A in the ongoing), that the choice of
the feature set nonetheless is important because set B is outperformed by set A. This
indicates that a more in-depth investigation of the influence of individual features has
to be performed in dedicated studies in the future.

Our feature extraction follows the general two-step approach of low-level audio fea-
ture extraction followed by subsequent application of functionals to the Low-Level
Descriptor (LLD) contours. The low-level audio features are extracted from 25ms win-
dows at a rate of 10ms for all features except the F0 features, which are extracted from
50ms frames at the same rate. The low-level contours are smoothed with a moving
average filter of length 3 frames. LLD contours are either used directly as input to an
LSTM-RNN as described in Section 4.4, or functionals are computed from incremen-
tal segments as described in Section 4.3. All features have been extracted with our
open-source feature extractor openSMILE [Eyben et al. 2010b].

A list of low-level features of set A and functionals applied for the supra-segmental
modeling are given in Table VI. There are 47 low-level descriptors and 20 functionals
applied to all low-level descriptors and their 47 first-order delta coefficients system-
atically. As two additional features, the number of voiced regions and the segment
duration in seconds are considered. In total this results in 1 882 acoustic features in
set A.

Feature set B consists of 1 582 features. The core is the set of 34 low-level descrip-
tors, their 34 delta coefficients multiplied by 21 functionals (1 428 features) as listed
in Table VII. For the low-level descriptors raw F0, jitter, δ jitter, shimmer, the same
functionals except for range and the 1% percentile (which resemble always 0, i. e., iden-
tical to the 99% percentile value, or these LLD when unvoiced segments are present)
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Table VII. Feature Set B (INTERSPEECH 2010 paralinguistic Challenge)

Low-level descriptors Functionals
Loudness 1% and 99% percentile
F0 envelope, prob. of voicing Range (1% - 99% percentile)
MFCC 0–14 Relative position of max. and min. in turn
Line Spectral Frequencies 1–8 Arithmetic mean
log. Mel-Freq. bands 1–8 Linear regression (slope, offset, quadratic/linear error)

Standard deviation, Skewness, Kurtosis
Quartiles 1–3, inter quartile ranges
% of values > 0.75 · range + min
% of values > 0.90 · range + min

34 low-level descriptors, 21 functionals.

are applied, resulting in an additional 4 · 2 · 19 = 152 features. The number of voiced
regions and the segment duration are added as two extra functionals, resulting in the
total number of 1 582 features.

Since training of the LSTM network with a large number of inputs (2–5 k) gives
poorer performance in contrast to related work based on Support Vector Machines (see
Section 5), we applied a correlation-based feature subset selection (CFS) to the training
set to determine five dimension-specific feature selections for each of the two sets. The
development and evaluation data is not used in the feature selection process. The CFS
algorithm evaluates the worth of each subset of attributes by considering the individual
ability of each feature to predict the class or numeric label along with the degree of
redundancy between the features. Subsets of features which are highly correlated with
the target while having low cross-correlations are preferred. For details please refer to
Hall [1998]. In order to compare results of single-task learning to multitask learning,
we compute all results on the joint set of selections for all dimensions, as described in
Section 4.5.

For feature set A out of 1 882 features, 43 features remain for activation, 46 features
for expectation, 23 features for intensity, 34 features for power, and 40 features for
valence. For feature set B out of 1 582 features, 38 features remain for activation,
39 features for expectation, 30 features for intensity, 32 features for power, and 28
features for valence. A precise description of these features is difficult to make, as
including the full list of selected features for each dimension would be too lengthy. We
thus summarize the most frequently occurring low-level descriptors for each dimension
in order of their frequency of occurrence (set B only).

—Activation: MFCC (16), log. Mel frequency bands (9), LSP frequencies (5), loudness
(4), jitter (2).

—Expectation: MFCC (18), F0 (7), LSP frequencies (7), loudness (3), log. Mel frequency
bands (2).

—Intensity: MFCC (11), loudness (7), LSP frequencies (6) log. Mel frequency bands (5).
—Power: MFCC (24), log. Mel frequency bands (3), LSP frequencies (3), F0 (2).
—Valence: MFCC (14), LSP frequencies (7), log. Mel frequency bands (4).

We see that MFCC are always the most frequently selected features (also supported by
Wu et al. [2010b]), which we must partially attribute to the fact that MFCC make up a
large portion of the original set. Besides MFCC, we can, however, see some variations
in selected features among the five dimensions: for activation mostly spectral band
energies, format frequencies (related to LSP frequencies), and loudness seem to be
important, while for expectation F0 plays a major role, which seems logical when con-
sidering that surprise is the primary emotion category with a low value of expectation;
for intensity we see a similar picture as for activation with a slight tendency that loud-
ness seems more important than for activation; for power mostly MFCC-based features
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are selected, which might indicate that the subject’s dominance is reflected mainly by
the way of articulation and less by prosody; valence seems to be characterized best by
a mixture of MFCC- and LSP-based features.

The computational complexity of the low-level feature extraction with respect to the
number of input frames is always linear (O(n)) due to the fact that the descriptors are
computed in a single pass on audio signal frames of fixed length. Some might object and
say that the required FFT runs at O(n log n), however “n” in this case is the frame size
(which is a constant). When assessing the complexity of the feature extraction, “n” refers
to the number of frames in the input sequence. Thus, the complexity of the FFT can be
seen as a constant factor, and the overall feature extraction algorithm scales linearly.
The complexity of the functionals is also linear with respect to the number of segments
(5-second windows in this case; see Section 4.3), when the length of the segments is
constant. The complexity of the functionals computation with respect to the segment
length is linear for all functionals except the percentiles. The algorithm to compute
these uses Quicksort, which has a worst-case complexity of O(n2), and an average
complexity of O(n log n). This means that feature set B can be computed with O(n log n)
with respect to the segment size (linear with respect to all other parameters), and
feature set A can be computed with linear complexity with respect to all parameters.
The average real-time factor for the complete feature set A on an AMD 64-bit CPU at
2.2GHz is 0.13.

4.3. Incremental Supra-Segmental Modeling

To enable output of emotion predictions at constant time intervals, independent of
word- or phrase-level segmentation issues, we decided for a simple, yet powerful in-
cremental segmentation scheme for the supra-segmental approach. As basic unit a
speech turn is assumed, which is defined from the point in time where the subject
starts talking until the point where the person stops and another person starts talk-
ing, or the end of the recording session is encountered. In the SEMAINE database
these turns are manually labeled (refer to Section 3), however, in a live system a voice
activity detector (optionally in conjunction with a speaker diarization system) can
be used instead, which works satisfyingly if tuned properly. The approach subdivides
the user’s speech turns into overlapping segments with a fixed maximum length. The
first segment ranges from t = 0 s to t = 1 s with t = 0 s marking the beginning of the
user’s speech turn. Should the user’s speech turn be smaller than one second the first
and only segment ends not at t = 1 s but at t = LT with LT being the length of the turn.
For longer turns, the second segment ranges from t = 0 s to t = 2 s. This is repeated
up to the fifth segment from t = 0 s to t = 5 s. From this point on the segments are
kept constant at a length of 5 s and shifted to the right at one-second intervals, that is,
the sixth segment ranges from t = 1 s to t = 6 s. This procedure is now repeated until
the end of the turn is reached. The choice of the segment shift of one second is to some
extent arbitrary, and the approach can be used to generate outputs at virtually any
granularity, to match the needs of the application. However, as the amount of overlap
increases, the predictions for the two segments will naturally be more similar.

By applying this method 7 313 turn segments are created from the 1 584 turns in the
training set, 1 330 turn segments from the 436 turns in the evaluation set, and 981 turn
segments from the 169 turns in the development set. At first the benefit of LSTM-RNN
may not seem obvious because the task seems to be a straightforward regression task
where the feature vectors for each turn segment can be treated independently. While
this is true on the one hand, on the other hand there are temporal dependencies due to
the overlap of the segments and the slow changing nature of affect. These dependencies
are exploited by LSTM-RNN, which a comparison to standard RNN, feed-forward NN,
and SVR shows in Section 5. A complete session, that is, a unit lasting approximately
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Table VIII. (B)LSTM-RNN Topologies for Incremental
Supra-Segmental Affect Prediction

Topology ID Bidirectional Cells in hidden layers
T 1 no 140, 40
T 1b yes 70, 20
T 2 no 100, 20
T 2b yes 50,10
T 3 no 40, 20
T 3b yes 20,10

All networks have two LSTM hidden layers.

5 minutes, where the one user talks to exactly one agent character, is thereby considered
as one sequence, that is, an entity which is presented to the network as a connected
sequence of inputs. No context is considered across session boundaries.

For each turn segment we evaluate the performance based on acoustic features (set A,
refer to Section 4.2). The acoustic feature vectors are standardized to have zero mean
and unit variance based on statistics collected from the data in the training set.

Six different LSTM-RNN topologies, reflecting differently sized networks, and uni-
directional versus bidirectional networks (detailed in Table VIII) are investigated. The
selection has been made based on our experience in Eyben et al. [2010a]. However, in
contrast to Eyben et al. [2010a] we decided to make the hidden layers in the unidirec-
tional networks twice the size of those in the bidirectional networks, in order to ensure
the same number of weights (parameters) in related unidirectional and bidirectional
networks. We would like to note that the choice of topologies is by no means meant to
be complete and does not substitute a full search over a larger space of network sizes.
As this article is not about finding the optimal network topology, we restrict the search
to three topologies in order to get a first impression of how large the influence of the
network topology is on the performance of multidimensional affect recognition using
the SEMAINE data.

During training of the networks Gaussian white noise with standard deviation of
0.3 was added to the input features of the training data. This is a measure to improve
the generalization capabilities of neural networks (refer to e.g., Fernandez et al. [2008]
and Graves et al. [2005]). It leads to generally longer training times (more epochs),
however, avoids overoptimizing on the training data, and thus improves performance
on the evaluation and development sets, especially for small databases.

When training neural networks with a gradient descent weight update algorithm,
an initial set of weights needs to be chosen, which is unequal to zero. Usually a random
initial set of weights is chosen. This makes such kind of training algorithms prone
to converge in local minima (of the error target function), depending on the chosen
initialization. A common solution to reduce the influence of the initial weights is to
train N networks with different initializations for exactly the same problem and take
the average of the N output activations. For all experiments reported in this article
N = 5 runs with random seeds 0–4 for the pseudorandom number generator used to
create the initial network weights were performed.

4.4. Low-Level Feature Modeling

Findings in Eyben et al. [2010a] suggest that LSTM-RNN are in principle capable of
predicting affect directly from low-level feature descriptors. Although the main focus
of this article should be on the proposed incremental supra-segmental approach we
compare the supra-segmental approach to the low-level feature-based modeling using
the same networks as for the supra-segmental approach. In the case of this low-level
feature modeling, the full user speech turns are treated as one sequence. No context
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is considered across user turns, due to numeric problems in the training algorithms
when handling long sequences, as would be the case when treating a whole session as
one sequence. A single topology consisting of two LSTM hidden layers with 140 and
40 units (T 2), is used. In preliminary experiments larger topologies were investigated.
However, due to the rather small dataset (in the light of a such complex learning task)
larger networks did not lead to any increase in performance. The network of choice is
a unidirectional network, since bidirectional networks would not achieve the goal of
low-latency output. Bidirectional networks require the whole input sequence (in our
case, one user speech turn) to be present beforehand. We evaluate both types of network
though, to asses the performance difference between them.

As the performance of this approach shows that this technology has some potential,
but still falls far behind the performance of the supra-segmental approach, we did
at this point not investigate it in more detail. Much more work in the future in this
direction is required, especially in improving the LSTM-RNN training algorithm and/or
investigating other neural network architectures, such as echo state networks, and
pooling together or averaging features over a short time segments which have a length
that falls between that of the supra-segmental approach (5 seconds) and the low-level
frame-based approach (25 ms).

4.5. Multitask Learning

The main novelty of this article is the investigation of multitask learning with LSTM-
RNN for prediction of dimensional affect. Previous work of the authors has investigated
single-target learning for two affective dimensions only [Eyben et al. 2010a]. Multitask
learning is no different from single-task learning, except for the topology of the output
layer of the network: For prediction of one continuous dimension an output layer with
a single linear summation unit is used; for multitask/multitarget learning the number
of linear summation units in the output layer matches the number of targets (2, 5, or
10 in our case). In this article two aspects are investigated: First, instead of training
one network for every affect dimension, a single network with five output nodes is used
to predict all five dimensions; second, the variance of the four raters’ labels (serving
as a confidence measure for the dimensional rating) is presented to the network as
a second target in addition to the mean of the four raters’ labels. Thus—in theory—
the network should learn to predict a confidence measure for its output based on the
observed input features. Additionally the implicit presentation of the rater agreement
information during training might help the network to be able to better predict the
dimensional label, as the network could learn to give less weight to more ambiguous
training samples, which may improve overall results. In total four configurations of
multitask learning are investigated: a single target (rater mean for each dimension),
two targets (rater mean and inter-rater standard deviation for each dimension), five
targets (rater mean for all five dimensions), and ten targets (rater mean and inter-rater
standard deviation for all five dimensions).

A caveat when performing multitask learning is the selection of relevant features. For
single-task learning we selected relevant acoustic features for each affect dimension
individually with CFS. Instead of adapting the CFS algorithm to be multitarget-capable
by averaging of the correlations of each feature with all target labels, we decided to
use the joint feature set, that is, the union of the CFS reduced feature sets for all
dimensions. This leaves 156 relevant features for feature set A, and 138 for set B. Both
numbers are below the sum of the number of features in the respective reduced feature
sets (186 and 167), which indicates a small overlap of the reduced feature sets, that is,
features that are relevant for more than one dimension.

For feature set A, features that are selected for at least 3 dimensions are the skewness
of the second MFCC (all four dimensions), the temporal percentage of the regions of
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Table IX. Best Results (CC) for the Mean Rater Label Obtained with Given
Configurations (topology, feature set, multi-/single-target learning)

Dimension Feature Set Topology Num. targets CC
A A T 3 2 0.812
E B T 2b

r (T 3r) 10 0.624 (0.592)
I A T 1b

r (T 3) 10 0.673 (0.656)
P A T 1b

r (T 2r) 5 0.670 (0.621)
V B T 3r 1 0.576

Multitarget learning: 2 targets (dimension mean, and inter-rater variance),
5 targets (means of all 5 dimensions), 10 targets (means and inter-rater
variances of all 5 dimensions). If the best result is obtained with a bidi-
rectional network, the best unidirectional result is shown in () brackets. b:
Bidirectional network; resilient propagation: r subscript.

rising voicing probability, and the linear error of quadratic regression approximation
of the contour of the 13-th log. Mel-frequency band. Including these three, there are
26 features that are selected for at least two dimensions. The most common low-level
descriptors among these are the voicing probability, F0, spectral flux, spectral entropy,
MFCC 2 and 6, and the 95% spectral roll-off point.

For feature set B, features that are selected for at least 3 dimensions are the skewness
of the third MFCC (all four dimensions), the temporal percentage where the 7-th MFCC
is above 75% of its range, and the range of first to second quartile of the 6-th line spectral
frequency, as well as the second quartile of the 7-th line spectral frequency. Including
these three, there are 24 features that are selected for at least two dimensions. The
most common low-level descriptors among these are the loudness, 0-th and 6-th line
spectral frequency, and MFCC 10, as well as the voicing probability.

Please note, as previously mentioned, we conduct all experiments for single-task
and multitask learning on the joint feature set to ensure comparability of results and
eliminate the influence of different feature sets.

5. EVALUATION AND EXPERIMENTAL RESULTS

Extensive results of the evaluations of the incremental supra-segmental modeling are
presented and discussed in this section. The supra-segmental approach is compared
to the low-level feature modeling approach. As measure of evaluation we report the
Correlation Coefficient (CC) between the automatic predictions and the ground-truth
labels (mean label of raters), as suggested in Schuller et al. [2010b] and applied in
Eyben et al. [2011, 2010a].

A large number of results have been obtained for all the runs evaluating the per-
formance for the five affective dimensions with 12 (B)LSTM topologies and 2 RNN as
well as 2 NN topologies, two acoustic feature sets, and 3 multitask learning setups ver-
sus single-task learning. In total results for 640 individual runs were computed. Each
individual result was produced by training 5 networks with different initial weights
on the same data, and averaging the output activations over those 5 networks. This
is done to lessen the influence of the training converging into local minima and make
results more stable. To give a meaningful and informative summary of the individual
results we report averaged results in terms of average correlation coefficients over
various configurations. In particular average correlation coefficients for each topology
(Table XI), each feature set (Table XII), and each multi-/single-task learning variant
(Table XIII) are given. The overall best individual results are shown in Table IX. A
comparison to related approaches is given in Table X. The related methods include
Support Vector Regression (SVR), standard feed-forward Neural Networks (NN), and
standard Recurrent Neural Networks (RNN), both having the same size as the T 1
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Table X. Comparison of LSTM-RNN to Support Vector Regression
(SVR), Feed-Forward Neutral Networks (NN), and Standard Recurrent

Neural Networks (RNN)

Dimension LSTM (CC) RNN (CC) NN (CC) SVR (CC)
A 0.757 0.725 0.709 0.653
E 0.549 0.302 −0.029 0.190
I 0.579 0.518 0.461 0.503
P 0.520 0.511 0.361 0.367
V 0.454 0.172 0.035 −0.085

Mean rater label CC. Topology T 2r , single target (mean of each affec-
tive dimension), feature set B. LSTM-RNN, RNN, and NN have the
same number of hidden units in 2 hidden layers and are all trained
with resilient propagation (topology T 2r). Best result marked in
boldface font.

LSTM-RNN: two hidden layers with 140 and 40 summation units (sigmoid transfer
function), respectively.

Networks trained with resilient propagation are marked with the r subscript (i. e.,
T 2r is a topology T 2 network trained with resilient propagation). All other networks
were trained with backpropagation through time. We see a clear trend which is well
known throughout the literature (e.g., Grimm et al. [2007a] and Eyben et al. [2010a]),
that the valence (V) dimension performs worst, while activation (A) performs best.
The new dimensions expectation (E), intensity (I), and power (P) perform fairly well, in
terms of CC. We decided to base our analysis on correlation coefficient as the evaluation
metric only, as the only other commonly used metrics Mean-Squared Error (MSE) and
the Mean Linear Error (MLE) are disturbed by scaling and bias in the neural network
outputs. This is based on our experience from Eyben et al. [2010a] where we showed
that the outputs of the neural networks are often correlated to the targets, but show a
bias and/or scaling. We thus prefer the correlation coefficient as measure of choice.

The best results from the 640 runs and the respective configurations are shown
in Table IX. For all dimensions except activation the best result is obtained with a
bidirectional network. Best unidirectional networks are approximately 0.02 to 0.07
behind the B-LSTM. Concerning topologies there is no clear trend apparent from this
table. Resilient propagation as training algorithm leads to better networks in slightly
more cases. Feature set A wins in most cases, except for expectation and valence.
Comparing the best results obtained with (B)LSTM networks in Table IX with the
average correlation between the human raters on the test set in Table IV, we can
see that the automatic system actually outperforms the human performance for all
dimensions except valence. This is mostly in line with the findings reported in Eyben
et al. [2011]. Valence has the best agreement among human raters but is most difficult
to predict for the automatic system relying on acoustic cues only. A lot of valence
information is carried by the linguistic content and the context of an utterance. Given
the low human agreement of the dimensions expectation and power, the results of
automatic recognition seem very good, which is surprising, but seems to show that the
average of the human ratings does provide a ground truth which is correlated to some
acoustic properties and thus more valid than one would assume from the high rater
ambiguity.

A comparison of LSTM-RNN to other related neural networks is shown in Table X.
The RNN and NN have the same number of hidden units in two hidden layers as the
LSTM-RNN. Support Vector Regression has been trained with the Sequential Minimal
Optimization (SMO) algorithm using the WEKA toolkit [Witten and Frank 2005].
Thereby a linear kernel function was used and the complexity parameter c was chosen
as 1.0. In all five cases the LSTM outperforms the other methods. For activation,
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Table XI. Average Mean Rater Label CC per Topology

Dimension CC-1 CC-10
T 1 0.513 0.530
T 1b 0.543 0.552
T 1r 0.551 0.585
T 1b

r 0.583 0.590
T 2 0.506 0.501
T 2b 0.512 0.523
T 2r 0.524 0.544
T 2b

r 0.566 0.582
T 3 0.526 0.481
T 3b 0.499 0.500
T 3r 0.577 0.564
T 3b

r 0.583 0.563
T 2nn 0.368 0.430
T 2rnn 0.475 0.458
T 2nn

r 0.368 0.387
T 2rnn

r 0.462 0.433

CC averaged over both feature sets and all five affective di-
mensions. CC-1: CC averaged over single-target runs (dimen-
sion mean as target); CC-10: CC averaged over multitarget runs
(mean and inter-rater variance of all five dimensions as targets).
Bottom part: feed-forward and standard recurrent neural net-
work topologies trained with backpropagation through time and
resilient propagation (r subscript). b: Bidirectional network.

intensity, and power the performance of LSTM and standard RNN can be seen as
identical, indicating that long-term context is not of great importance, whereas for
expectation and valence the LSTM significantly outperform the RNN and especially
the NN, which is an indicator for the importance of long-term context here. Except for
intensity and expectation the performance of SVR is behind NN. The performance of
NN is always behind that of RNN. For intensity RNN, NN, and SVR all yield a CC of
0.5, which is roughly 0.07 behind the CC obtained with LSTM.

In order to find out which topology performs best, we averaged results over all dimen-
sions and feature sets. The results can be seen in Table XI. No clearly best performing
topology can be identified, as all topologies achieve an average CC close to 0.5. The
topology T 1b

r is marginally the best. Since T 1 is the largest network size, this suggests
that bigger networks are to be preferred, but at the same time the significantly smaller
networks (T 3) do not perform too badly, especially when trained with resilient propaga-
tion. A very clear trend among all topologies is visible indicating that networks trained
with resilient propagation perform better than those trained with backpropagation
through time. Bidirectional networks (even though they have exactly the same amount
of parameters as the corresponding unidirectional networks) perform better among all
three topologies. Table XI confirms what was already discussed earlier, namely that the
NN and RNN networks perform worse than the LSTM networks. This again shows that
LSTM brings a benefit for the task of dimensional affect recognition. A final observation
we can make from Table XI is that the larger topologies (T 1 and T 2) perform better
for multitask learning and the smaller topology (T 3) performs better for single-task
learning, which is to be expected, as generally speaking a model for multitask learning
must be able to hold more parameters.

Overall, the differences between the topologies are not very large. From this finding
we can assume that a further, more fine-grained investigation of further topologies is
not necessary and/or will not yield to any significant improvement over the current
results. For future studies the most interesting experiment in this respect is to further
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Table XII. Average Result for Each Feature Set (CC),
Averaged over All LSTM Topologies and All Five

Affective Dimensions

Feature Set A B
CC 0.535 0.519

Table XIII. Average CC Evaluated for the Mean Rater Label
(over all dimensions, topologies, and feature sets) for

Various Number of Targets

CC
CC-1 0.529 (0.487)
CC-2 0.533 (0.447)
CC-5 0.529
CC-10 0.543

CC-1: CC averaged over all single-target runs (dimension
mean as target); CC-2: CC averaged over all single-target
runs (dimension and inter-rater variance as target); CC-
5: CC averaged over multitarget runs (mean of all five
dimensions as targets); CC-10: CC averaged over mul-
titarget runs (mean and inter-rater variance of all five
dimensions as targets). Results shown in () brackets are
results achieved with an individual feature selection per
dimension, the other results are those obtained on the
same feature set as the multitask results.

reduce the network size to find the point where performance significantly drops, and
thus determine a minimal network size for the task.

The fact that most best results were obtained with feature set A (Table IX) can be
confirmed in Table XII, where the averaged result per feature set is shown. These
results were obtained by averaging all individual results (single and multitask, all
topologies) for each feature set. Although the difference between the two feature sets
is not great, feature set A yields a by 0.01 higher average CC. However, we have to
interpret this fact with care, as feature set Ais the larger set of both (156 features versus
138 features), and it is a general trend that more features perform better than fewer
up to the point where data sparseness becomes an issue. We can confirm this trend
when looking explicitly at results of single-task learning obtained on the per-dimension
feature selections (refer to Section 4.2) as opposed to the union of per-dimension feature
sets (Table XIII). The smaller feature set, but the one that should be optimized for each
dimension, in theory, shows a 0.04 lower CC for single-task learning, and a 0.08 lower
CC for 2-task learning (target and inter-rater variance).

A similar difference in performance can be seen for single-task versus multitask
learning. Table XIII shows the results for the four cases of: (a) single-task learning of
each dimension individually, (b) two-task learning of each dimension and correspond-
ing inter-rater standard deviation as a confidence measure, (c) multitask learning of
all 5 dimensions, and (d) multitask learning of all 5 dimensions and corresponding
inter-rater standard deviations. Including the inter-rater standard deviation improves
the results marginally (CC 0.01), while multitask learning of all five dimensions does
not seem to have a great effect on average (individual cases differ). The winning way
of modeling 5 continuous affective dimensions is by modeling all 5 dimensions and
the corresponding inter-rater standard deviations in a single network. A possible ex-
planation for the fact that inter-rater standard deviation improves results more for
multidimension learning could be that the uncertainty information added by all di-
mensions helps the network. This hypothesis is further underscored by the fact that
the best correlation coefficients for prediction of the inter-rater standard deviations
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Table XIV. Best Result Obtained for Prediction of
Inter-Rater Standard Deviation

Dimension Feature Set Topology CC
A A T 3b

r 0.241
E B T 1 0.306
I B T 3b

r 0.237
P A T 3b 0.412
V A T 2b 0.125

All results obtained with 2-target learning (mean and
standard deviation of raters for each dimension). b: Bidi-
rectional network; resilient propagation: r subscript.

Table XV. Correlation of Loudness and F0 with the Five
Dimensional Labels (mean of raters)

[CC] max. loudness mean. loudness stddev. loudness
A 0.65 0.63 0.60
E 0.06 −0.03 0.10
I 0.57 0.49 0.52
P −0.00 0.11 −0.03
V 0.16 −0.12 −0.12

max. F0 mean. F0 stddev. F0
A 0.39 0.50 0.22
E 0.09 0.18 0.20
I 0.33 0.49 0.26
P −0.08 −0.15 −0.18
V −0.04 −0.09 0.01

Statistics mean, maximum, and standard deviation computed
over the incremental (5-second) segments.

have been obtained with single-dimension learning and not multidimension learning.
These results are shown in Table XIV. The uncertainty of intensity and power seem to
be most easily predictable. For the other dimensions the prediction of the uncertainty
is fairly poor.

Thus, concluding, to use the predicted inter-rater standard deviation as an actual
confidence measure for all dimensions more work is required to optimize this prediction.
However, with the multitask approach presented herein, it is beneficial to include the
inter-rater standard deviation in order to improve the prediction of the primary target,
the mean label for each dimension.

In order to justify the use and feasibility of any sort of classifier/regressor on the
SEMAINE data for dimensional affect recognition, we have computed the correlation
coefficients between three functionals of the low-level acoustic features loudness and F0
and the mean labels for the five dimensions on the evaluation set. The three functionals
are mean, maximum, and standard deviation within a segment. The segments are the
same (overlapping) segments as used in our proposed incremental supra-segmental
approach. Table XV shows these correlation coefficients. The result is very interesting,
as for some features and the dimensions activation and intensity very high CC are ob-
tained, while for the other three dimensions no significant correlation can be reported.
The maximum loudness per segment yields a correlation coefficient of 0.65 with the
activation dimension. This is above the average human rater agreement (0.57) but
below the best result obtained with LSTM (0.81), thus justifying the use of LSTM. Fur-
ther, the finding is in line with the result of the feature selection (Section 4.2), which
revealed loudness-related features highly relevant for activation and intensity. For
loudness the maximum loudness per segment seems to be better correlated to activa-
tion and intensity, while for F0, the mean F0 per segment shows a stronger correlation.
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Fig. 3. Plots of predictions for the configurations that gave the best results for activation (top), expectation
(middle), and power (bottom) (Table IX). The thick (blue) line is the result of the automatic prediction, the
thin (green) line is the ground truth (mean of raters). On the x-axis all segments in the evaluation set are
arranged in chronological order.

A small correlation between the expectation dimension and the F0 standard deviation
(0.2) is observed.

Besides looking at the correlation coefficients, the best way to judge the actual per-
formance of the networks and to analyse what is actually happening to the outputs
is to take a look at the plots shown Figure 3. They show the actual network outputs
obtained with the networks that gave the best results as shown in Table IX. All user
turns are concatenated and the gaps created by operator turns in between are not
shown in order to keep the plot clean and easy to read.

The results for the low-level feature-based modeling of affective dimensions are given
in Table XVI. The correlations obtained with this approach are very low compared to
the supra-segmental approach and the simple feature to label correlation presented in
Table XV. Thus, we conclude that at present the supra-segmental modeling should be
the preference and the low-level modeling needs more investigation and improvements.
No clear trend showing a best configuration can be seen from Table XVI, and the
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Table XVI. LLD-Level Modeling of Mean Rater Label for
3 Dimensions

Configuration A E V
1-dim learning (LSTM-rp) 0.082 0.355 −0.006
1-dim learning (BLSTM-rp) 0.123 0.323 0.003
1-dim learning (BLSTM-bptt) 0.271 0.279 0.090
5-dim learning (LSTM-rp) 0.560 0.110 0.116
5-dim learning (BLSTM-rp) 0.469 0.056 0.295
5-dim learning (BLSTM-bptt) 0.378 0.056 0.296

Results obtained with LSTM, topology T 1, resilient propaga-
tion (rp) or backpropagation through time (bptt) for training.
Dimensions A(ctivation), E(xpectation), V(alence). Correlation
coefficient averaged over 5 network trainings with different
initial weights (same procedure as for the supra-segmental re-
sults). Uni- and bidirectional LSTM (LSTM/BLSTM). Single-
task (1-dim) learning compared to multitask learning (5-dim).

performance for activation, for example, shows very high variance (CC 0.082 to 0.560),
which might be an indication of instabilities of the training algorithms in the case of
this complex task. Therefore, besides optimizing network topology in future work, using
other training algorithms, such as the Extended Kalman Filter (EKF) training [Pérez-
Ortiz et al. 2003] might seem promising in this respect.

6. CONCLUSIONS

We have presented a novel incremental segmentation scheme for supra-segmental mod-
eling of multidimensional affect from acoustic cues, which is suitable for low-latency,
spontaneous, and naturalistic affect estimation in realistic environments. The approach
uses Long Short-Term Memory Recurrent Neural Networks for multitask modeling.
This article is the first to investigate the joint learning of affective dimensions. Vari-
ous network topologies were compared, including bidirectional and unidirectional net-
works. Due to the incremental output during a user’s speech turn the approach is
suitable for use in real virtual agents and robots. The SEMAINE database is used
for experiments, which contains spontaneous and natural interactions of humans with
four emotionally stereotypical Wizard-of-Oz characters. Five affective dimensions are
annotated in this database and correlation coefficients of up to 0.81 for activation, 0.62
for expectation, 0.67 for intensity, 0.67 for power, and 0.58 for valence are reported.
Thereby LSTM outperformed standard recurrent neural networks, feed-forward neural
networks, and Support Vector Regression by 0.1 average correlation coefficient. No clear
tendency towards an optimal network topology was found, however, standard backprop-
agation trained networks were found to yield inferior correlation coefficient but pro-
duce outputs more in the proper range than networks trained by resilient propagation,
which in turn yield a higher correlation coefficient. Considering that resilient propaga-
tion only uses the sign of the error function for weight updates this result is explicable.

Further, we have suggested a novel approach for estimating confidences of continuous
dimensional affect predictions by multitask learning of the mean of the raters along
with the standard deviation of the raters. When learning the standard deviations and
the means of all five dimensions with one network, a benefit can be shown which is
attributed to the additional labels of inter-rater standard deviation. The prediction of
the confidences by themselves is feasible for some configurations, but requires far more
tuning and a more in-depth study in order to advance the method to a state where
reliable confidences can be obtained.

Concluding, we can say that realistic, natural affect recognition is getting towards
a state where it can be used in real-world intelligent affective systems. Future work
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shall encompass the investigation of alternate, and more stable training algorithms for
the LSTM networks, such as Extended Kalman Filter training. Moreover, the fusion of
acoustic and linguistic features, which was proven successful, especially for valence, in
Eyben et al. [2010a], shall be combined with the herein presented approach of multitask
learning. Next, the fusion of multitask learning of acoustic and linguistic cues together
with visual features will be investigated, leading to audiovisual affect recognition.
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