Affective speaker state analysis in the presence of reverberation

Bjorn Schuller

Abstract Little is known about the impact of reverberation
on performance of running speaker state classification sys-
tems. This study thus aims to approach the topic by mea-
suring effects on a state-of-the-art engine with consideration
of six public room impulse responses for convolution of the
affective speech signals of three standard datasets compris-
ing of emotion and interest. Speech data thereby is given
by this year’s INTERSPEECH Paralinguistic Challenge cor-
pus TUM AVIC and the frequently used Berlin and eNTER-
FACE sets. The room impulse responses comprise rooms
in private apartments, chapels, a factory hall, and a van.
Speaker independent performance after speaker adaptation
is investigated. To cope with reverberation, matched condi-
tion learning and acoustic space adaptation are considered
as efficient means. By that a report is provided on suitability
of feature types given the type of impulse response. In the
result almost all occurring corruption arising from reverber-
ation can be restored, yet the general impact varies with the
type of room or acoustic environment.

Keywords Speaker classification - Affective computing -
Reverberation - Model adaptation
1 Introduction

Assessing a speaker’s affective state is not only by and large
considered useful in a multiplicity of human-machine and
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-robot communication and media retrieval scenarios and ap-
plications (Zeng et al. 2009; Schuller et al. 2010b), it may
also be a crucial knowledge factor in other speech tech-
nology: Affective speech is known to influence recogni-
tion of, e.g. speech recognition (Athanaselis et al. 2005;
Steidl et al. 2010) and keyword spotting (Wollmer et al.
2009), speaker recognition (Raja and Dandapat 2010), or
general spoken dialogue (Schroder et al. 2008; Pittermann
et al. 2010).

The technology to classify affective speaker states has
generally matured to a degree, where—comparable to
the development in the related field of automatic speech
recognition—more real-world problems can be faced after
going from pre-selected prototypical acted speech recorded
in the lab to non-filtered natural affect in spontaneous speech
recorded in increasingly realistic conditions and acoustic en-
vironments (Schuller et al. 2010c).

In such general field conditions, capturing of a speech
signal s[n] by a microphone m will then result in the capture
signal

X () =l (t) % 5(1) + vy (1) (D

where h,, is the impulse response of the acoustic channel
from the source to microphone and v,[n] is observation
noise. Computationally assessing affective speaker states in
disturbed signal conditions has so far been mostly inves-
tigated for speech with additively superposed noise vy, [n]
(Schuller et al. 2006a; Grimm et al. 2007; You et al. 2006,
2007; Tawari and Trivedi 2010) and for phone transmission
by Yoon et al. (2007) or to design features more ‘robust’
(Kim et al. 2005; Lee et al. 2006; Lugger et al. 2006) con-
sidering diverse influence factors.

However, practically no experience with systematically
varied real world room responses h,,(n) exists when it
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comes to the recognition of emotion in speech (Schuller et
al. 2007). This is regrettable, as it is well known that rever-
beration effects, e.g., intelligibility of speech (Payton et al.
1994) and is thus highly likely to impact ‘intelligibility’ of
affect. In a running system used ‘in the wild’ this will need to
be dealt with as room impulse responses will usually be dif-
fering. In on-line systems this becomes in particular impor-
tant when the distance from the speaker’s mouth to the mi-
crophone is larger than close-talk distance, as given in typ-
ical hands-free applications. Most challengingly, the room
conditions will often vary dynamically, once speech of mov-
ing or turning subjects is dealt with. As it is further known
that non-matched learning and classification conditions may
heavily downgrade performance (Schuller et al. 2010c), the
aim is to provide insight on likely occurring effects when
testing affective speaker state classification in non-matched
reverberation condition per se and per feature type. Consid-
ering the large existing body of literature on coping with
and de-reverberation of speech—for an excellent overview
the reader is referred to Naylor and Gaubitch (2010)—and
effects of reverberation in the discipline of automatic speech
recognition, adapting the learnt acoustic model and feature
space to the present room acoustics as ‘first simple’ counter
measures is additionally investigated.

To approach the topic gently, only corruption of speech
in a ‘static’ manner is considered, i.e., by convolution of
affective speech of a complete test partition with one im-
pulse response at a time. To this end six publicly available
responses were selected that cover a reasonable application
related variety of diverse indoor and one automotive con-
dition. To further base findings not exclusively on one af-
fective speech corpus, it was decided for three well suited
such. These were first selected by choosing a good variety of
natural, elicited, and acted affective speaker states and pre-
ferring such recorded in studio noise conditions to exclude
double effects as much as possible.

Acoustic analysis bases on a variety of typical Low-
Level-Descriptors (LLD) to which functionals are applied to
obtain a total of 1.4 k acoustic features. Once optimization
of this large space by using Correlation-based Feature Selec-
tion (CFS), and once type-wise evaluation to analyze impact
of reverberation on features in a well-interpretable manner
are investigated. The classification is based on the frequently
used Support Vector Machines (SVM) in a speaker indepen-
dent Leave-one-speaker-out (LOSO) manner. In LOSO, all
speakers but one are used for training—the one left out is
then used for testing. This is repeated until all speakers have
once been used for testing and means over speakers are re-
ported. This method is very popular in the field, as data for
training and testing is usually sparse, and one wishes to use
as much data for training as possible. At the same time, sig-
nificance of findings benefits from reporting on all speakers.
By LOSO one can reach this aim but ensure strict speaker
independence at the same time.

In the remainder of this article, first artificial speech re-
verberation will be introduced in Sect. 2, the room impulse
responses decided for in Sect. 3 followed by the emotional
speech databases in Sect. 4, and the constructed acoustic fea-
ture space in Sect. 5. The experimental protocol for convo-
lution and subject independent evaluation looking at impact
on diverse feature types and efficiency of matched condi-
tion learning known to improve recognition of reverberated
speech (Haderlein et al. 2005) and acoustic space adaptation
is presented in Sect. 6 before concluding in Sect. 7.

2 Reverberation

As shown in (1), the room impulse response (RIR)—usually
several thousand taps long—affects the speech signal by
convolution in the time domain leading to reverberation of
the speech signal. As opposed to a single echo, reverberation
is characterized by being composed of a large number of sin-
gle echoes caused by reflections at walls or other items and
decaying over time owed to the sound being absorbed. In the
frequency domain, this naturally corresponds to the multi-
plication of the respective speech signal’s and RIR’s trans-
forms. Being an impulse response, the RIR is often mea-
sured by provision of an acoustic impulse such as the blast of
an air balloon or a gun shot and recording the room’s accord-
ing response. This response A,, (n) naturally highly depends
on the position and, if a directional microphone is used, di-
rection of the capture microphone m, i.e., facing different
directions already highly impacts the response. As a conse-
quence already turning of the head may result in speech cor-
rupted by potentially highly differing RIR depending, e.g.,
on the architecture and furniture of a room.

In principle, one can attempt to measure or identify the
room impulse response also in the target environment of an
application, e.g., most simply by clapping the hands in a
speech pause. This is in praxis likely limited to few appli-
cation scenarios as for static response characteristics. How-
ever, as outlined, already with changing the direction of the
microphone severe differences may occur. In a mobile ap-
plication the response would need to be constantly updated,
which is, e.g., in a moving situation, almost infeasible. In
addition, even if having identified the acoustic channel prop-
erties, direct inversion is not necessarily feasible as the RIR
can be very long, usually has non-minimum phase and may
contain spectral nulls resulting in strong peaks in the spec-
trum causing narrow band noise amplification after inver-
sion (Neely and Allen 1979).

Thus, investigation of effects of reverberation impact
seems mandatory and is usually observed by systematic ar-
tificial reverberation of speech data (Haderlein et al. 2005).
For the oncoming experiments this is carried out by convo-
lution of the RIR with the speech from diverse databases. As



clipping may occur in artificial reverberation, this is strictly
avoided by according normalizing scaling.

3 Six room impulse responses

It was decided for the following six room impulse responses
(RIR) exclusively recorded in real spaces which are free for
research usage, well documented, and publicly available' to
cover for a good variety of typical indoor environments and
reaching from small to large reverberation time. They are
introduced by their short identifier used in the ongoing for
better readability and their original name to foster easy re-
producibility of experiments:

— Factory Hall (“Factory Hall”’) was recorded in a huge fac-
tory hall in Amsterdam/The Netherlands. The recorder
captured this RIR with two Schoeps cmc5 MKS micro-
phones (omni) wide spaced A-B, a Ren Heijnis mic pre-
amp, a Fostex PD4 DAT recorder, and a 6 mm caliber
starter gun to ensure an optimal S/N ratio.

— Van (“Mercedes-van”) was recorded in the interior of an
empty small van—a Mercedes one. The recorder captured
it with a Genelec S30 speaker faced backwards and the
microphone facing front in the back with the otherwise
same equipment as for the previously introduced Factory
Hall RIR.

— Living Room (“Amsterdam Living Room”) was recorded
in a living room—also in Amsterdam/The Netherlands—
which is a tight space with wooden floor, fully furnished.
It was captured with equivalent equipment as the above
introduced Van RIR.

— Hallway (“@carolas-Livingroom-facing Hallway”) was
taken from the RIR series “@Carolas’s apartment”—an
empty apartment due to moving in Hamburg/Germany
captured using OKM in-ear-microphones at an ear height
of about 1.79 m from ground with a Sony Net-MD NZ-1
by balloon blasting in 3—5 m distance from microphones.
This response was recorded facing the narrow hallway of
the apartment from the living room side.

— Bathroom (“@carolas-Bathroom”) is the second room
impulse response from this set recorded in the small bath-
room tiled to the ceiling and having a bath sink, bath tub
and toilet inside. Recording is equivalent to the Hallway
RIR.

— Chapel 50ft (“Chapel-NOS-Rear-Facing-in-50ft”) was
recorded in a cavernous church under construction. This
church now seats 1500 and is at least 40 feet tall. At the
time of recording it was just a shell with hardly anything
in it including doors and windows, and no acoustic treat-
ment. The micropohne pair used resembles a Blumlein
rear facing NOS pair at 50 feet from the impulse source.

Ihttp:/moisevault.com/
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All chosen RIR were either recorded in 44.1 kHz or
48.0 kHz. They have thus been down-sampled for process-
ing with the affective speech databases.

All six impulse responses are depicted in Fig. 1 in the
time (non-normalized) and the frequency domain. As can be
seen, they differ considerably in overall length and time to
decay by 60 dB (Tsp). Acoustic characteristics of these are
further provided in detail in Table 1 and additionally in Ta-
ble 2, for third octace bands in the range of 125 to 4 000 Hz.

The characteristics of the RIR #,,(¢) are provided follow-
ing ISO 3382, where the Reverberation Times T are deter-
mined from the decay curve and Clarity C, Definition D,
and Center Time 7 are (logarithmic) ratios between a frac-
tion and the entire or remaining RIR energy (Campanini and
Farina 2009):

— Early-to-late arriving sound energy ratio Clarity C;,,
where

G

C =10-1—
50 gf[eh%()d

. = 50 ms. 2)

In the digital domain with the sampling frequency f;, the
discrete RIR #,,[n] is accordingly described by:

Zn( 2

Cs50=10-1

ne = f5 - 50 ms. 3)

— Early-to-total sound energy ratio Definition D;,, where

N AGLL s @
=50 ms.
o Hwdr
Accordingly, in the digital domain we have:
e h2 [n]
Dso=10-1g ZO h’z"[ T ne = fs - 50 ms. 5)

As for the Clarity C, the Definition D also expresses a
balance between early and late arriving energy. The idea is
to measure clarity and definition as perceived by a human.
While Definition is less frequently used, it respects not
only the late, but the total signal energy.

Clarity and Definition aim to provide a measure how eas-
ily individual sounds can be distinguished from within a
general audible stream. For Clarity, this degree highly de-
pends on the type of sound, here speech. By that these
measures provide an objective measure of the amount of
‘blend’: Having two similar sounds arrive at the ear in
close temporal proximity (50—80 ms), these are likely to
be integrated by the human ear as one sound. By that any
reflected sound energy arriving within this period of inte-
gration effectively increases the perceived intensity of the
direct sound.
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Fig. 1 Room impulse responses after mono 16 kHz conversion and according spectrograms
Table 1 Per room impulse .
response: A-weighted Cso, Dso, Characteristics Cs0 [dB] Dsq [%] T, [ms] Tio [s] T [s] T30 [s]
T, To, Too, and T30
Van 12.02 94.09 19.15 0.21 0.26 0.26
Living Room 16.25 97.68 5.26 0.22 0.31 0.32
Hallway —1.87 39.40 76.48 0.89 0.94 1.03
Bathroom —0.86 45.05 66.12 0.84 0.63 0.85
Factory Hall 9.34 89.58 21.05 1.45 2.37 3.27
Chapel 2.81 65.62 115.13 4.08 3.80 3.88

Note that the chosen time 7, = 50 ms resembles the typ-
ical value when dealing with speech, as opposed to z, =
80 ms generally preferred for music.

Center Time Ty, where

00, 722
7 Jo e 6)
Jo h2, (1)dt

or, respectively,

_Yn -k nl

s = Zgoh,zn[n] s nz.fs't- @)

It is often given as an alternative to C and D as it avoids
discrete division of the RIR into early and late periods.
This time of the center of gravity of the squared impulse

response is measured in milliseconds. A high Center Time
value is an indicator of poor Clarity.

— Tio or Early Decay Time (EDT) measured over the
first 10 dB of the decay, i.e., evaluated between [0, ...,
—10] dB. It gives a more subjective evaluation of the
reverberation time: The initial portion of the sound de-
cay curve process is responsible for subjective impres-
sion of reverberation—the later is typically masked by
new sounds.

— Ty is the reverberation time evaluated between [—35, ...,
—25] dB of the decay.

— Trp is accordingly evaluated between [—5, ..., —35] dB.

The tables show the variety of the RIR not only in terms
of higher reverberation times for the wider rooms as one
would expect, but also clear frequency dependence of these
times in the range most important for speech.



Table 2 Per room impulse response: 719 and 73 in third octave bands

Frequency [Hz] 125 250 500 1k 2k 4k

Tyo [s]

Van 0.23  0.11 0.14  0.14 0.21 0.24
Living Room 022 023 025 024 028 0.17
Hallway 1.02 1.08 096 087 092 091
Bathroom 1.11 1.05 0.83 0.83 0.72 0.72
Factory Hall 2.06 1.99  0.75 1.94 1.54  0.02
Chapel 377 418 394 464 414 370
Ty [s]

Van 029 020 0.19 0.21 024  0.26
Living Room 047 032 031 033 032 0.33
Hallway 0.96 1.21 0.99 1.06 1.07 1.02
Bathroom 1.42 1.18 086 0.63 050 042
Factory Hall 18.19 8.54 456 4.19 3.15 1.97
Chapel 5.98 387 348 425 394 290

4 Three affective speech databases

For the oncoming experiments it was next decided for
three ‘nuances’ of affective speaker state: fully spontaneous,
elicited, and finally fully acted. The three according sets will
be introduced in this order, and are further chosen by their
high popularity and high number of existing results reported
in the literature for comparisons. Number of instances per
affective speaker state are provided in brackets after the type
of affective speaker state.

4.1 TUM AVIC

In order to investigate spontaneous speech with non-restrict-
ed spoken content and natural expression of speaker state,
it was decided to first include the TU Munich Audiovisual
Interest Corpus (TUM AVIC) (Schuller et al. 2009) as re-
cently featured in the INTERSPEECH 2010 Paralinguistic
Challenge (Schuller et al. 2010a) in the experiments. It is
an audiovisual affective corpus containing recordings dur-
ing which a product presenter leads one of 21 subjects (ten
female) through an English commercial presentation. The
“level of interest” is annotated for every “sub-speaker-turn”
(for details on chunking the reader is referred to Schuller
et al. 2009) and reaches from disinterest (subject is tired
of listening and talking about the topic, is totally passive,
and does not follow) together with indifference (subject is
passive, does not give much feedback to the experimenter’s
explanations, and asks unmotivated questions, if any) and
neutrality (subject follows and participates in the discourse;
it cannot be recognized, if she/he is interested or indiffer-
ent in the topic) (316 instances for the levels of interest so
far) to interest (subject wants to discuss the topic, closely
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follows the explanations, and asks questions) (510 instances
for this level of interest) to curiosity (strong wish of the sub-
ject to talk and learn more about the topic) (170 instances).
Four annotators listened to the turns and rated them in terms
of these three categories. The overall rating of the turn was
computed from the majority label of the four annotators. If
no majority label exists, the turn is discarded and not in-
cluded in the database, leaving 996 turns in the database.
All final utterances were recorded in an office environment
with a headset and stored in 16 kHz sample rate and 16 bit.
For the oncoming evaluations these 996 phrases are used as,
e.g., employed in Schuller et al. (2006b, 2009).

4.2 eNTERFACE

The ENTERFACE corpus is a public, further audiovisual
emotion database (Martin et al. 2006). 42 subjects (eight fe-
male) from 14 nations are included. Contained are office en-
vironment recordings of pre-defined spoken content in Eng-
lish. Each subject was instructed to listen to six successive
short stories, each of them intended to elicit a particular
emotion. They then had to react to each of the situations
by uttering previously read phrases that fit the short story.
Five phrases are available per emotion as “I have nothing
to give you! Please don’t hurt me!” in the case of fear. Two
experts judged whether the reaction expressed the intended
emotion in an unambiguous way. Only if this was the case,
a sample, i.e., sentence, was added to the database. There-
fore, each sentence in the database has one assigned emotion
label, which indicates the emotion expressed by the speaker
in this sentence. All final 1170 utterances, which are also
used herein, were recorded in a small room furnished with
electronic equipments. These contain induced anger (200),
disgust (189), fear (189), happiness (205), sadness (195),
and surprise (192) as emotions. The audio sample rate was
48 kHz, in an uncompressed stereo 16 bit format. Research
results on acoustics-based automatic recognition of these
speaker states are reported, e.g., in Datcu and Rothkrantz
(2008), Mansoorizadeh and Charkari (2008), Paleari et al.
(2008).

4.3 EMO-DB

Finally, the Berlin Emotional Speech database (EMO-DB)
(Burkhardt et al. 2005)—likely the most frequently used in
the field—will be shortly introduced. The spoken content is
again pre-defined by ten German emotionally neutral sen-
tences like “Der Lappen liegt auf dem Eisschrank.”” (The
cloth is lying on the fridge.). Ten (five female) professional
actors were asked to express each sentence in seven emo-
tional states. The sentences were labeled according to the
state they should be expressed in, i.e., one emotion label
was assigned to each sentence. It thus provides a high num-
ber of repeated words in diverse emotions. While the whole
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set comprises around 900 utterances, only 494 phrases are
marked as minimum 60% natural and minimum 80% agree-
ment by 20 subjects in a listening experiment. This selection
is usually used in the literature reporting results on the cor-
pus, as in Meng et al. (2007), Slavova et al. (2008), Schuller
et al. (2008b), and in this article. 84.3% mean accuracy is the
result of a perception study by 20 independent test-subjects
for this limited ‘more prototypical’ sub-set that contains
anger (127), boredom (79), disgust (38), fear (55), happi-
ness (64), neutrality (53), and sadness (78) as emotions. All
final 494 utterances were recorded in an anechoic chamber
with high-quality recording equipments and saved in mono
wave files with 16 kHz sample rate and 16 bit.

5 Acoustic features

In the experiments below, the recognition of affective
speaker state is based on speaker turns (EMO-DB, EN-
TERFACE), as in the vast majority of approaches as by You
et al. (20006) or sub-speaker turns (TUM AVIC) as given by
the database. Thus, every such speech chunk is windowed
in equidistant segments. A Hamming window is used for
contours in the time domain and the speech signal is ana-
lyzed by using frames of 20 ms for every 10 ms. For every
window, a set of Low Level Descriptors (LLD) is calculated
and subsequently smoothed by simple moving average low-
pass filtering. These LLD can be temporal characteristics
as signal envelope and energy, spectral or cepstral charac-
teristics as information on the formants or Mel frequency
cepstral coefficients (MFCC) or descriptors of voice quality
as harmonics-to-noise-ratio (HNR) and micro perturbations.
For every speech chunk of analysis, functionals are calcu-
lated from these time series of LLD, e.g., mean values, stan-
dard deviations, quartiles, extremes, etc. Additionally, these
functionals are calculated from temporal delta coefficients
of each LLD.

Table 3 gives an overview on LLD and functionals used
for systematic feature space brute-forcing-based acoustic
analysis in the context of the presented work. Altogether,
1406 features are extracted by calculating the 19 function-
als from each of the two times 37 Low Level Descriptors.
This set is identical to former works by the author and oth-
ers (cf. Batliner et al. 2006, 2011).

6 Experimental protocol and results

To simulate reverberation, the audio instances of the three
affective speech databases as introduced in Sect. 4 are con-
voluted with the six respective room impulse responses as
introduced in Sect. 3. Convolution is carried out in the spec-
tral domain by multiplication of the Fast Fourier transforms

Table 3 Overview on Low Level Descriptors and functionals for
chunk-level speech analysis

LLD (2 x 37) Functionals (19)
Envelope Mean

Energy Standard Deviation
Pitch Zero—Crossing—Rate

Formant 1-5 amplitude
Formant 1-5 bandwidth

Formant 1-5 frequency

Quartile 1
Quartile 2
Quartile 3

MECC 1-16 Quartile 1—Minimum
Shimmer Quartile 2—Quartile 1
Jitter Quartile 3—Quartile 2
HNR Maximum—Quartile 3
A Envelope Centroid

A Energy Skewness

A Pitch Kurtosis

A Formant 1-5 amplitude Maximum Value
A Formant 1-5 bandwidth

A Formant 1-5 frequency

Relative Maximum Position

Minimum Value

A MFCC 1-16 Relative Minimum Position

A Shimmer Maximum Minimum Range
A Jitter Position 95% Roll-Off-Ponit
A HNR

of the speech turns and RIR avoiding clipping by according
scaling.

As to obtain subject independent performances, it was de-
cided for cyclic Leave-One-Speaker-Out (LOSO) as evalua-
tion strategy to ensure strict speaker independence and at the
same time easy reproducibility though exploiting maximum
training set sizes given the sparseness of the corpora. How-
ever, each speaker is normalized to its mean and variance
per feature employing the complete speaker turn context.
As classifier it was decided for Support Vector Machines,
as they are frequently encountered in the field and proven
among best choices (Schuller et al. 2005). A linear kernel,
pairwise multi-class discrimination and Sequential Minimal
Optimization learning (Witten and Frank 2005) are used.

Two different types of experiments are considered: First,
the general impact of reverberation on performance will be
observed in non-matched condition. In addition, matching
conditions in terms of acoustic model and feature space will
be investigated. Second, closer insight on which feature type
is more or less affected by reverberation in a non-matched
condition will be given.

6.1 Acoustic model and space adaptation

In Fig. 2 a—c one can see the general impact on performance
in a non-matched learning condition (left-most bars, each).
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Fig. 2 Per feature type: speaker independent results by classification
accuracy for clean and reverberated speech. Two counter-measures are
additionally observed: matched acoustics (MA, middle bar, each) and
additionally matched space (MS, rightmost bar, each) by matched con-
ditions learning and testing

This means that the acoustic affective speaker state model
is trained on non-reverberated speech, while the testing is
carried out on reverberated such. In the figure, as well as in
the further oncoming ones, accuracy is shown per database
and testing condition in speaker independent LOSO testing.
In comparison to the non-reverberated testing, a clear down-
grade in performance is observable independent of the data-
base and for all different types of RIR.

Next to this one finds the effect of matched condition
learning to ‘repair’ the effect of reverberation (bars in the
middle in each of Figs. 2a—). Obviously, this does help sig-
nificantly in any situation. Yet, the down grade by reverber-
ation cannot be fully restored.
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Features are next additionally selected by correlation
based feature selection (CFS) (Hall 1998) in matched con-
dition. By that, the acoustic model is trained matched to
the reverberation situation and at the same time the opti-
mal feature space for this type of reverberation is provided.
This has been shown highly efficient in the case of addi-
tive noise (Schuller et al. 2008a). In the next section it will
be clarified whether and which features are indeed impacted
differently by different types of reverberation. CFS is cho-
sen in order to optimize the space as a whole rather than
agglomerating individual top ranked candidates. This opti-
mization of the acoustic space is carried out each indepen-
dent of the testing instances. The effect of the common adap-
tation of acoustic model and feature space in matched con-
dition is again seen in Figs. 2a—c (right most bars, each).
In three cases this is counter productive over exclusively
adapting the acoustic model. However, in the vast major-
ity of cases—18 in total—this results in another consider-
able boost of accuracy. One can see that it also helps im-
prove in the non-reverberation test case. This fact is known
from many other works (Ververidis and Kotropoulos 2006;
Schuller et al. 2006c¢) as it reduces complexity for the clas-
sifier by de-correlation of the space and reduction of redun-
dancy thus requiring less free parameters of the classifier to
be trained.

Table 4 summarizes these observations: Averaged over
the three databases and six RIR, the relative decrease from
non-reverberated speech to reverberated such is observed
at —29.8% relative, after matching the acoustic model it is
highly significantly reduced to —12.7%, and after addition-
ally matching the feature space to the type of RIR, a further
highly significant reduction to only —9.8% relative down-
grade is reached. Thus, the relative improvement reached by
the suggested matching strategies resembles 20% on aver-
age.

Comparing impact of reverberation across databases, the
automotive environment (Van) resulted in least degradation
of accuracy, followed by the three home environments (Liv-
ing Room, Hallway, then Bathroom—as one would expect).
As a group, the larger non-home indoor environments (Fac-
tory Hall, Chapel) cause the most severe degradation. This is
well predicted by the reverberation times: The higher the re-
verberation time, the higher the degradation for the observed
RIR. The Factory Hall RIR is in fact the only RIR that varies
in rank of degradation among these three databases and by
that slightly disrupts this trend. Of course, given only six
RIR, this finding has to be taken with a grain of salt.

6.2 Type-wise feature analysis
While we had seen in the last subsection that matching of

the feature space leads to an improvement of recognition
accuracy in the case of reverberated speech, an obviously
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Fig. 3 Speaker independent results for clean and reverberated speech. Two counter-measures are observed: matched acoustics (MA) and addi-

tionally matched space (MS) by matched conditions learning and testing

interesting question is which features are impacted most by
reverberation. To this end, these are now analyzed individ-
ually by looking at one type after the other. Note that it is
refrained from reducing features per type to the same num-
ber of final features as investigated in Batliner et al. (2011),
as in this study there is less interest in which feature type
individually performs best, but rather in differences per type
owed to different type of reverberation.

Figure 3a—c details this effect per feature type and per
RIR for the three databases. Training is carried out exclu-
sively on non-reverberated speech for this analysis. The gen-
eral trends seem consistent over the different corpora, as
MFCC being the best individual feature type—certainly also
owed to this being the largest group of features—while the
trends are more ‘flat’ for the ENTERFACE set which is the
hardest task and leaves least headroom over chance level.

Table 5 summarizes the results per feature group and type
by averaging over all considered types of reverberation and
database. In addition to absolute and relative accuracy dif-
ferences in comparison to non-reverberated speech, the stan-
dard deviation is provided. As can be seen, envelope is con-

siderably more susceptible to reverberation than energy. For
formants, bandwidth is most effected while at the same time
the most relevant formant feature type for affect analysis.
Next come—almost on par—amplitude and frequency. Gen-
erally least impacted is the voice quality group consisting of
shimmer, jitter, and harmonics-to-noise ratio.

7 Conclusions

In this article first insights on performance downgrade by
artificial reverberation with real-world room impulse re-
sponses on speech for testing of affective speaker state clas-
sification were reported. Such considerations will be of in-
creasing importance when emotion or related speaker state
and trait classification is used in distant-talking application,
as, e.g., surveillance or human-robot communication.

The presented results can be seen as a first step towards
effects of and dealing with different types of reverberation
of speech in this application context. They document that
counter-measures will be needed given an average relative



performance loss by 29.8 percentage points in accuracy.
They do, however, also show that once the type of rever-
beration is known, even rather simple counter measures as
the presented acoustic model and space adaptation can help
to reduce this loss to 9.8 percentage points.

Table 4 Mean downgrade in classification accuracy over the six dif-
ferent types of reverberation in mismatched condition learning on non-
reverberated (‘clean’) speech considered when testing on reverber-
ated speech. Two counter-measures are additionally observed: matched
acoustics (MA) and additionally matched space (MS) by matched con-
ditions learning and testing

Accuracy [%] - MA MS
TUM AVIC

Clean 65.5 65.5 71.7
mean (w/o clean) 54.0 573 63.9
A absolute —11.5 —8.2 —-7.8
A relative —17.5 —12.5 —-10.9
ENTERFACE

Clean 61.1 61.1 62.8
mean (w/o clean) 41.2 55.5 57.3
A absolute —19.9 —-5.6 5.5
A relative —32.6 —9.2 —8.8
EMO-DB

Clean 79.6 79.6 80.4
mean (w/o clean) 48.3 66.6 72.5
A absolute -31.3 —-13.0 —-7.9
A relative —-39.3 —16.3 —-9.8

mean across sets

-20.9 —-8.9 =7.1
—29.8 —12.7 —9.8

A absolute
A relative

Table 5 Per feature type (with number of features): mean accuracy
over the three databases TUM AVIC, ENTERFACE, and EMO-
DB for non-reverberated (‘clean’) speech and additionally over the
six different types of reverberation (‘w/o clean’) in learning on non-
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For the impact of reverberation on feature types, the
highest such was observed for formant bandwidth with
an average relative downgrade of 41.5% and at the same
time highest standard deviation over the different room
acoustics at 6.0%. Least impacted—which seems intuitive—
is voice quality and energy, at ‘only’ 20.0% and 21.1% rel-
ative average downgrade and at the same time least stan-
dard deviation at 3.9% and 2.9% over the different room
acoustics.

Obvious needed next steps comprise analysis of dynamic
reverberation and ‘borrowing’ of more sophisticated counter
strategies for de-reverberation, e.g., based on processing of
the LPC prediction residual or combination of blind chan-
nel estimation and channel inversion (Naylor and Gaubitch
2005). Also, multi-condition training was not tested in these
experiments but may lead to an easily obtained improve-
ment in unknown reverberation condition (Haderlein et al.
2005).

Further feature types can also be investigated including
such obtained by time-frequency transformations (Kandali
et al. 2009) or standard features as RASTA-PLP, which are,
however, less common in the field of speaker state classifi-
cation.
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reverberated speech. In addition, differences absolute (abs.) and rel-
ative (rel.) differences (A) and the standard deviation (std. dev.) are
provided

Accuracy [%] LLD Type # Features mean mean A abs. A rel. std. dev.
clean w/o clean w/o clean
Prsodic Envelope 38 53.9 344 —19.5 —36.1 4.6
Energy 38 40.7 32.1 —8.6 —21.1 2.9
Pitch 38 514 39.0 —-125 —243 5.8
Spectral/Cepstral Formant 1-5 amplitude 190 51.8 37.6 —14.2 —274 4.9
Formant 1-5 bandwidth 190 58.1 34.0 —24.1 —41.5 6.0
Formant 1-5 frequency 190 49.7 36.3 —13.3 —26.9 4.5
MFCC 1-16 608 62.6 44.5 —18.2 -29.0 5.8
Voice Quality Shimmer + Jitter + HNR 38 44.5 35.6 -89 —20.0 3.9
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