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We propose a computational scheme for theab initio calculation of Wannier functionssWFsd for correlated

electronic materials. The full-orbital HamiltonianĤ is projected into the WF subspace defined by the physi-

cally most relevant partially filled bands. The HamiltonianĤWF obtained in this way, with interaction param-
eters calculated by constrained local-density approximationsLDA d for the Wannier orbitals, is used as anab
initio setup of the correlation problem, which can then be solved by many-body techniques, e.g., dynamical

mean-field theorysDMFTd. In such calculations the matrix self-energyôs«d is defined in WF basis which then
can be converted back into the full-orbital Hilbert space to compute the full-orbital interacting Green function
Gsr ,r 8 ,«d. UsingGsr ,r 8 ,«d one can evaluate the charge density, modified by correlations, together with a new
set of WFs, thus defining a fully self-consistent scheme. The Green function can also be used for the calcula-
tion of spectral, magnetic, and electronic properties of the system. Here we report the results obtained with this
method for SrVO3 and V2O3. Comparisons are made with previous results obtained by the LDA1DMFT
approach where the LDA density of states was used as input, and with new bulk-sensitive experimental spectra.

DOI: 10.1103/PhysRevB.71.125119 PACS numberssd: 71.27.1a, 71.30.1h

I. INTRODUCTION

Model Hamiltonians used in the study of correlation ef-
fects in solids have a Coulomb interaction term in a site-
centered atomiclike orbital basis set which is not explicitly
defined. When the correlated electrons are well localized, as,
for example, 4f states of rare-earth ions, atomic orbitalssor
atomic sphere solutions like muffin-tin orbitalsd are a good
choice. However, the most interesting problems occur in the
regime of metal-insulator transitions, where the states of in-
terest become partially itinerant and rather extended. The
error of using atomic orbitals is most severe in the case of
materials with strong covalency effects, like late transition-
metal oxides, where partially filled bands are formed by the
mixture of metallic d orbitals and oxygenp orbitals. For
example, in high-Tc cuprates correlated states have the sym-
metry of Cu−3d x2−y2 orbitals, but are actually Zhang-Rice
singlets formed by the combination of oxygenp states cen-
tered around the Cu ion and havingx2−y2 symmetry.

In model calculations the problem of defining the corre-
lated orbitals is not very important, because it only affects
model parameter values, which in any case are considered
fitting parameters. However, any attempt to construct an “ab
initio” calculation scheme requires an explicit definition of
the basis set for the Coulomb interaction term. An important
requirement for such a choice is that the orbitals must pro-
duce the partially filled bands where Coulomb correlations
occur while preserving the localized, site-centered atomiclike
form. These requirements are fulfilled for Wannier functions
sWFsd uWn

Tl defined as a Fourier transformation of the Bloch

functions ucnkl.1 Here and below functions are labeled with
band indexn, lattice translation vectorT, and wave vectork.

When there is more than one band crossing the Fermi
level, WFs are not uniquely defined. Anyk-dependent uni-
tary transformationÛskd of the set of Bloch functionsucnkl
for these bands produces a new set which can be used for the
calculation of WFs via Fourier transformationfEq. s5d, Sec.
II A g. If one imposes the requirement that the WFs should
have the symmetry of atomic orbitals,2,3 this unitary transfor-
mation is well defined. The explicit form of the WFs allows
one to compute Coulomb interaction parameters in con-
strained local-density approximationsLDA d calculations.

In this way the parameters for theab initio many-body
Hamiltoniansnoninteracting HamiltonianĤWF and Coulomb
interactiond in the WF basis can be computed by any first-
principle electronic structure calculation schemefbelow we
use the linear muffin-tin orbitalsLMTOd methodg. This
Hamiltonian can then be further investigated by one of the
methods developed in the many-body community. In the
present work we use the dynamical mean-field theory
sDMFTd.4–7 Within DMFT, the effective impurity problem
corresponding to the many-body Hamiltonian is solved by
quantum Monte Carlo simulationssQMCd.8 The DMFT part
of the proposed calculation scheme is essentially the same as
the one used in the recently developed LDA1DMFT
approach9 for the ab initio investigations of correlated elec-
tron materials.10 However, here we propose a more general
procedure to compute the Green function using the Hamil-
tonian matrix and an integral over the Brillouin zone instead
of the Hilbert transform of the LDA density of statessDOSd.
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This particular method allows one to avoid the uncontrol-
lable errors occurring in the computation of the Green func-
tion using the Hilbert transform of the LDA DOS. Thus to
obtain an insulating solution we need to cut off the long
smetal-oxygend hybridization tails of the DOS, renormalize
it, and shift the Fermi energy to get an integer filling. In the
present method we overcome the above-mentioned difficul-
ties owing to the integer filling of Wannier orbitals. The re-
sult of the DMFT calculations is a local matrix self-energy

Ŝs«d in the WF basis sethWnj which acts in the subspace of
partially filled bands used for the construction of the WFs.

The paper is structured as follows. In Sec. II the details of
our scheme are presented. In Sec. II A we describe the con-
struction of WFs, as well as theab initio Hamiltonian matrix
within this basis set in terms of Bloch functions. In Sec. II B
we propose a general method for the construction of WFs
using the Green functionGsr ,r 8 ,«d, which reduces to the
results of Sec. II A in the noninteracting case. The reason for
doing so is that the correlation effects can significantly renor-
malize the electronic states of the partially filled bands.
Hence the WFs computed from noninteracting Bloch states
are not an optimal choice for the basis set any more. In Sec.
II C we discuss how to calculate within DMFT the local
Green function with the input of the Hamiltonian matrix in
the WF basis set instead of the LDA DOSswhich is valid
only in the case of degenerate bandsd. In Sec. II D we show
that the matrix self-energy within the WF subspace, which is
the solution of the correlation problem, can be transformed
back into the full-orbital Hilbert space, thus enabling the
computation of the full interacting Green function
Gsr ,r 8 ,«d. It can then be used to calculate the spectral, mag-
netic, and electronic properties of the system under investi-
gation. In addition, to make the calculation scheme fully self-
consistent, one can employ theGsr ,r 8 ,«d to calculate the
charge density affected by correlations and thus the new
LDA potential. Thereby the feedback from DMFT to LDA
can be incorporated in a well-defined way. This is actually
one of the great advantages of using the WF basis since in
the LMTO basis the feedback from DMFT to LDA is essen-
tially uncontrolled. In Sec. III the results for the electronic
structure of the two vanadium oxides SrVO3 and V2O3 ob-
tained by the method developed in this work are presented
and compared with the previous calculations by the simpler
methods and new bulk-sensitive spectra. Finally in Sec. IV
we close this work with a conclusion.

II. METHOD

Let us consider the general case of the electronic structure

problem. For the LDA HamiltonianĤ we have a Hilbert
space of eigenfunctionssBloch statesucikld with the basis set
ufml defined by particular methodsfe.g., LMTO,11 or linear-
ized augmented plane wavessLAPWd,12 etc.g. In this basis
set the Hamiltonian operator is defined as

Ĥ = o
mn

ufmlHmnkfnu. s1d

Here and later greek indices are used for full-orbital matri-
ces.

If we consider a certain subset of the Hamiltonian eigen-
functions, for example Bloch states of partially filled bands
ucnkl, we can define a corresponding subspace in the total
Hilbert space. The Hamiltonian matrix is diagonal in the
Bloch states basis. However, physically more appealing is a
basis set which has the form of site-centered atomic orbitals.
That is, a set of WFsuWn

Tl defined as the Fourier transforma-
tion of a certain linear combination of Bloch functions be-
longing to this subspacefsee below Eq.s6dg. The Hamil-

tonian operatorĤWF defined in this basis set is

ĤWF = o
nn8T

uWn
0lHnn8sTdkWn8

T u. s2d

The total Hilbert space can be divided into a direct sum of
the above introduced subspacesof partially filled Bloch
statesd and the subspace formed by all other states orthogonal
to it. Those two subspaces are decoupled since they are the
eigenfunctions corresponding to different eigenvalues. The
Hamiltonian matrix in the WF basissi.e., a collection of the
bases of the specific subspacesd is block diagonal so that the
matrix elements between different subspaces are zero. The
block matrix Hnn8 in Eq. s2d corresponding to the partially
filled bands can be considered as a projection of the full-
orbital Hamiltonian operators1d onto the subspace defined
by its WFs.

All this concerns the noninteractingsor LDAd Hamil-
tonian. To treat Coulomb correlations one also needs a defi-
nition of the localized orbitals where the electrons interact.
WFs are a natural choice for such a definition. This choice
leads to an important flexibility in the size of the basis set in
the sense that the number of WFs can be changed by chang-
ing the set of Bloch bands considered. The simplest case is a
set of partially filled bands, for example thet2g bands of
vanadium oxides. This is a physically justified approximation
because the Coulomb interaction happens mainly between
electronssor holesd in the partially filled bands. If the prob-
lem to be solved concentrates on the excitation spectrum in a
small energy window around the Fermi level, this basis set is
sufficient. However, if the excitations to higher lying states
sreal or virtuald are also important, the set of Bloch bands
used to construct the WFs need to be extended so that the
Coulomb interaction will be treated in a larger Hilbert sub-
space.

Practically this means that the correlation problem is

solved using a noninteracting few-orbital HamiltonianĤWF

fEq. s2dg instead of the full Hilbert space HamiltonianĤ fEq.
s1dg. The interaction matrix elements of the model Hamil-
tonian can be determined from constrained LDA calculations
for the specific WF basis sets25d.

Projecting the full orbital Hilbert space HamiltonianĤ
fEq. s1dg onto the subspace of the partially filled bands gives

us a few-orbital HamiltonianĤWF fEq. s2dg. This signifi-
cantly decreases the complexity of the correlation problem,
thus permitting its explicit solution. The many-body problem
with a local intraorbital Coulomb interactionsHubbard inter-

actiond then leads to a local matrix self-energyŜWFs«d which
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is naturally defined in the basis of WFs centered on the same
site:13

ŜWFs«d = o
nn8

uWn
0lSnn8s«dkWn8

0 u. s3d

We note that, in contrast to other “basis-reducing” methods,
the information about the states corresponding to the bands
below and above the projected ones is not lost. In fact, the
information is stored in thek-dependent projection matrix
between the full orbital basis set and the orthonormalized
WFss16d. The definitions3d allows one to convert the matrix
self-energySnn8s«d back to the full Hilbert space basis set
sSec. II Dd. With this the interacting Green function can also
be calculated in the full-orbital Hilbert spacesSec. II Bd

A. Definition and construction of Wannier functions

The concept of WFs has a very important place in the
electron theory in solids since its first introduction in 1937
by Wannier.1 WFs are the Fourier transformation of Bloch
statesucikl,

uWi
Tl =

1
ÎN

o
k

e−ikT ucikl, s4d

whereN is the number of discretek points in the first Bril-
louin zone sor, the number of cells in the crystald. These
extremely convenient orthogonal functions were widely in-
vestigated in the seventies.14 The strongly localized nature of
the WFs together with all advantages of the atomic functions
makes them a very useful tool where the atomic character of
the electrons is highlighted. Thus, using the WF method,
significant progress was achieved in the fields of narrow-
band superconductors, disordered systems, solid surfaces,
etc. Several methods for calculating WFs for single and mul-
tiple bands in periodic crystals and their generalization to
nonperiodic systems were proposed. The problem of nonu-
nique definition of WFs in these methods was resolved by an
iterative optimization of trial functions which have the same
real and point-group symmetry properties as WFs. Among
these methods, there are the variational Koster-Parzen
principle15,16 which was generalized by Kohn,20–25 the gen-
eral pseudopotential formalism proposed by Anderson,26 and
the projection operator formalism by Cloizeaux.27–29 How-
ever, all these computational schemes are restricted to simple
band structures.

Wannier functions are not uniquely defined because for a
certain set of bands any orthogonal linear combination of
Bloch functionsucikl can be used in Eq.s4d. In general it
means that the freedom of choice of Wannier functions cor-
responds to the freedom of choice of a unitary transformation
matrix Uji

skd for corresponding Bloch functions:2

uc̃ikl = o
j

Uji
skduc jkl. s5d

The resulting Bloch functionuc̃ikl will generally not be an
eigenfunction of the Hamiltonian but has the meaning of a

Bloch sum of Wannier functionsfsee belowuW̃nkl in Eq.

s6dg. There is no rigorous way to defineUji
skd. This calls for an

additional restriction on the properties of WFs. Among oth-
ers, Marzari and Vanderbilt2 proposed the condition of maxi-
mum localization for WFs, resulting in a variational proce-
dure to calculateUji

skd. To get a good initial guess the authors
of Ref. 2 proposed choosing a set of localized trial orbitals
ufnl and projecting them onto the Bloch functionsucikl. It
was found that this starting guess is usually quite good. This
fact later led to the simplified calculating scheme proposed in
Ref. 3 where the variational procedure was abandoned and
the result of the aforementioned projection was considered as
the final step. The approach of Ref. 2 has recently been used
for the investigation of the row of 3d transition metalssFe,
Co, Ni, and Cud within the simplest many-body approxima-
tion, namely the unscreened Hartree-Fock approximation.30

Another possibility to construct WFs was recently devel-
oped by Andersenet al.31 They proposed theNth-order
muffin-tin orbital sNMTOd scheme in which Wannier-like
low-energy MTOs can be designeda priori. Using a differ-
ent implementation of the LDA1DMFT approach they per-
formed an investigation of the Mott transition in orthorhom-
bic 3d1 perovskites.34 In this approach a realistic
Hamiltonian constructed with Wannier orbitalsson sym-
metrically orthonormalized NMTOsd was solved by DMFT,
including the nondiagonal part of the on-site self-energy.

Our projection procedure works as follows. First of all
one needs to identify the physically relevant bands which
will then be projected onto a WF basis. For example, in
perovskites one usually takes the partially filledd shell or
some particulard bands of transition metals, since they are
mainly responsible for the physical properties of the
system.10 These orbitals are well separated and are, in our
approach, easily extracted from the full orbital space as will
be shown later. Moreover, the projection method is appli-
cable even in the case where the bands of interest differ and
are strongly hybridizedsfor example, Cu-3d and O−2p
states in high-Tc superconductors32d.

To project bands of particular symmetry onto the WFs
basis one can select either the band indices of the corre-
sponding Bloch functionssN1,… ,N2d, or choose the energy
intervalsE1,E2d in which the bands are located. Nonorthogo-

nalized WFs in reciprocal spaceuW̃nkl are then the projection
of the set of site-centered atomiclike trial orbitalsufnl on the
Bloch functionsucikl of the chosen bandsfband indicesN1 to
N2, energy intervalsE1,E2dg:

uW̃nkl ; o
i=N1

N2

uciklkcikufnl = o
isE1,«iskd,E2d

uciklkcikufnl.

s6d

Then the real space WFsuW̃n
Tl are given by

uW̃n
Tl =

1
ÎN

o
k

e−ikT uW̃nkl. s7d

In the present work the trial orbitalsufnl are LMTOs. Note

that in the multiband case a WF in reciprocal spaceuW̃nkl
does not coincide with the Bloch functionucnkl due to the
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summation over band indexi in Eq. s6d. One can consider
them as Bloch sums of WFs analogous to the basis function
Bloch sumsf j

ksr d fEq. s9dg.
The coefficientskcik ufnl in Eq. s6d definesafter orthonor-

malizationd the unitary transformation matrixUji
skd in Eq. s5d.

However, the projection procedure defined in Eq.s6d is more
general than the unitary transformations5d. Namely, the
number of bandssN2−N1+1d can be larger than the number
of trial functions. In this case the projections6d will produce

N new functionsuW̃nkl which define a certain subspace of the
original sN2−N1+1d-dimensional space. This subspace will
have the symmetry of the set of trial functions. In the next
subsection we propose a way to determine WFs from the
Green function of the systems28d rather than from a set of
Bloch states as in Eq.s6d. In this alternative projection pro-
cedure, trial functions are projected onto the subspace de-
fined by the Green function in a certain energy interval.

The Bloch functions in the LMTO basissor any other
atomic orbital-like basis setd are defined as

ucikl = o
m

cmi
k ufm

k l, s8d

where m is the combined index representingqlm sq is the
atomic number in the unit cell,lm are orbital and magnetic
quantum numbersd, fm

k sr d are the Bloch sums of the basis
orbitalsfmsr −Td,

fm
k sr d =

1
ÎN

o
T

eikTfmsr − Td, s9d

and the coefficients have the property

cmi
k = kfmucikl. s10d

If n in ufnl corresponds to the particularqlm combination
sin other wordsufnl is an orthogonal LMTO basis set or-
bitald, thenkcik ufnl=cni

k* , and hence

uW̃nkl = o
i=N1

N2

uciklcni
k* = o

i=N1

N2

o
m

cmi
k cni

k* ufm
k l = o

m

b̃mn
k ufm

k l,

s11d

with

b̃mn
k ; o

i=N1

N2

cmi
k cni

k* . s12d

For a nonorthogonal basis set, see Appendix C.
In order to orthonormalize the WFss11d one needs to

calculate the overlap matrixOnn8skd,

Onn8skd ; kW̃nkuW̃n8kl = o
i=N1

N2

cni
k cn8i

k* , s13d

and its inverse square rootSnn8skd which is defined as

Snn8skd ; Onn8
−1/2skd. s14d

In the derivation of Eq.s13d the orthogonality of Bloch states
kcnk ucn8kl=dnn8 was used.

From Eqs.s11d and s14d, the orthonormalized WFs ink
spaceuWnkl can be obtained as

uWnkl = o
n8

Snn8skduW̃n8kl = o
i=N1

N2

uciklcni
k* = o

m

bmn
k ufm

k l,

s15d

with

cni
k* ; kcikuWnkl = o

n8

Snn8skdcn8i
k* , s16d

bmn
k ; kfm

k uWnkl = o
i=N1

N2

cmi
k cni

k* . s17d

The real space site-centered WFs at the originuWn
0l are

given by the Fourier transform ofuWnkl with T =0. From
Eqs.s15d and s9d one finds

Wnsr d =
1

ÎN
o
k

kr uWnkl = o
T,m

S 1

N
o
k

eikTbmn
k Dfmsr − Td

= o
T,m

w8sn,m,Tdfmsr − Td = o
s

wsn,sdfassdsr − Tsd,

s18d

where w8 and w are the expansion coefficients of WF in
terms of the corresponding LMTO orbitals, in particular,

wsn,sd =
1

N
o
k

eikTsbassdn
k . s19d

Here s is an index counting the orbitals of the neighboring
cluster for the atom where orbitaln is centeredfTs is the
corresponding translation vector,assd is a combinedqlm in-
dexg. The explicit form of the real-space WFs18d can be
used to produce, e.g., shapes of chemical bonds.

For other applications only the matrix elements of the
various operators in the basis of WFs15d are needed. From
Eqs. s15d, s16d, and s18d the matrix elements of the Hamil-

tonian ĤWF in the basis of WF in real space where both
orbitals are in the same unit cell are

Hnn8
WFs0d = kWn

0uS 1

N
o
k

o
i=N1

N2

ucikleiskdkcikuDuWn8
0 l

=
1

N
o
k

o
i=N1

N2

cni
k cn8i

k* eiskd. s20d

eiskd is the eigenvalue for a particular band.
If, on the other hand, one of the orbitals corresponds to

the WF for the atomn8 shifted from its position in the pri-
mary unit cell by a translation vectorT, then the correspond-
ing Hamiltonian matrix element is

Hnn8
WFsTd = kWn

0uĤuWn8
T l =

1

N
o
k

o
i=N1

N2

cni
k cn8i

k* eiskde−ikT .

s21d
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Matrix elements of the density-matrix operatorsoccupa-
tion matrix Qnm

WFd in the basis of WFs can be calculated as

Qnn8
WFsTd = kWn

0uS 1

N
o
k

o
i=N1

N2

uciklusEf − eiskddkcikuDuWn8
T l

=
1

N
o
k

o
i=N1

N2

cni
k cn8i

k* ufEf − eiskdge−ikT ; s22d

usxd is the step function,Ef is the Fermi energy.

Finally, the matrix elements of the HamiltonianĤWF in
reciprocal space are

Hnn8
WFskd = kWnkuS 1

N
o
k8

o
i=N1

N2

ucik8leisk8dkcik8uDuWn8kl

= o
i=N1

N2

cni
k cn8i

k* eiskd. s23d

Equations23d is valid only if the WFs are computed by Eqs.
s15d–s17d. If the WFs were obtained in one calculation and
then used to compute the Hamiltonian matrix in anothersas
is the case for the WFss28d in the Green-function formalism
ssee Sec. II Bd then Eq.s23d is not valid any more and the
general expression must be used:

Hnn8
WFskd = o

i=N1

N2

eiskdo
m

bmn
k* cmi

k o
n

bnn8
k cni

k* . s24d

Thus the transformation from LMTO to the WF basis set
is defined by the explicit form of WFss15d ands17d, and by
the expressions of the matrix elements of the Hamiltonian
and density matrix operators in WF basiss20d ands22d. The
back transformation from the WF to the LMTO basis can
also be defined using Eq.s15d ssee Sec. II Dd.

Finally, the Coulomb matrix elementU needs to be cal-
culated in the same WF basis. This requires a method similar
to the constrained LDA,33 but now for WFs. To this end the
WF energys20d is computed as a function of its occupancy
s22d for a given WFn. Then the corresponding Coulomb
interaction parameterUn in the WF basis is given by

Un ;
dHnn

WFs0d
dQnn

WFs0d
. s25d

As one can see,Un depends on the WFs via Eqs.s20d and
s22d. Once the WFs have been recalculatedsfor example, in
some self-consistent loopd the interaction has to be recalcu-
lated as well.

WFs not only containd orbitals but also states which are
usually considered delocalized, such as O-2p orbitals. The
question is then: which ones are the localized functions that
describe the interacting electrons? In our definition these are
WFs describing the partially occupied bands andnot pured
orbitals. The corresponding Coulomb interaction strength
calculated in constrained LDA will give values ofU for
Wannier functions smaller than the corresponding value for
pured orbitals due to the admixture of O-2p states.

B. Wannier functions in the Green-function formalism

In many-body theory the system is usually not described
by Bloch functionsucikl fEq. s8dg and their energieseiskd but
by the Green function

Gsr ,r 8,«d =
1

N
o
k

Gksr ,r 8,«d =
1

N
o
k

o
mn

fm
k sr dGmn

k s«dfn
*ksr 8d.

s26d

The matrix Green functionGmn
k s«d is defined via the nonin-

teracting Hamiltonian matrixHmnskd and the matrix self-
energySmn

k s«d fEq. s39dg as

Gmn
k s«d = f« − Ĥskd − Ŝs«,kd + ihgmn

−1. s27d

We define the nonorthonormalized WF obtained by project-
ing the trial orbitalfnsr d on the Hilbert subspace defined by
the Green functions26d in the energy intervalsE1,E2d,
namely,

W̃nksr d = −
1

p
ImE

E1

E2

d«E dr 8Gksr ,r 8,«dfn
ksr 8d

= o
m

b̃mn
k fm

k sr d s28d

and

b̃mn
k ; −

1

p
ImE

E1

E2

d«Gmn
k s«d. s29d

In the noninteracting case, the self-energyŜs« ,kd is ab-
sent, and hence we have

Gmn
k s«d = o

i

cmi
k cni

k*

« − eiskd + ih
, s30d

wherecmi
k are the eigenvectorss10d, andeiskd are the eigen-

values ofĤskd. Thusb̃mn
k in Eq. s29d becomes

b̃mn
k = o

i=N1

N2

cmi
k cni

k* , s31d

whereN1,N2 are the band numbers which correspond to the
energy intervalsE1,E2d. Since this recovers the result of Eq.
s12d, we demonstrated that our general definition of WFs
s28d via Green functions reduces to that in terms of Bloch
functionss11d in Sec. II A.

To orthonormalizeW̃nksr d defined in Eq.s28d, one can
just follow the orthonormalizing procedure made in Sec. II A
fEqs. s13d–s17dg, which will not be repeated here. But it
should be pointed out that in the Green-function formalism
the overlap matrixOnn8skd is defined as

Onn8skd = kW̃nkuW̃n8kl = o
m

b̃mn
k* b̃mn8

k .

The occupancy matrix in the orthogonalized WF basiss28d is
defined as
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Qnn8sTd = −
1

p
ImE

−`

EF

d«E E drdr 8
1

N
o
k

Wnk
* sr d

3Gksr ,r 8,«dWn8ksr 8de−ikT . s32d

By using Eq.s26d and orthogonalized Eq.s28d, one finds

Qnn8sTd =
1

N
o
k

o
mn

bmn
k* bnn8

k Qmn
k e−ikT , s33d

with

Qmn
k = −

1

p
ImE

−`

EF

d«Gmn
k s«d. s34d

The energy matrix can be defined similarlysexcept that
the integral over energy is calculated in thesE1,E2d interval
where the corresponding WFs are definedd as

Enn8sTd = −
1

p
ImE

E1

E2

«d«E E drdr 8
1

N
o
k

Wnk
* sr d

3Gksr ,r 8,«dWn8ksr 8de−ikT

=
1

N
o
k

o
mn

bmn
k* bnn8

k Emn
k e−ikT , s35d

with

Emn
k = −

1

p
ImE

E1

E2

«d«Gmn
k s«d. s36d

While Eq. s35d looks similar to the noninteracting Hamil-

tonian in WFs basiss21d, it includes correlations viaŜs«d in
Eq. s27d and hence isinteracting.

C. DMFT in the Wannier function formalism

In the previous subsection we showedfEqs. s26d–s28dg
that the matrix self-energy is needed to construct the WFs in
terms of the full interacting Green function. The DMFT
sRefs. 4–6d was recently found to be a powerful tool to nu-
merically solve multiband Hubbard models. To define pa-
rameters of the correlated model Hamiltonianshoppings,
screened Coulomb integralsd, density-functional theory
within the LDA was used.9 The combined LDA1DMFT
computational scheme was successfully applied to a wide
range of compounds with degeneratesor almost degenerated
orbitals sfor more details, see Ref. 10d. In these cases the
noninteracting LDA DOS was used to obtain the Green func-
tion of the system through a Hilbert transformation. Further-
more, the screened Coulomb interaction parametersU andJ
were calculated by constrained LDA.33

Quite generally, this scheme needs to be improved in two
respects:sid instead of the LDA DOS an LDA Hamiltonian
with a few, relevant orbitals should be used to calculate the
Green function, andsii d a feedback from DMFT to LDA
should be incorporated. Both of these problems are solved by
the approach proposed in this work. In this method the
Hamiltonian matrix in the WF basis setHnn8

WFskd is calculated
from the LDA Hamiltonian via the projection procedures6d
and s23d.

In DMFT the lattice problem becomes an effective single-
site problem which has to be solved self-consistently for the

matrix self-energyŜ and the local matrix Green function

Gnn8s«d =
1

VBZ
E dksfs« + Ef

sNdd1̂ − ĤWFskd − ŜWFs«dg−1dnn8.

s37d

The integration can actually be restricted to the irreducible
part of the Brillouin ZonesBZd via the analytical tetrahedron
method38 with a subsequent symmetrization of the matrix
Green function. The chemical potentialEf

sNd is determined by
the number of electrons on theN interacting orbitals of
interest.35

The DMFT is based on the fact that in thed=` limit the
self-energy is local.36,37 Its matrix Snn8s«d sn, n8 are WF
indicesd is defined in WF basiss3d. If the trial functions in
Eqs. s6d and s28d are chosen as the basis functions of the
irreducible representation of the point symmetry group of
some particular real system,39 the matrix Green functions27d
and hence the matrix self-energys3d can be made diagonal40

in the n index for on-site matrix elements. However, the
symmetry may be so low that the matrix self-energy is
strongly off-diagonal. In this case one needs to employ a
general formalism which is dealing with off-diagonal matrix
Green functions and self-energies.34 In the present work we
investigate systemssSrVO3 and V2O3d where the symmetry
is high enough to result in a diagonal matrix Green function
and self-energy. For this reason we use a DMFT computa-
tional scheme10 assuming diagonal matrices.

The DMFT single-site problem may be formulated as a
self-consistent single-impurity Anderson model.6 The corre-

sponding local one-particle matrix Green functionĜ can be
written as a functional integral6 involving an action where
the Hamiltonian of the correlation problem under investiga-
tion, including the interaction term with the Hubbard inter-
action and Hund’s rule couplings, enters.10 The action de-

pends on the bath matrix Green functionĜ through

sĜd−1 = sĜd−1 + Ŝ. s38d

To solve the functional integral of the effective single impu-
rity Anderson problem, various methods can be used: quan-
tum Monte CarlosQMCd, numerical renormalization group
sNRGd, exact diagonalizationsEDd, noncrossing approxima-
tion sNCAd, etc. sfor a brief overview of the methods see
Ref. 10d.

D. Converting back to the full-orbital Hilbert space

The matrix self-energyŜWFs«d obtained as a solution of
DMFT in Sec. II C is defined in the WF basis sets3d. In
order to compute the interacting Green function in the full-
orbital Hilbert spaces26d ands27d one has to convert it back
to the full-orbitalsLMTOd basis set. This can be easily done
by using the linear-expansion form of the WFs in terms of
the full-orbital basis sets15d and s17d,
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Smn
k s«d = kfm

k uŜs«dufn
kl

= o
n

kfm
k uWnklSnn8s«dkWn8kufn

kl

= o
n

bmn
k Snn8s«dbnn8

k* . s39d

Here we use the local form of the matrix self-energy as ob-
tained in DMFT, but the formalism can be easily generalized.
In the following we refer to this matrix self-energy as the
“full-orbital” self-energy.

The matrix elements of the self-energySmn
k s«d fEq. s39dg

together with the noninteracting Hamiltonian matrixHmn
k al-

low one to calculate the matrix Green functionGmn
k s«d fEq.

s27dg and thus the full-orbital interacting Green function
Gsr ,r 8 ,«d fEq. s26dg. Gsr ,r 8 ,«d contains the full informa-
tion about the system, and various electronic, magnetic, and
spectral properties can be obtained from it. In Sec. III B we
use the full-orbital interacting Green function computed
within DMFT sQMCd to calculate the photoemission and
x-ray-absorption spectra for the strongly correlated vana-
dium oxides SrVO3 and V2O3, and to compare them with
new bulk-sensitive experimental spectra.

One can also calculate the charge-density distribution
modified by correlation effects via

rsr d = −
1

p
ImE

−`

EF

d«Gsr ,r ,«d. s40d

With this rsr d one can recalculate the LDA potentialswhich
is a functional of electron densityd. From the full-orbital
Green functions26d one can recalculate new WFss28d and
s29d which together with the new LDA Hamiltonian allows
one to obtain new parameters for the noninteracting Hamil-
tonians24d. With Eq. s25d one can then compute a new Cou-
lomb interaction parameterU. The set of new LDA potential,
WFs, and Coulomb interaction parameters calculated from

the interacting Green functions26d defines the input for the
next iteration step and hence closes the self-consistency loop
in the proposed computation scheme. For the feedback from
DMFT to LDA in the particular case of the LMTO method11

one needs a set of moments for the partial densities of states
Mql

smd for every atomic sphereq and the orbital momentl,41 in
order to calculate the new charge density and hence the new
LDA potential:

Mql
smd =E

−`

EF

d««mNqls«d,

Nqls«d = −
1

pN
Imo

k
o
m

Gqlm,qlm
k s«d. s41d

E. Summary of the WF scheme

For clarity, in Fig. 1 the essential steps of the WF scheme
presented here are summarized. There are four intercon-
nected parts in this scheme:sid the basis of WF,sii d the
matrix elements of the Hamiltonian and the self-energy in
the WF basis,siii d the Coulomb interaction between elec-
trons on the WFs, andsivd the projection into the few-orbital
basis and back transformation to the full-orbital basis which
retains the information about all orbitals. First the matrix
elements of the noninteracting Hamiltonian in reciprocal
spaceHnn8

WFskd fEq. s23dg and the interaction termSnn8sivd
fEq. s3dg are written in the basis of explicitly defined WFs
uWnkl fEq. s15dg. The actual correlation problem, defined by
the sum of these two termss37d, is then solved within the
LDA1DMFT sQMCd approach.10 The local self-energy
Snn8sivd obtained thereby is then transformed back from the
Wannier basis to the full-orbital spacessee Sec. II Dd. Fur-
thermore, with the full-orbital self-energySmnsivd fEq. s39dg
the full-orbital Green functionGmnsivd fEqs.s26d and s27dg
for the correlated electrons is calculated by ak integration

FIG. 1. Scheme of theab initio fully self-
consistent LDA1DMFT scheme based on the
WF formalismssee textd.
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over the Brillouin zone.38 The Green function allows one to
determine a new charge-density distributions40d fin the
LMTO case see Eq.s41dg and a new set of WFsfvia Eqs.
s28d ands29dg. This is used to construct a new LDA potential
and new noninteracting Hamiltonian. Together with the new
Coulomb interaction parametersUn fEq. s25dg they serve as
the input for the next iteration of calculations, thus complet-
ing the self-consistency loop. It should be stressed that in this
scheme self-consistency involves not only the self-energy
but also the basis of WFs in which it is defined, the charge
density and LDA potential used for constructing the nonin-
teracting Hamiltonian, and the interaction strength between
electrons in the WFs.

After convergency is reached the maximum entropy
methodsMEMd sRef. 46d can be used to obtain imaginary
part of Green functionGnn8sivd. Then, using the Kramers-
Kronig transformation, the Green function on the real axis
Gnn8svd is computed. With that one can construct the WFs
basis self-energySnn8svd ssee Appendix Bd. By the back
transformation ofSnn8svd with a subsequentk integration
the full-orbital Green functionGmnsvd is obtained, which
now contains information not only about the states for which
correlations are considered, but also for all other orbitals of
the system.Gmnsvd is used to obtain orbitally resolved spec-
tral functions. This allows one, for example, to investigate
the influence of the correlated orbitalsse.g., partially filled
t2g orbitals of V in SrVO3 and V2O3d on other orbitalssoxy-
gen 2p and vanadiumeg orbitalsd. It also makes possible the
computation of spectral functions in a wide energy region
and not only in the vicinity of the Fermi level.

III. RESULTS AND DISCUSSION

In our earlier LDA1DMFT calculation scheme the spe-
cific properties of a material entered only via the LDA partial
densities of statessDOSsd for the orbitals of interest. This
procedure is valid for systems where the bands of interest are
degeneratesas in cubic crystals; see Appendix Ad. For more
complicated systems with lower symmetry one needs to em-
ploy the scheme proposed in this work, where the noninter-

acting HamiltonianĤWFskd fEq. s23dg sprojected on WFsd
describing theN orbitals under consideration is used for the
calculation of Gnn8s«d fEq. s37dg within DMFT ssee Sec.
II Cd.

In this section we present results of LDA1DMFT calcu-

lations using the projected HamiltonianĤWFskd. The scheme
was applied to SrVO3 which has a cubic perovskite crystal
structure, and to the trigonally distorted V2O3 sboth in the
insulating and metallic phased. The results are compared with
previous LDA1DMFT calculations where the Hilbert trans-
formation of the LDA DOSs was used for SrVO3 sRef. 42d
ssee Sec. III Ad. A similar scheme was used by Liebsch43 to
compute surface properties of SrVO3. One should note that
the DOSs used for DMFT calculations of V2O3 were ob-
tained by the TB-LMTO-ASA code version 47,11 in contrast
to Ref. 44 where the DOSs were calculated by the ASW
method.45 However, the DOSs obtained in both methods are
very similar and do not produce much different LDA
1DMFT results.

The full-orbital calculation scheme proposed in this work
allows one to answer an important question: how do Cou-
lomb correlations between some orbitals affect the other or-
bitals, and in particular, how does the interaction between the
partially filled t2g orbitals of the V3d shell influence the filled
O-2p and the unoccupied V−3dseg

sd bands? To answer these
questions the matrix of the self-energySnn8s«d s3d was con-
verted back to the full-orbital basis set from the WF basis,
and the full-orbital interacting Green functions27d was cal-
culated. From that, total and partial DOSs were computed to
produce theoretical spectra for comparison with the experi-
mental photoemission and x-ray-absorption data.

In this work, QMC simulations8 were used to solve the
effective single impurity Anderson problem in the DMFT
loop. The result of the DMFTsQMCd calculation is the self-
energy on the imaginary energy axisSnn8sivd. To find the
full-orbital self-energySmn

k s«d on the real energy axis one
has to perform an analytical continuation. The procedure is
described in Appendix B. A self-consistent computation of
the charge density as described in section II D was not yet
performed. Investigations of correlation effects on the unoc-
cupied cubiceg

s states for both SrVO3 and V2O3 are also a
matter of future calculations.

A. Comparison of DMFT results obtained by Hilbert
transformation of the LDA DOS and the

projected Hamiltonian ĤWF
„k…

The cubic perovskite SrVO3 can serve as a test case for
our method. For the cubicOh point symmetry group, the
three 3d orbitalsxy, xz, yz transform according to the triply
degeneratet2g irreducible representation of this group. Hence
the corresponding Green function and self-energy matrices
have diagonal form with equal diagonal elements. As shown
in Appendix A, the results of the Hilbert transformation us-
ing LDA DOS must coincide with the results of the proce-
dure of integration over the Brillouin zone with the projected
333 t2g Hamiltonian.

We use the same LDA DOS and interaction parameters
for SrVO3as in our previous papers.42 The V−3dst2gd states
form a partially filled band in SrVO3. All t2g orbitals
sxy,xz,zyd are equivalent due to the cubic symmetry of the
lattice, so only the results for one of thet2g orbitals are pre-
sented in Fig. 2. In this figure V−3dst2gd spectral functions,
calculated using the LDA DOS and the projected Hamil-
tonian are shown. It is easy to see that both results are almost
identical. The small differences between these two curves are
due to the MEMsRef. 46d used for the calculation of the
spectral function on the real energy axis from the DMFT
Green function.

We also applied our Hamiltonain scheme to a more com-
plicated system with lower symmetry where one can expect
deviations from the results obtained using the LDA DOS. We
performed LDA1DMFT sQMCd calculations for the insulat-
ing and metallic phases of V2O3 with the projected 333 t2g
Hamiltonian and severalU valuessunless stated otherwise
the values ofU are the same as in Ref. 44d. Here and in the
following we use an exchange Coulomb parameterJ
=0.93 eV for V2O3.

44 In contrast to SrVO3, V2O3 has a non-
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cubic trigonal symmetrysspace groupR3cd. Therefore we
use the basis functions of the trigonalD3d point group in-
stead of the cubicOh group. In this basis set the V-3d shell is
split into two groups of bands. The threet2g bands are lo-
cated around the Fermi energy, the two degenerateeg

s bands
are at higher energies. Interesting to us are the partially filled
t2g bands which are formed by onea1g and two degenerateeg

p

orbitals.
In Fig. 3, we present V−3dst2gd spectral functions result-

ing from DOSsLMTO and ASWd and Hamiltonian calcula-
tions atU=4.5 eV, averaged over the threet2g bands. The
spectrum computed with ASW input is taken from Ref. 44.

As mentioned before, the differences between the curves
calculated with ASW and LMTO DOS as input are small;
there are only minor deviations in the peak height. In the
comparison between the DOS calculations and the Hamil-
tonian calculation, it is interesting to note that for these av-
eraged spectra, the differences are relatively small. We find
the typical four peak structureswith lower Hubbard, quasi-
particle peak, and double-peaked upper Hubbard band split
by Hund’s rule couplingd for all three calculations. Only the

position and the height of the quasiparticle peak are quite
different for the Hamiltonian calculation, indicating a more
insulating solution than for the DOS calculations at the same
U value. The similarity between the results for the DOS and
Hamiltonian calculations is not surprising, because the trigo-
nal distortion in V2O3 is relatively small. Therefore the cen-
ter of gravity and the bandwidth of the threet2g bands do not
change much and the DOS calculations can still produce
accurate results.

The differences between DOS and Hamilton calculations
are more pronounced when one compares the band-resolved
t2g spectra. In Figs. 4 and 5, thea1g and eg

p spectra for the
insulating and metallic crystal structure are presented forU
=4.5, 5.0, and 5.5 eV.

Here the curves calculated by different schemes are dis-
tinctively different. This is especially clear from the upper
part of Figs. 4 and 5 corresponding to thea1g orbital of the
V−3dst2gd subband. This is due to the fact that the hybrid-
ization effects are better accounted for by the projected
Hamiltonian, which includes not only intraband hoppings but
also interband on-site and intersite hoppings. The latter ef-

FIG. 2. Comparison of V-3dst2gd spectral
functions for SrVO3 calculated via LDA1DMFT
sQMCd using: LDA DOS—light line; projected
Hamiltonian—black line. The Fermi level corre-
sponds to zero.

FIG. 3. Comparison of V-3dst2gd spectral
functions for V2O3 in the metallic phase calcu-
lated via LDA1DMFT sQMCd using: LDA DOS
sLMTOd—light line sRef. 44d; LDA DOS
sASWd—dashed line; projected Hamiltonian—
black line. The Fermi level corresponds to zero.
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fectively increases the bandwidth of thea1g orbital. The cor-
responding spectral functions have a different peak structure
and different intensities.

Another conclusion from this series of figures is that the
results obtained with the Hamiltonian procedure show a
more insulating behavior for the same values ofU than the
results with the scheme using the LDA DOS.

B. Results of full-orbital calculations: Comparison of
calculated spectra with experimental photoemission

and x-ray-absorption data

The full-orbital calculations scheme proposed in this work
produces an interacting Green functionGsr ,r8 ,«d fEq. s26dg.
The knowledge of the full Green function allows us to cal-
culate the spectral function not only for the states with cor-
relations fV−3dst2gd orbitals in the case of SrVO3 and
V2O3g, but also their effect on the lower-lying occupied oxy-
gen 2p states and the higher-lying unoccupied V-3dseg

sd
states, thus facilitating a comparison of the calculated and
experimental spectra in a wide energy region.

Valence-band photoemission spectroscopysPESd using
high photon energies and O-1s→2p x-ray-absorption spec-
troscopysXASd were performed on the beamline BL25SU at
the SPring-8 synchrotron radiation facility. The PES spectra
were taken using a GAMMADATA-SCIENTA SES-200
electron energy analyzer and XAS spectra were measured by
the total electron yield. The overall energy resolution was set
to 0.2 eV. The pressure in the analyzer chamber was about
4310−8Pa. Single crystals of SrVO3 were cooled to 20 K
and clean surfaces were obtained by fracturingin situ for the
PES spectra, and by scrapingin situ for the much more bulk
sensitive XAS spectra. Well-oriented single-crystalline V2O3
samples were cleavedin situ at a temperature near the metal-
insulator transition, yielding clean specular surfaces. The sur-
face cleanliness was confirmed before and after the spectral
run.

We start with the results for the SrVO3 system. In Fig. 6,
the self-energy on the real energy axis for SrVO3 calculated
via Eq. sB2d is shown. Them* /m ratio is calculated via
m* /m=1/h1−f] ReSsvd /]vgj. This self-energy was used for
the calculation of total and partial DOSs in the full-orbital
Hilbert spacessee Figs. 7 and 8d. In Fig. 7, the total spectral

FIG. 4. Comparison of V-3dst2gd spectral
functions for V2O3 in the insulating phase calcu-
lated via LDA1DMFT sQMCd using: LDA
DOS—light line; projected Hamiltonian—black
line. Upper figures—a1g; lower figures—eg

p orbit-
als. The Fermi level corresponds to zero.

FIG. 5. Comparison of V-3dst2gd spectral
functions for V2O3 in the metal phase calculated
via LDA1DMFT sQMCd using: LDA DOS—
light line; projected Hamiltonian—black line.
Upper figures—a1g; lower figures—eg

p orbitals.
The Fermi level corresponds to zero.
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functions of SrVO3 are presented. Differences between LDA
and full-orbital LDA1DMFT sQMCd spectral functions
mainly occur near the Fermi level. In particular, the LDA
spectral function has a more pronounced quasiparticle peak
near 1 eV. The DOS calculated using the full-orbital self-
energyssee Fig. 8d has a three-peak structure: lower Hubbard
band from −4 to −2ssuppressed by oxygen statesd, quasipar-
ticle peak and upper Hubbard band located at about 3 eV.
The origin of the upper Hubbard band becomes clear from
Fig. 8. One can see that this broad peak is the sum of V-
3dseg

sd and V-3dseg
sd states. It should be noted that correla-

tions on the V-3dseg
sd orbitals were not explicitly included

here. We find, however, that the V-3dseg
sd states are slightly

modified by the full-orbital self-energy due to the hybridiza-
tion with the correlated V-3dseg

sd orbitals. The question of
how correlations affect the position and width of V-3dseg

sd
states directly can only be answered by employing the full
3d-shell 535 projected Hamiltonian.

Introducing correlations betweent2g states changes sig-
nificantly the total and partialsis not shown here directly but
can be conjectured from Fig. 9d LDA DOSs of SrVO3. The
main modification is a transfer of spectral weight from the
energy region near the Fermi level to the lower and upper
Hubbard bands, and the reduction of the weight of the qua-

siparticle peak. Our calculations suggest a strongly corre-
lated but still metallic ground state for SrVO3.

To compare our results with the experimental PES we
calculated a weighted sum of V-3d and O-2p spectral func-
tions according to the photoemission cross section ratio 3:1,
corresponding to an experimental photon energy 900 eV. The
theoretical spectra were multiplied with the Fermi function
corresponding to 20 K and broadened with a 0.2-eV Gauss-
ian to take into account the instrumental resolution. In Fig. 9
one can see that the full-orbital spectra obtained in this way
describe not only the quasiparticle peak, but also the peak at
26 eV and the shoulder at23.5 eV of the PES spectra.
Since previous LDA1DMFT sQMCd results were taking
into account only thet2g states they were not able to describe
PES spectra below22 eV. It is interesting to note that pre-
vious experimental studies did not find any states at23.5
eV; only the new spectra reported here show this feature. The
agreement between the experimental and theoretical spectra
is expected to improve wheneg states are included in the
correlation problem and when also the charge and LDA po-
tential self-consistency is fully implemented.

The influence of correlation effects on the electronic
structure will be more pronounced for systems close to the
Mott insulator transition. For this purpose we compare the
total and partial DOS’s for V2O3 in the insulating and me-

FIG. 6. Self-energy on real energy axis for
SrVO3. Real part—full black line; imaginary
part—full light line. The Fermi level corresponds
to zero.

FIG. 7. Comparison of total spectral functions
of SrVO3 calculated via: LDA—full light line;
using the full-orbital self-energy from LDA
1DMFT sQMCd—dashed black line. The Fermi
level corresponds to zero.
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tallic phases calculated via LDA and full-orbital
LDA1DMFT.48,49 Since the V-3dst2gd orbitals in trigonal
V2O3 split into nonequivalenta1g and eg

p states, the self-
energy will be different for these orbitalsssee Fig. 10d.

In Fig. 11 one can see that the introduction of correlation
effects changes the total DOS drastically. Whereas the LDA
DOS is metallic for both metallic and insulating phases, the
LDA1DMFT spectra clearly show the metal-insulator tran-
sition. Although the change near the Fermi level is the most
prominent, modifications between23 to 27 eV are also
seen. Moreover, there are also changes in theeg

s states which
are caused by the hybridization with the correlatedt2g bands,
and are not due to a direct calculation of correlations in the
eg

s states. In Fig. 12 the totald-state DOS above the Fermi
energy, consisting oft2g andeg

s states, is shown.
In Fig. 13 a comparison of experimental PES and calcu-

lated LDA1DMFT sQMCd st2g only and full-orbitald spectra
is presented. The full-orbital spectrum is a weighted sum of

the calculated V-3d and O-2p spectral functions, according
to the photoemission cross-section ratio 2:1, corresponding
to the experimental photon energy of 500 eV. The theoretical
spectra were multiplied with the Fermi function and broad-
ened with a Gaussian of 0.2 eV.47 Below the Fermi energy
the LDA1DMFT sQMCd spectral functionssfor t2g only and
the full-orbital schemed agree quite well with the PES spec-
tra. However, the theory curves do not yet describe fine de-
tails. For example, the PES spectrum of the insulator phase
shows two definite slope changes, at roughly20.6 and21.5
eV, producing a rather flat topped spectrum centered on21
eV, whereas the theory curves show a single peak centered
on 21 eV.

A comparison of the calculated LDA1DMFT sQMCd
full-orbital spectral functions and the O 1s→2p XAS spec-
trum is shown on Fig. 14. The full-orbital spectraswhich are
the partial O-2p spectra for the unoccupied V-3d statesd are

FIG. 8. Partial V-3d spectral functions for
SrVO3 calculated using the full-orbital self-
energy from LDA1DMFT sQMCd. Total d—full
light line; t2g—full black line; eg—dashed black
line. The Fermi level corresponds to zero.

FIG. 9. Comparison of photoemission spectra of SrVO3 with
spectral functions calculated via LDA1DMFT sQMCd: taking into
account onlyt2g—light line; using full-orbital self-energy—black
line. Theoretical spectra are multplied with the Fermi function cor-
responding to 20 K and broadened with a 0.2-eV Gaussian to ac-
count for the instrumental resolution. Intensities are normalized to
yield the same height for the quasiparticle peaks. The Fermi level
corresponds to zero.

FIG. 10. Self-energy on real energy axis for V2O3. Real part of
the self-energy from LDA1DMFT sQMCd—full black line; imagi-
nary part—full light line. The Fermi level corresponds to zero.
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found to agree with the experimental spectrum as to the rela-
tive weights of the part nearest the Fermi energy and the
parts at higher energy. This is due to the inclusion of O-2p
and V-3dseg

sd states in the calculations. The strong hybrid-
ization of the O-2p with the d states is described more cor-
rectly in the full-orbital calculations and the inclusion ofeg

s

statesseven without correlationsd significantly changes the
V-3d spectrum in the energy region above the Fermi edge.
The inclusion of correlations in theeg

s states within a 535
projected V-3d Hamiltonian is expected to add spectral
weight in the energy interval between 3 and 5 eVssee Fig.
14d.

IV. CONCLUSION

We formulated a fullyab initio and self-consistent com-
putational scheme based on Wannier functionssWFsd for the
calculation of the electronic structure of strongly correlated
compounds. The WF formalism provides an explicit strategy
for the construction of the matrix elements of the required
operatorssHamiltonian, self-energy, etc.d, both in full-orbital
and few-orbital bases, in real and reciprocal representations.
The WF formalism allows one to project these operators
from the full-orbital space to the few-orbital space and back,
keeping the complete information about all orbitals. These
projections are the essential ingredients of the computational
scheme presented here. The self-consistency involves not
only the self-energy but also the WF basis itself, the charge
density with the LDA potential and the interaction strength
parameters between the electrons on the WFs. The spectra
obtained thereby found to be in good agreement with new
bulk-sensitive experimental data.

In the present work we did not yet employ the full scheme
ssee Fig. 1d to investigate spectral functions of strongly cor-

FIG. 11. Comparison of total spectral functions of V2O3 calcu-
lated via: LDA—full light line; using full-orbital self-energy from
LDA1DMFT sQMCd—dashed black line. The Fermi level corre-
sponds to zero.

FIG. 12. Partial V-3d spectral functions for V2O3 calculated
using full-orbital self-energy from LDA1DMFT sQMCd. Total
d—full light line; t2g—full black line; eg—dashed black line. The
Fermi level corresponds to zero.

FIG. 13. Comparison of photoemission spectra of V2O3 with
spectral functions calculated via LDA1DMFT sQMCd: taking into
account onlyt2g—light line; using full-orbital self-energy—black
line. Theoretical spectra are multiplied with the Fermi function and
broadened with a 0.2-eV Gaussian to simulate instrumental resolu-
tion. Intensities are normalized for peaks situated around21 eV.
The Fermi level corresponds to zero.
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related systems but used only few-orbital Hamiltonians with
t2g symmetry. Clearly, fulld-shell DMFT sQMCd results in-
cluding eg states will provide additional information about
correlation effects in the system. Such studies, as well as
constrained LDA calculations in the WF basis and investiga-
tions of the feedback from the DMFT to the LDA part, are in
progress now.
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APPENDIX A: HILBERT TRANSFORMATION

For cubic systems the matrix of the self-energysfor ex-
ample, fort2g orbitalsd is diagonal and all diagonal elements
are equal. Therefore the calculation of the Green function
within DMFT by integration of the Hamiltonian over the BZ
is equivalent to the Hilbert transformation of the noninteract-
ing sLDA d DOS N0sed:

Ssvd =1
ssvd 0 … 0

0 ssvd … 0

A A � A
0 0 … ssvd

2⇒ Gsvd

=E
IBZ

fv − Ssvd − HLDA
0 skdg−1dk

= G0fv − ssvdg

=E N0s«d
v − ssvd − e

de. sA1d

APPENDIX B: SELF-ENERGY ON THE REAL
ENERGY AXIS

DMFT produces Green functions and self-energies on the
imaginary energy axis. With the maximum entropy method,46

the spectral function on the real energy axis is calculated,
which yields the imaginary part of the Green function. In
order to obtain the self-energy on the real energy axis, the
full complex Green functionGs«d is calculated using its
imaginary part obtained by MEM:

Gs«d = −
1

p
E

−`

` Im Gs«8dd«8

« − «8 + ih
. sB1d

The self-energy for real energies is then calculated by solv-
ing the following two equations with the two variables
ReSs«d and ImSs«d:

Re,ImhGs«dj = Re,ImHE
BZ

f« − Hskd − Ss«dg−1dkJ ,

sB2d

where

Ss«d = ReSs«d + i Im Ss«d. sB3d

APPENDIX C: NONORTHOGONAL BASIS SET

Equations11d is valid only for orthogonal LMTO orbitals.
In the case of general nonorthogonal LMTOssor any other
atomic-type orbital basis setd, an orthogonalization procedure

can be used by defining an orthogonal HamiltonianH̃ and

the corresponding eigenvectorsC̃ for the nonorthogonal
HamiltonianH and overlapping matrixO:

FIG. 14. Comparison of O-1s→2p x-ray-absorption spectros-
copy sXASd spectra of V2O3 with spectral functions calculated via
LDA1DMFT sQMCd using full-orbital self-energy. Theoretical
spectra are multiplied with the Fermi function and broadened with a
0.2-eV Gaussian to simulate instrumental resolution. Intensities of
the theory curves are normalized to the correct number of V-3d
electrons in the unit cellseight electronsd. The experimental curve is
normalized to the same peak height as the full orbital curve. The
Fermi level corresponds to zero.
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H̃ = O−1/2HO−1/2, sC1d

C̃ = O1/2C.

This orthogonalization is equivalent to the basis set transfor-
mation:

uf̃nl = o
n8

Onn8
−1/2ufn8l. sC2d

Then for the nonorthogonal LMTO the trial functionufnl has
to be replaced byuf̃nl and the eigenvectors with coefficients
cji

k by c̃ji
k .
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