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Abstract
In this paper, we present a system for the recognition of acous-
tic events suited for a robotic application. HMMs are used to
model different acoustic event classes. We are especially look-
ing at the open-set case, where a class of acoustic events occurs
that was not included in the training phase. It is evaluated how
newly occuring classes can be learnt using MAP adaptation or
conventional training methods. A small database of acoustic
events was recorded with a robotic platform to perform the ex-
periments.
Index Terms: Acoustic Event Classification, Hidden Markov
Models, Model Adaptation

1. Introduction
Natural speech is a very intuitive communication channel for
humans. Automatic speech recognition is a very prominent re-
search field. But there are other ways of auditory communica-
tion. Other non-speech acoustic events can also carry important
information. The detection and classification of such acous-
tic events is a less explored research area. In a typical office
environment for example, many different sounds are produced
either by a human or by objects handled by humans. Examples
are human non-vocal sounds like coughing or clapping or other
sounds like keyboard typing or closing a door. Being able to
detect and identify these acoustic events can help to analyze the
human activity that takes place. Acoustic event detection (AED)
and classification (AEC) can also be used to enhance automatic
speech recognition. AED and AEC both can be seen as disci-
plines in the area of computational auditory scene analysis [1].

A good overview over recent advances in AED/AEC tech-
nology for acoustic events in an office environment is given
in [2]. Several international evaluation campaigns are de-
scribed, where different approaches have been deployed, mainly
using HMMs or SVMs.

Other domains for the application of AED/AEC techniques
are the detection of key audio events in sports games [3] or af-
fective video content analysis [4]. AED/AEC can also be part
of a robot audition system as described in [5].

Whereas most of the listed work describes only closed-set
recognition systems where the same classes occur during train-
ing and testing, open-set recognition is the challenge where pre-
viously unknown classes may occur in the test phase. In this
case, the fact that an acoustic event belongs to a previously un-
known class can be detected. This is known as novelty detec-
tion [6]. After detecting an acoustic event as being novel, the
problem is then to add a new class to the classification system.
This problem is analogous to the enrollment of a new speaker
in a speaker recognition system. The standard approach uti-
lized in speaker verification is to use a universal background

model (UBM) which contains training data of many different
speakers and to use maximum a posteriori (MAP) adaptation to
derive a model for a new speaker based on limited amounts of
enrollment data [7]. However, constructing a UBM from many
different acoustic events, which can be of very diverse nature,
might not be efficient.

In this work, we present a system for a robotic platform
to detect and classify acoustic events. As a classifier, we use
an HMM-based system with standard MFCC features, where
each class of acoustic events is modeled by one HMM. We want
to concentrate on the case where an acoustic event occurs that
is not known to the system and is already detected as novel.
Two different approaches to add new classes (with limited data)
to the system are evaluated. The first approach is to simply
perform a complete EM training cycle with the instances of the
new class. The second approach uses MAP adaptation to derive
the model of a new class from the model of one of the known
classes. To evaluate the system, a small database of distinctive
acoustic events from an office environment was recorded. A
possible application scenario is a robotic platform which can
learn typical sounds of its daily environment.

In Section 2, a general system overview and a description
of the methods to learn new classes is given. The recorded
database, experiments and results are described in Section 3.
The paper closes with a conclusion in Section 4.

2. Acoustic event classification system

2.1. Overview

The acoustic events were segmented during the recording of
the database, thus we only tackle the problem of classification,
ignoring detection. As a baseline system, we extract MFCCs
as features and use continuous HMMs for the classification
task. The system is then improved by optimizing the number
of HMM states using an approach based on the Bakis length
modeling method. The main part of this work is the problem
of adding a new class to the classifier. When an acoustic event
is detected as previously unknown, it can be added to the sys-
tem such that when it occurs the next time, it can be regarded as
known to the system. In order to do this with an HMM-based
system, a new model must be created for the new class. Two
possibilities to achieve this are compared here. The first is to
repeat the training phase as it was done with the other classes
(using EM algorithm). As a second possibility, MAP adapta-
tion can be used to create a model for the new class, leaving the
other models unchanged.
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2.2. Feature Extraction

As acoustic features, we use standard MFCCs (+ Energy) with
delta and acceleration coefficients. Whereas the baseline system
uses 12 MFCC coefficients, the best results could be achieved
using 8 MFCC coefficients, which, together with delta and ac-
celeration coefficients, leads to a total number of 27 extracted
features. The features are calculated for overlapping windows
of 25 ms size using 60 % overlap (which corresponds to a frame
shift of 10 ms). During feature extraction, the stereo signal is
converted to mono by averaging over both channels.

2.3. Classification

Hidden Markov Models (HMMs), implemented in HTK [8], are
used as a classifier to recognize the acoustic events. An HMM is
a generative statistical classifier which represents a sequence of
feature vectors using two statistical processes, an internal (hid-
den) Markov Chain and an observable state sequence omitting
the observations (feature vectors).

We use continuous HMMs with left-to-right topology; the
observations are modeled by a mixture of Gaussians, defined by
a mean vector, covariance matrix and mixture weight for each
Gaussian. For each class of acoustic events, one model is cre-
ated in the training phase of the classifier.

2.4. Optimizing the number of HMM states

In order to optimize the number of HMM states, we use an ap-
proach based on Bakis length modeling [9] as presented in [10].
The baseline system uses the same fixed number of states for
every model (also referred to as fixed length modeling). The
Bakis length modeling method proposes to set the number of
states of each model to a fraction of the average length of the
instances of the class. Here the length would be the length of
the recording of the acoustic event in seconds, which can be de-
rived from the recorded database. In our variant of the Bakis
length modeling method, the number of states n(s) for a model
s is set to

n(s) = c + f · t̄(s), (1)

where t̄(s) is the average length of the recordings corresponding
to class s while c and f are an additive constant and a factor, re-
spectively, which have to be optimized heuristically. Using this
method, the number of HMM states can be modeled to better fit
the class statistics.

2.5. Learning new acoustic events

Once an acoustic event has been detected as being novel (nov-
elty detection is not covered in this work), it can be added to
the database of known acoustic events. We compare two ways
to learn a new class of acoustic events. The first, conventional
way (which is referred to as train method in the following,) is
to perform a normal training cycle using expectation maximiza-
tion (EM); a complete retraining of all models is done, which
can be very time consuming, depending on the amount of train-
ing data. The training must be performed with all classes to
ensure proper model initialization.

Another possibility to add a new class to the classifier is to
use MAP adaptation. This method will be called adapt method
in the following. The model for the new class is not built up
from scratch, but it is derived from another model using MAP
adaptation. First of all, the new, unknown acoustic event is clas-
sified as one of the known classes, then the class it is classified
as is used as a starting point for MAP adaptation. The new

model is created by copying and adapting the model of the most
similar class. As adaptation data, the recorded (one or more) in-
stances of the new class are used.

We use MAP adaptation to adapt the means, mixture
weights and variances of the output probabilities of the HMMs.
The mean of mixture component m is adapted using Eq. (2):

µ̂m =
Nm

Nm + τ
µ̄m +

τ

Nm + τ
µm, (2)

where µ̂m is the adapted mean, µ̄m is the mean of the observed
adaptation data, µm ist the old mean of the Gaussian, τ is a
weighting factor and Nm is the occupation likelihood of the
adaptation data for mixture component m.

Eq. (3) is used to adapt the variances of the output proba-
bility distributions of the HMMs:

σ̂2
m =

Nm

Nm + τ
Em(x2) +

τ

Nm + τ
(σ2

m + µ2
m) − µ̂2

m. (3)

Here, σ̂2
m is the adapted variance, σ2

m is the old variance and
Em(x2) is the expected value of the squared observation vector
x2.

The adaptation of mixture weight wm for mixture m fol-
lows Eq. (4):

ŵm = (
Nm

Nm + τ

Nm

T
+

τ

Nm + τ
wm)γ, (4)

where ŵm is the adapted mixture weight, wm is the original
mixture weight, T is the length of the adaptation data, and γ is
a normalizing factor, which is needed to ensure that all mixture
weights sum to 1.

The weighting factor τ is optimised heuristically. Smaller
values of τ lead to higher adaptation, which means (in case for
the mean) that the new mean is nearer at the mean of the adap-
tation data than at the old mean. If τ is set to zero, the new
model corresponds to a model trained only with the adaptation
data. Conversely, higher values of τ lead to less adaptation. In
the case of τ → ∞, the old model is copied in order to get the
new model, while neglecting the adaptation data.

3. Experiments
3.1. Database

For testing purposes we recorded a database of non overlapping
acoustic events with the microphones of our robotic platform,
called ALIAS (ambiant living assistant). ALIAS is a mobile
robot system that interacts with elderly users and monitors and
provides cognitive assistance in daily life. In order to orient
himelf in his environment, ALIAS should be able to recognize
the sounds that surround him. It could also be possible to con-
trol the robot with (non-verbal) acoustic commands.

The robotic platform ALIAS is depicted in Figure 1.
With the pair of AKG C-520 L microphones of the depicted

robotic platform, acoustic events were recorded in a silent office
environment.

During the recording process, an automatic energy-based
voice activity detection (VAD) algorithm was used to detect and
segment the acoustic events. Thus, the database contains seg-
mented recordings of acoustic events.

15 different classes of acoustic events occuring in an of-
fice environment were chosen to be included in the database.
These classes include ambient sound events and command-
oriented social signals and gestures that are intended to pro-
vide a home service robot with better understanding of its en-
vironment. Some special acoustic events that were included in
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Figure 1: Robotic platform ALIAS with two AKG C-520 L
microphones

the database are speech for normal speech and garbage for all
sounds that occured during the recording but are not included in
any of the other classes. Table 1 shows the 15 different classes,
their frequency in the database, and the average length of the
recordings (which is needed for the optimization of HMM state
numbers). The average recording length includes a short phase
of silence at the beginning and at the end of each recording.
The recorded database is not intended to be used for a very gen-
eralized recognition system. For example, it will not be able
to recognize all kinds of closing doors. The database is rather
intended to be a small sample of very specific sounds from a
robot’s environment. In total, the database is made up of 506
single acoustic events.

Class number of files avg. length (in s)

chair rolling 22 1.68
chair squeak 24 1.16
clap 36 1.27
cough 51 1.56
door closing 21 1.42
finger snap 30 1.13
garbage 25 1.96
glass placement 51 1.26
key laydown 16 1.25
key rattle 41 2.43
keyboard 39 1.43
paper rustle 42 2.30
paper tear 44 1.38
speech 36 2.69
steps 28 2.03

Table 1: Overview over the 15 classes of different acoustic
events in the database, their frequency and the average length
of the recordings in s. The total number of acoustic events in
the database is 506, with an average length of 1.69s.

3.2. Baseline system results

For the baseline system, 12 MFCC coefficients are calculated
during feature extraction. Together with the energy coefficient
and delta and acceleration coefficients, this sums up to a total
of 39 features. The baseline system uses fixed length modeling
(with 6 HMM states for each class) to determine the number of
HMM states.

In order to get reliable results, a 5-fold stratified cross val-
idation is applied. Therefore, the instances of each class in the
database are randomly divided into five subsets and the exper-
iments are conducted five times, where each time another one
of the subsets is used for testing. Each time, the remaining four
subsets are used to train the models. The final classification re-
sult is obtained by averaging over the results of the five single
experiments. Table 2 shows the confusion matrix for the base-
line system.
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a 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c 0 0 34 0 0 2 0 0 0 0 0 0 0 0 0 5.6
d 0 0 0 51 0 0 0 0 0 0 0 0 0 0 0 0
e 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0
f 0 0 0 1 0 28 0 0 0 0 0 0 1 0 0 6.7
g 0 1 0 0 0 0 20 0 0 0 1 0 0 1 2 20
h 0 1 1 0 0 0 0 49 0 0 0 0 0 0 0 4
i 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0
j 0 0 0 0 0 0 0 0 0 41 0 0 0 0 0 0
k 0 0 2 0 0 1 0 0 0 0 35 1 0 0 0 10.3
l 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0
m 0 0 0 0 0 1 0 0 0 0 1 2 40 0 0 9.1
n 0 0 0 0 0 0 0 0 0 0 0 0 0 36 0 0
o 0 0 0 0 2 0 0 0 0 0 0 0 0 0 26 7.2

Table 2: Confusion matrix for the baseline recognition system.
Most of the classes are recognized without errors.

Eight out of the 15 total classes are recognized with 100 %
accuracy. The total accuracy is 95.9 %, which corresponds to
an error rate of 4.1 %.

3.3. Results for optimization of HMM state numbers

Using Eq. 1, the number of HMM states is optimized. The op-
timal parameters are f = 2.5 and c = 4. The application of
these parameters (which corresponds to state numbers between
7 and 11) leads to an error rate of 3.2 %, which is a relative
improvement of 23.7 % compared to the baseline system.

Finally, the number of MFCC coefficients is surveyed and
the best result is achieved with eight coefficients (27 features in
total) with an error rate of 2.8 %.

The results of the baseline system including the optimiza-
tions are summarized in Table 3.3.

system setup error rate (in %)

baseline 4.1
improved state numbers 3.2
improved state numbers + MFCC 2.8

Table 3: Summary of the recognition results of the baseline sys-
tem and its improvements. Using a separate number of states for
each HMM and adjusting the number of MFCC components re-
duced the error rate by roughly one third.
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3.4. Results for learning new classes

To evaluate how good a new class can be learnt by the sys-
tem, the experimental setup as described in the following is
used. The described experiment is repeated 15 times, where
each time, one of the acoustic event classes is used as the “new”
class.

Using the structure of the improved baseline system, the
system is trained using all but one of the classes, where the
same amount of training data is used as for the baseline system.
Then, the new class is added to the system using one of the two
methods described in Section 2.5 (complete retraining or adap-
tation). One, two or three instances of the unknown class are
used to create the new model. The remaining data of the new
class is used for testing. A 5-fold cross validation is used to
have each instance (of the “old” classes) in the test set once. In
addition, this experiment is repeated several times, where each
time different instances of the new class are used to create the
new model. The final average results are shown in Table 3.4

1 instance 2 instances 3 instances
new rest new rest new rest

train 85.4 3.0 57.7 3.0 35.6 3.1
adapt 33.9 4.6 25.6 4.4 21.4 4.3

Table 4: Error rates (in %) for learning a new class using ei-
ther full training (train) or MAP adaptation (adapt) to create the
model of the new class. Using one, two, or three instances of
the new class was evaluated, whereby each time, error rates are
reported for the new class (new) as well as for the other classes
(rest).

These results show that when using the train method, the
average error rate for the newly added class is very high when
the model is created from only one instance of the class, but, not
surprisingly, it decreases very strongly when more instances are
used. For the adapt method, using only one instance of the new
class already delivers results that are much better than for the
train method. Here, too, the performance increases when more
instances of the new class are used, but not so strongly as with
the first method.

The classification results for the other classes must also be
looked at. With the train method, the effect of adding a new
class on the classification performance of the previously known
classes is almost neglectable. This is not the case when MAP
adaptation is used. In this case, the error rate for the previously
known classes increases. Looking at the detailed results shows
that this is due to confusion of the class that was taken as a
base for MAP adaptation with the new class. However, in a
one-tailed test, the downgrade is not significant.

4. Conclusion and Future Work
We implemented a system for acoustic event classification
based on HMMs and tested it with our own database of acous-
tic events recorded in an office environment. Then, the case of
open-set recognition was regarded. When an acoustic event is
detected as being previously unknown, how can it be added to
the system as a new class. Two approaches were compared, us-
ing full training or MAP adaptation. The results showed that
when using full training, the accuracy for the new class was
not acceptable when only one instance of this class was used to
train the model of this new class. However, using two or three

instances improved the results. The classification performance
of the other classes was not affected by adding a new class.
As another approach to add a new class, MAP adaptation was
evaluated. With only very few instances of a new class, MAP
adaptation outperformed full training regarding the error rate
for the new class. However, the error rate for the other classes
was affected negatively by adding a new class.

It is also notable that using MAP adaptation instead of full
training requires a lot less computational time. This fact, to-
gether with the good results of the adapt method compared to
the train method when using only one single instance of a new
class leads to the conclusion, that the method of MAP adapta-
tion should be prefered when implementing a real-time system
which can detect and learn new classes of acoustic events on-
line.

In our ongoing research, we want to integrate a novelty de-
tection system into the system to perform the whole process of
detecting unknown acoustic events and learning a new class for
this event. We also want to implement the described system on
a robotic platform to test it in a real environment.
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