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We propose a computational scheme for dheinitio calculation of Wannier functiondVFs) for correlated
electronic materials. The full-orbital Hamiltonias is projected into the WF subspace defined by the physi-
cally most relevant partially filled bands. The Hamiltonid®* obtained in this way, with interaction param-
eters calculated by constrained local-density approxim&ti@A ) for the Wannier orbitals, is used as ah
initio setup of the correlation problem, which can then be solved by many-body techniques, e.g., dynamical
mean-field theoryDMFT). In such calculations the matrix self-ener@ys) is defined in WF basis which then
can be converted back into the full-orbital Hilbert space to compute the full-orbital interacting Green function
G(r,r’,e). UsingG(r,r’,e) one can evaluate the charge density, modified by correlations, together with a new
set of WFs, thus defining a fully self-consistent scheme. The Green function can also be used for the calcula-
tion of spectral, magnetic, and electronic properties of the system. Here we report the results obtained with this
method for SrVQ and \,O5;. Comparisons are made with previous results obtained by the-+DMFT
approach where the LDA density of states was used as input, and with new bulk-sensitive experimental spectra.

DOI: 10.1103/PhysRevB.71.125119 PACS nunt®er71.27+a, 71.30+h

I. INTRODUCTION functions| ).t Here and below functions are labeled with
o i . band index, lattice translation vector, and wave vectok.
Model Hamiltonians used in the study of correlation ef-  \yhen there is more than one band crossing the Fermi

fects in solids have a Coulomb interaction term in a site4eyel, WFs are not uniquely defined. Alydependent uni-
cen_tered atomiclike orbital basis set which is not e>§pI|C|tIytary transformatior)® of the set of Bloch function$y)
defined. When the correlated electrgns are we.II Ioca_llzed, 3%or these bands produces a new set which can be used for the
for example, 4 states of rare-earth ions, atomic orbités  c4\cylation of WFs via Fourier transformatigig. (5), Sec.
atomic sphere solutions like muffin-tin orbitalare a good || A]. If one imposes the requirement that the WFs should
choice. However, the most interesting problems occur in thgyaye the symmetry of atomic orbita#é this unitary transfor-
regime of metal-insulator transitions, where the states of inmation is well defined. The explicit form of the WFs allows
terest become partially itinerant and rather extended. Thene to compute Coulomb interaction parameters in con-
error of using atomic orbitals is most severe in the case oétrained local-density approximatighDA) calculations.
materials with strong covalency effects, like late transition- In this way the parameters for thab initio many-body
metal oxides, where partially filled bands are formed by theqamiltonian(noninteracting Hamiltoniab¥F and Coulomb
mixture of metallicd orbitals and oxygerp orbitals. For jnteraction in the WF basis can be computed by any first-
example, in hight, cuprates correlated states have the symprinciple electronic structure calculation schefbelow we
metry of Cu-31 x*~y? orbitals, but are actually Zhang-Rice use the linear muffin-tin orbitalLMTO) method. This
singlets formed by the combination of oxygprstates cen- Hamiltonian can then be further investigated by one of the
tered around the Cu ion and havirg-y? symmetry. methods developed in the many-body community. In the
In model calculations the problem of defining the corre-present work we use the dynamical mean-field theory
lated orbitals is not very important, because it only affects DMFT).*~” Within DMFT, the effective impurity problem
model parameter values, which in any case are considerezbrresponding to the many-body Hamiltonian is solved by
fitting parameters. However, any attempt to constructam “ quantum Monte Carlo simulatiof®MC).2 The DMFT part
initio” calculation scheme requires an explicit definition of of the proposed calculation scheme is essentially the same as
the basis set for the Coulomb interaction term. An importanthe one used in the recently developed LBBMFT
requirement for such a choice is that the orbitals must proapproach for the ab initio investigations of correlated elec-
duce the partially filled bands where Coulomb correlationsron materials® However, here we propose a more general
occur while preserving the localized, site-centered atomiclikgprocedure to compute the Green function using the Hamil-
form. These requirements are fulfilled for Wannier functionstonian matrix and an integral over the Brillouin zone instead
(WFs) |WI> defined as a Fourier transformation of the Bloch of the Hilbert transform of the LDA density of statd30S).
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This particular method allows one to avoid the uncontrol- If we consider a certain subset of the Hamiltonian eigen-
lable errors occurring in the computation of the Green funcfunctions, for example Bloch states of partially filled bands
tion using the Hilbert transform of the LDA DOS. Thus to |#), we can define a corresponding subspace in the total
obtain an insulating solution we need to cut off the longHilbert space. The Hamiltonian matrix is diagonal in the
(metal-oxygen hybridization tails of the DOS, renormalize Bloch states basis. However, physically more appealing is a
it, and shift the Fermi energy to get an integer filling. In the basis set which has the form of site-centered atomic orbitals.
present method we overcome the above-mentioned difficufhat is, a set of WFSA ) defined as the Fourier transforma-
ties owing to the integer filling of Wannier orbitals. The re- tion of a certain linear combination of Bloch functions be-
sult of the DMFT calculations is a local matrix self-energy longing to this subspacgsee below Eq(6)]. The Hamil-

3.(¢) in the WF basis sefw,} which acts in the subspace of tonian operatoH"" defined in this basis set is
partially filled bands used for the construction of the WFs.

The paper is structured as follows. In Sec. Il the details of
our scheme are presented. In Sec. Il A we describe the con- AWF= > |\N2>Hnn’(T)<W:'|- 2)
struction of WFs, as well as thab initio Hamiltonian matrix
within this basis set in terms of Bloch functions. In Sec. || B
we propose a genera' method for the Construction Of WFs The total H||bert Space can be d|V|ded into a direct sum of
using the Green functio@(r,r’,e), which reduces to the the above introduced Subspa(:ef partlally filled Bloch
results of Sec. Il A in the noninteracting case. The reason foptates and the subspace formed by all other states orthogonal
doing so is that the correlation effects can significantly renor{© it. Those two subspaces are decoupled since they are the
malize the electronic states of the partially filled bands igenfunctions corresponding to different eigenvalues. The
Hence the WFs computed from noninteracting Bloch state§lamiltonian matrix in the WF basig.e., a collection of the
are not an optimal choice for the basis set any more. In Se®ases of the specific subspacissblock diagonal so that the
I1C we discuss how to calculate within DMFET the local Matrix elements between different subspaces are zero. The
Green function with the input of the Hamiltonian matrix in Plock matrixHyy in Eq. (2) corresponding to the partially
the WF basis set instead of the LDA DQ®hich is valid filled bands can be considered as a projection of the full-
only in the case of degenerate banda Sec. Il D we show orb_ital Hamiltonian operato(l) onto the subspace defined
that the matrix self-energy within the WF subspace, which i its WFs.

the solution of the correlation problem, can be transformed A” this concerns the noninte_racting)r LDA) Hamil- .
back into the full-orbital Hilbert space, thus enabling thetonian. To treat Coulomb correlations one also needs a defi-

computation of the full interacting Green function nition of the localized orbitals where the electrons interact.
G(r,r',e). It can then be used to calculate the spectral, magWFs are a natural choice for such a definition. This choice
netic, and electronic properties of the system under investi€ads to an important flexibility in the size of the basis set in

gation. In addition, to make the calculation scheme fully self-t€ sense that the number of WFs can be changed by chang-
consistent, one can employ ti@&r,r',¢) to calculate the NG the set of Bloch bands considered. The simplest case is a

charge density affected by correlations and thus the new€t Of partially filled bands, for example thg, bands of
LDA potential. Thereby the feedback from DMFT to LDA vanadium oxides. This is a phys_lcallyjusnﬁed approximation
can be incorporated in a well-defined way. This is actuallyPecause the Coulomb interaction happens mainly between
one of the great advantages of using the WF basis since mlectrons(or holeg in the partially filled bands. If the prob-
the LMTO basis the feedback from DMFET to LDA is essen- [€M to be solved concentrates on the excitation spectrum in a
tially uncontrolled. In Sec. IIl the results for the electronic SMall énergy window around the Fermi level, this basis set is
structure of the two vanadium oxides Sry@nd V,05 ob- suff|C|ent._ However, if thg excitations to higher lying states
tained by the method developed in this work are presenteff€@l Or virtua) are also important, the set of Bloch bands
and compared with the previous calculations by the simplekSed to construct the WFs need to be extended so that the
methods and new bulk-sensitive spectra. Finally in Sec. oulomb interaction will be treated in a larger Hilbert sub-

nn'T

we close this work with a conclusion. space. _ . .
Practically this means that the correlation problem is
Il. METHOD solved using a noninteracting few-orbital Hamiltonigif'"

Let us consider the general case of the electronic structurdd: (2)] instead of the full Hilbert space Hamiltoni&h[Eq.
problem. For the LDA Hamiltoniarki we have a Hilbert (1]. The interaction matrix elements of the model Hamil-

space of eigenfunction®loch states,)) with the basis set ]Egp't?:; Csanegiﬁgs\tﬁ:mg;g?g ;gg) constrained LDA calculations
|¢,) defined by particular methods.g., LMTO} or linear- P '

ized augmented plane wavésAPW),12 etc]. In this basis Projecting the full orbital Hilbert space Hamiltoniath
set the Hamiltonian operator is defined as [Eq. (1)] onto the subspace of the partially filled bands gives
) us a few-orbital HamiltoniarHWF [Eq. (2)]. This signifi-
H=> |¢M>HW<¢V|. (1) cantly decreases the complexity of the correlation problem,
mv thus permitting its explicit solution. The many-body problem

Here and later greek indices are used for full-orbital matri-With @ local intraorbital Coulomb interactiditubbard inter-
ces. action then leads to a local matrix self-energy’"(e) which
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is naturally defined in the basis of WFs centered on the sam)]. There is no rigorous way to defit#*’. This calls for an
site3 additional restriction on the properties of WFs. Among oth-
~ ers, Marzari and Vanderbilproposed the condition of maxi-
IWR(e) = 2 MRS gy (£)(WS | (3 mum localization for WFs, resulting in a variational proce-
nn’ dure to calculateJink). To get a good initial guess the authors

We note that, in contrast to other “basis-reducing” methodsOf Ref. 2 proposed choosing a set of localized trial orbitals
the information about the states corresponding to the bandgn’ and projecting them onto the Bloch functiofg). It
below and above the projected ones is not lost. In fact, th&vas found that this starting guess is usually quite good. This
information is stored in thé-dependent projection matrix fact later led to the S|mpl_|f|ed calculating scheme proposed in
between the full orbital basis set and the orthonormalized?€f. 3 where the variational procedure was abandoned and
WFs(16). The definition(3) allows one to convert the matrix the result of the aforementioned projection was considered as
self-energy.,,(g) back to the full Hilbert space basis set the fina! step._Th(_a approach of Ref. 2 ha; _recently been used
(Sec. Il D). With this the interacting Green function can also for the investigation of the row ofBtransition metalgFe,

be calculated in the full-orbital Hilbert spa¢gec. Il B Co, Ni, and Ciiwithin the simplest many-body approxima-
tion, namely the unscreened Hartree-Fock approximation.

Another possibility to construct WFs was recently devel-
A. Definition and construction of Wannier functions oped by Anderseret al3! They proposed theNth-order
Th f WEs h . | in th muffin-tin orbital (NMTO) scheme in which Wannier-like
e concept o S has a very important place in t E1ow—energy MTOs can be designedpriori. Using a differ-

electron theory in solids since its first introduction in 1937 . implementation of the LDADMFT approach they per-
Lo . )
by Wannier: WFs are the Fourier transformation of Bloch formed an investigation of the Mott transition in orthorhom-

states| i), bic 3d! perovskite$* In this approach a realistic
1 , Hamiltonian constructed with Wannier orbitalen sym-
Wy = =2 ™ T[y), (4)  metrically orthonormalized NMTQswas solved by DMFT,
VN k including the nondiagonal part of the on-site self-energy.

whereN is the number of discrete points in the first Bril- Our projection procedure works as follows. First of all

louin zone (or, the number of cells in the crystalThese ©ne needs to id_entify the physically re_levant bands whi(_:h
extremely convenient orthogonal functions were widely in-Will then be projected onto a WF basis. For example, in
vestigated in the seventiéThe strongly localized nature of Perovskites one usually takes the partially fillddshell or

the WFs together with all advantages of the atomic function§0me particulad bands of transition metals, since they are
makes them a very useful tool where the atomic character ghainly responsible for the physical properties of the
the electrons is highlighted. Thus, using the WF methodSystem:® These orbitals are well separated and are, in our
significant progress was achieved in the fields of narrow&Pproach, easily extracted from the full orbital space as will
band superconductors, disordered systems, solid surfacdd shown later. Moreover, the projection method is appli-
etc. Several methods for calculating WFs for single and mul€@ble even in the case where the bands of interest differ and
tiple bands in periodic crystals and their generalization tc@r€ strongly hybridized(for example, Cu-8 and O-2
nonperiodic systems were proposed. The problem of nonwstates in highk supercondugto?%).

nique definition of WFs in these methods was resolved by an TO Project bands of particular symmetry onto the WFs
iterative optimization of trial functions which have the samebasis one can select either the band indices of the corre-
real and point-group symmetry properties as WFs. Amongspondlng Bloch function§Ny, ...,N,), or choose the energy
these methods, there are the variational Koster-Parzeifterval(Ey,Ep) in which the bands are located. Nonorthogo-
principle!>1® which was generalized by Kotf;?>the gen-  nalized WFs in reciprocal spat¥/,) are then the projection
eral pseudopotential formalism proposed by Andefamd  of the set of site-centered atomiclike trial orbitafs) on the

the projection operator formalism by Cloizeatfx?® How-  Bloch functions ;) of the chosen bandband indices\; to
ever, all these computational schemes are restricted to simpie,, energy intervalE,,E,)]:

band structures.

Wannier functions are not uniquely defined because fora -~ N2
certain set of bands any orthogonal linear combination of W) = E |kl ) = > il -
Bloch functions|¢,) can be used in Eq4). In general it =N By <silk)<Ep)
means that the freedom of choice of Wannier functions cor- (6)
responds to the freedom of choice of a unitary transformation ~ )
matrix Ufik) for corresponding Bloch functiors: Then the real space Wi#Y,) are given by
i) = ; Uj(ik)ij)- (5 W'y = \iﬂg e KT Wiy (7)

The resulting Bloch functiorﬂﬁip will generally not be an In the present work the trial orbita|g,) are LMTOs. Note

eigenfunction of the Hamiltonian but has the meaning of qhat in the mu|tiband case a WF in reciproca| Spg‘}ﬁﬂ
Bloch sum of Wannier functionfsee below|W,,) in Eq.  does not coincide with the Bloch functidi,) due to the
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summation over band indexin Eqg. (6). One can consider From Egs.(11) and (14), the orthonormalized WFs ik
them as BIoch sums of WFs analogous to the basis functiospacelW,,) can be obtained as
Bloch sums¢ (r) [Eq. (9)]. N,

The coefflc:lentgz//, | ¢, in Eq. (6) defme(after orthonor- W K W _ ek P
malization the unitary transformation matrlxl Vin Eq. (5). [ W) = E Sty (K)[Worie) = IEN:1|¢||<> % nl B
However, the projection procedure defined i |n Ej.is more

general than the unitary transformatidf). Namely, the (15
number of band$N,—N;+1) can be larger than the number with

of trial functions. In this case the projecti@®) will produce o -

N new functiongW,,) which define a certain subspace of the Cri = (Wi Wi) = 2 S (K)eys, (16)

original (N,—N;+1)-dimensional space. This subspace will n’

have the symmetry of the set of trial functions. In the next

subsection we propose a way to determine WFs from the ‘

Green function of the systeii28) rather than from a set of b, = (kW) = E cliChi - 17
Bloch states as in Ed6). In this alternative projection pro- =Ny

cedure, trial functions are projected onto the subspace de- The real space site-centered WFs at the or|gﬁﬁ> are

fined by the Green function in a certain energy interval.  given by the Fourier transform diV,) with T=0. From
The Bloch functions in the LMTO basitor any other Egs.(15) and(9) one finds
atomic orbital-like basis sgtire defined as

i k
|t = 2 clil 4, (8) War) = rz (W = 2 ( Ek: elkaf‘”) $ur = T)
where . is the combined index representimgm (q is the = 2 W (nu,T)g,(r=T)= Ew(n S hue(r =Ty,
atomic number in the unit cellm are orbital and magnetic T
guantum numbejs ¢>';(r) are the Bloch sums of the basis (18)

orbitals ¢,,(r=T), wherew’ and w are the expansion coefficients of WF in

. 1 o terms of the corresponding LMTO orbitals, in particular,
P == Tg,(r-T), ©)
VN1
w(n,s) = E T - (19
and the coefficients have the property
CI;i :<¢ﬂ|¢ik>_ (10) Here s is an index counting the orbitals of the neighboring

. ) o cluster for the atom where orbital is centered T is the
It nin[¢;) corresponds to the particulgtm combination  corresponding translation vectar(s) is a combinedyim in-
(in other words|¢,) is an orthogonal LMTO basis set or- dex]. The explicit form of the real-space WE8) can be

. — k*
bital), then(y| 4 =cy , and hence used to produce, e.g., shapes of chemical bonds.
N, For other applications only the matrix elements of the
W)= D (e E e c, )= 2 bX |4%Y, various operators in the basis of WE5) are needed. From
W i:lellk " i=N; u d) n|¢ Egs.(15), (16), and(18) the matrix elements of the Hamil-

(11)  tonian HWF in the basis of WF in real space where both
orbitals are in the same unit cell are

with
N
= . /(0) =(WH k
B, = D ol (12) mm<|@§%mmuwﬁ
i=N;
Np
For a nonorthogonal basis set, see Appendix C. = 12 > ¢k ﬁf-ei(k). (20)
In order to orthonormalize the WF41) one needs to N iz, '

calculate the overlap matri®,, (k), . . .
P e (K) €(k) is the eigenvalue for a particular band.

N If, on the other hand, one of the orbitals corresponds to
O (K) = (Wt Wyi) = 2 ek, (13)  the WF for the atonn’ shifted from its position in the pri-

=Ny mary unit cell by a translation vectdr, then the correspond-

and its inverse square ro8,, (k) which is defined as ing Hamiltonian matrix element is
/(K) = O;4(K). 14 .
S (k) = Oy () (14 HYR(T) = (WOl HIW! ) = = 2 E ces ek T,

In the derivation of Eq(13) the orthogonality of Bloch states K 1=Ng
(k| i) = Oy Wass used. (21
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Matrix elements of the density-matrix operaf@ccupa- B. Wannier functions in the Green-function formalism
. . WF . .
tion matrix Q) in the basis of WFs can be calculated as In many-body theory the system is usually not described

1 N, by Bloch functiong ;) [Eq. (8)] and their energieg (k) but
Qhr(T) = <\N2|<NE > [ OE; - ei(k)><<mk|) W) by the Green function

k i=Np
1 1 .
N G(r.r',e) == G r,r',e)= =2 2 (G, ()8, (r").
1 =k =k* —ikT N N # Hy v
==> > CniCpiOLE: — €(k)]Je™"; (22) k kK pr
Nk i=ny (26)
6(x) is the step functionE; is the Fermi energy. The matrix Green functiois! (z) is defined via the nonin-
Finally, the matrix elements of the Hamiltonigh"" in teracting Hamiltonian matri (k) and the matrix self-
reciprocal space are energyE':w(s) [Eq. (39)] as

G, (e) =[e = H(k) - S(e,k) +ig] 2. (27)

We define the nonorthonormalized WF obtained by project-
ing the trial orbitalg,(r) on the Hilbert subspace defined by

1o <
H\r?:f(k):<Wnk(_2 2 [t &k )| | W)

N k' i=Np

N2
= > cheh a(k). (23)  the Green function(26) in the energy interval(Ey,Ey),
i=N, " namely,

Equation(23) is valid only if the WFs are computed by Eqgs. ~ 21 E2 ke Ko
(15—(17). If the WFs were obtained in one calculation and Wi (r) = - Im| de [ dr'G(r,r',e)¢y(r")

then used to compute the Hamiltonian matrix in anofiaesr E1

is the case for the WH8) in the Green-function formalism => bk ¢ () (28)
(see Sec. Il Bthen Eq.(23) is not valid any more and the P

general expression must be used:

and
Ny
* * E
()= 2 e 2 bei bl el (24) B ——1im f " ds G (). (29)
1=Nq Iz v Iz . w

=]

Thus the transformation from LMTO to the WF basis set ) ) A )
is defined by the explicit form of WF&L5) and(17), and by In the noninteracting case, the self-eneiyf k) is ab-
the expressions of the matrix elements of the Hamiltoniarf€nt, and hence we have

and density matrix operators in WF bag¥)) and(22). The oK ok
back transformation from the WF to the LMTO basis can GZV(S) => i (30)
also be defined using E(L5) (see Sec. Il . i e—gk)+in

Finally, the Coulomb matrix elemerd needs to be cal- K _ .
culated in the same WF basis. This requires a method simildi’nerec,; are the eigenvectord0), ande(k) are the eigen-
to the constrained LDAS but now for WFs. To this end the values ofH(k). Thusb¥, in Eq. (29) becomes
WF energy(20) is computed as a function of its occupancy N
(22) for a given WFn. Then the corresponding Coulomb ~r 4 KK+

bk,= > cic

interaction parametdd,, in the WF basis is given by N i*ni (3D
-1
U = dHni (0) (25 WhereNyN, are the band numbers which correspond to the
"4 WE0)” energy intervalE,,E,). Since this recovers the result of Eq.

. (12), we demonstrated that our general definition of WFs
As one can sedJ,, depends on the WFs via EqR0) and  (28) via Green functions reduces to that in terms of Bloch
(22). Once the WFs have been recalculatint example, in  functions(11) in Sec. Il A.
some self-consistent lopphe interaction has to be recalcu- To orthonormalize\7vnk(r) defined in Eq.(28), one can

lated as well. just follow the orthonormalizing procedure made in Sec. Il A

WFs not only contaird orbitals but also states which are [ ; ; :

. . . Egs. (13)—(17)], which will not be repeated here. But it
usuall_y c9n3|dered Qelocallzed, such as @eﬂbnals._The hould be pointed out that in the Green-function formalism
question is then: which ones are the localized functions th e overlap matriO,,, (k) is defined as

nn’

describe the interacting electrons? In our definition these are
WFs describing the partially occupied bands aad pured
orbitals. The corresponding Coulomb interaction strength
calculated in constrained LDA will give values &f for
Wannier functions smaller than the corresponding value fofThe occupancy matrix in the orthogonalized WF b&a8 is
pured orbitals due to the admixture of OpZtates. defined as

k
pun':

Onn (k) = <Wnk|\7vn’k> = E ’BI,L(L:]B
n
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1 Er 1
Qu(T)=-— Imf dsffdrdr'—E W, (1)
aa —» N Kk

XGK(r, 1", &)Wy (r")e T, (32)

By using Eq.(26) and orthogonalized Ed28), one finds

1 * —1
Qn(T) = N% 2 bl,t(mbykjn/Ql:we T (33
uv
with
k 1 e k
Q,=- - Imj deG,,,(¢). (34

The energy matrix can be defined similaigxcept that
the integral over energy is calculated in tftg , E,) interval
where the corresponding WFs are defined

1 E 1
Eny(T) = —; Imf ede J f drdr’ﬁz Mk(r)
E; k

XGK(r, 1", &)Wy (r)e kT

1 * —1
= N% > bk ER e, (35)
uv
with
1 E
Ef,=—=1Im f edeGK (e). (36)
ar

E;
While Eq. (35) looks similar to the noninteracting Hamil-
tonian in WFs basi$21), it includes correlations via(e) in
Eqg. (27) and hence isnteracting
C. DMFT in the Wannier function formalism
In the previous subsection we showHgqgs. (26)—(28)]

PHYSICAL REVIEW B 71, 125119(2005

In DMFT the lattice problem becomes an effective single-
site problem which has to be solved self-consistently for the

matrix self-energ;ﬁ and the local matrix Green function

G (&) = Vi f dk([(e + EM)1 - HYF(K) = SWF(e)T D)y
BZ

(37

The integration can actually be restricted to the irreducible
part of the Brillouin ZongBZ) via the analytical tetrahedron
method® with a subsequent symmetrization of the matrix
Green function. The chemical potentEﬂ\” is determined by
the number of electrons on thd interacting orbitals of
interest®®

The DMFT is based on the fact that in theoe limit the
self-energy is local®3” Its matrix 2, () (n, n’ are WF
indiceg is defined in WF basi$3). If the trial functions in
Egs. (6) and (28) are chosen as the basis functions of the
irreducible representation of the point symmetry group of
some particular real systethithe matrix Green functiof27)
and hence the matrix self-ener¢8) can be made diagorfél
in the n index for on-site matrix elements. However, the
symmetry may be so low that the matrix self-energy is
strongly off-diagonal. In this case one needs to employ a
general formalism which is dealing with off-diagonal matrix
Green functions and self-energiédn the present work we
investigate system&rvVO; and V,03) where the symmetry
is high enough to result in a diagonal matrix Green function
and self-energy. For this reason we use a DMFT computa-
tional schem¥ assuming diagonal matrices.

The DMFT single-site problem may be formulated as a
self-consistent single-impurity Anderson mo@édihe corre-

sponding local one-particle matrix Green functiGncan be
written as a functional integiainvolving an action where
the Hamiltonian of the correlation problem under investiga-

that the matrix self-energy is needed to construct the WFs ifion, including the interaction term with the Hubbard inter-
terms of the full interacting Green function. The DMFT action and Hund's rule couplings, entéfsThe action de-

(Refs. 4—6 was recently found to be a powerful tool to nu-
merically solve multiband Hubbard models. To define pa-

rameters of the correlated model Hamiltoni@moppings,
screened Coulomb integrals density-functional theory
within the LDA was used. The combined LDA-DMFT

pends on the bath matrix Green functiérthrough

(G1=(G)1+3. (39)

computational scheme was successfully applied to a widdo solve the functional integral of the effective single impu-

range of compounds with degener&be almost degenerate

rity Anderson problem, various methods can be used: quan-

orbitals (for more details, see Ref. 10in these cases the tUm Monte Carlo(QMC), numerical renormalization group
noninteracting LDA DOS was used to obtain the Green func{NRG), exact diagonalizatio(ED), noncrossing approxima-
tion of the system through a Hilbert transformation. Further-ion (NCA), etc. (for a brief overview of the methods see

more, the screened Coulomb interaction parameiteasndJ
were calculated by constrained LFA.

Quite generally, this scheme needs to be improved in two

respects{i) instead of the LDA DOS an LDA Hamiltonian

Ref. 10.

D. Converting back to the full-orbital Hilbert space

with a few, relevant orbitals should be used to calculate the The matrix self-energy,VF(¢) obtained as a solution of

Green function, andii) a feedback from DMFT to LDA

DMFT in Sec. Il C is defined in the WF basis s@&). In

should be incorporated. Both of these problems are solved byrder to compute the interacting Green function in the full-
the approach proposed in this work. In this method theprbital Hilbert space€26) and(27) one has to convert it back

Hamiltonian matrix in the WF basis s nf(k) is calculated

from the LDA Hamiltonian via the projection procedui®
and (23).

to the full-orbital (LMTO) basis set. This can be easily done
by using the linear-expansion form of the WFs in terms of
the full-orbital basis set15) and(17),
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DMFT(QMC) ME
LDAstert, pk stort ——HWF (k) — LW F(iw), Gif (iw)—3{CGnw(w)}
back transf¢rmation Kramers-Kronig transform
E#V (zw) Gnn’ (w)
feedback k-integratipn conti ion| on real axis
G (iw) B (W)
/ \ FIG. 1. Scheme of thab initio fully self-
back transfgrmation consistent LDA-DMFT scheme based on the
b e Mg") WF formalism(see text
Zp(w)
constrain/on WFs
(m)
" dHYF(0) p[Mql ]
Un = ¥y
Guw(w)
Viel
| DOS,,
X (e) :<¢k|i(8)|¢k> the interacting Green functiof26) defines the input for the
wr m v next iteration step and hence closes the self-consistency loop
=> <¢,5|Wnk>2nn'(8)<Wn'k|¢5> in the proposed computation scheme. For the feedback from
n DMFT to LDA in the particular case of the LMTO methtdd
“S ks b 39 one needs a set of moments for the partial densities of states
B ~ "un e (€)0,y- (39) M(T) for every atomic spherg and the orbital moment*tin

order to calculate the new charge density and hence the new

Here we use the local form of the matrix self-energy as obL DA potential:
tained in DMFT, but the formalism can be easily generalized. Er
‘I‘n the f_oIIo”vvmg we refer to this matrix self-energy as the Mglmzj dee™Ng(z),
full-orbital” self-energy. —o

The matrix elements of the seIf—ene@Z,,(s) [Eq. (39)]
together with the noninteracting Hamiltonian maIHgV al- 1
low one to calculate the matrix Green functi@f (z) [Eq. Ngi(e) = - N MY, > Glimqm(®)- (41
(27)] and thus the full-orbital interacting Green function 7 kom
G(r,r',e) [Eq. (26)]. G(r,r’,e) contains the full informa-
tion about the system, and various electronic, magnetic, and E. Summary of the WF scheme
spectral properties can be obtained from it. In Sec. 1l B we
use the full-orbital interacting Green function computed
within DMFT (QMC) to calculate the photoemission and
x-ray-absorption spectra for the strongly correlated vana
dium oxides SrvQ@ and V,03, and to compare them with
new bulk-sensitive experimental spectra.

One can also calculate the charge-density distributio
modified by correlation effects via

For clarity, in Fig. 1 the essential steps of the WF scheme
presented here are summarized. There are four intercon-
nected parts in this schemé@) the basis of WF(ii) the
matrix elements of the Hamiltonian and the self-energy in
the WF basisiii) the Coulomb interaction between elec-
jrons on the WFs, an@v) the projection into the few-orbital
basis and back transformation to the full-orbital basis which
retains the information about all orbitals. First the matrix
1 Er elements of the noninteracting Hamiltonian in reciprocal

p(r) = ‘;'mf deG(r,r,e). (400 spaceH (k) [Eq. (23)] and the interaction term,(iw)

- [Eq. (3)] are written in the basis of explicitly defined WFs

With this p(r) one can recalculate the LDA potenti@hich  [Wy) [Eqg. (15)]. The actual correlation problem, defined by
is a functional of electron densjty From the full-orbital the sum of these two term§7), is then solved within the
Green function(26) one can recalculate new WK28) and LDA+DMFT (QMC) approact® The local self-energy
(29) which together with the new LDA Hamiltonian allows nq(iw) obtained thereby is then transformed back from the
one to obtain new parameters for the noninteracting HamilWannier basis to the full-orbital spa¢see Sec. Il . Fur-
tonian(24). With Eq. (25) one can then compute a new Cou- thermore, with the full-orbital self-energy,,,(io) [Eq. (39)]
lomb interaction parametéf. The set of new LDA potential, the full-orbital Green functiorG,,,(iw) [Egs.(26) and (27)]
WFs, and Coulomb interaction parameters calculated fronfior the correlated electrons is calculated bk antegration
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over the Brillouin zoné® The Green function allows one to The full-orbital calculation scheme proposed in this work
determine a new charge-density distributiof0) [in the  allows one to answer an important question: how do Cou-
LMTO case see Eq41)] and a new set of WFfvia Eqs.  lomb correlations between some orbitals affect the other or-
(28) and(29)]. This is used to construct a new LDA potential bitals, and in particular, how does the interaction between the
and new noninteracting Hamiltonian. Together with the newpartially filled t,4 orbitals of the V& shell influence the filled
Coulomb interaction parametets, [Eq. (25)] they serve as  O-2p and the unoccupied V-tge) bands? To answer these
the input for the next iteration of calculations, thus complet-questions the matrix of the self-enerBy;,(¢) (3) was con-
ing the self-consistency loop. It should be stressed that in thigerted back to the full-orbital basis set from the WF basis,
scheme self-consistency involves not only the self-energwand the full-orbital interacting Green functig¢d?7) was cal-
but also the basis of WFs in which it is defined, the chargeculated. From that, total and partial DOSs were computed to
density and LDA potential used for constructing the nonin-produce theoretical spectra for comparison with the experi-
teracting Hamiltonian, and the interaction strength betweemental photoemission and x-ray-absorption data.
electrons in the WFs. In this work, QMC simulatiorfswere used to solve the
After convergency is reached the maximum entropyeffective single impurity Anderson problem in the DMFT
method(MEM) (Ref. 46 can be used to obtain imaginary loop. The result of the DMFTQMC) calculation is the self-
part of Green functiorG,(iw). Then, using the Kramers- energy on the imaginary energy axs(iw). To find the
Kronig transformation, the Green function on the real axisfyll-orbital self-energy}‘,';v(g) on the real energy axis one
Gpy(w) is computed. With that one can construct the WFshas to perform an analytical continuation. The procedure is
basis self-energy.,(w) (see Appendix B By the back described in Appendix B. A self-consistent computation of
transformation ofX,,(w) with a subsequenk integration the charge density as described in section Il D was not yet
the full-orbital Green functionG,,(w) is obtained, which performed. Investigations of correlation effects on the unoc-
now contains information not only about the states for whichcupied cubicej states for both Srv@and V,O; are also a
correlations are considered, but also for all other orbitals omatter of future calculations.
the systemG,,(w) is used to obtain orbitally resolved spec-
tral functions. This allows one, for example, to investigate A. Comparison of DMFT results obtained by Hilbert
the influence of the correlated orbitals.g., partially filled transformation of the LDA DOS and the
toq Orbitals of V in SrvVQ; and V,03) on other orbitalgoxy-
gen 2 and vanadiung, orbitals. It also makes possible the ) ]
computation of spectral functions in a wide energy region The cubic perovskite SrvVcan serve as a test case for

projected Hamiltonian HYF(k)

and not only in the vicinity of the Fermi level. our method. For the cubi©y point symmetry group, the
three 3l orbitalsxy, xz yz transform according to the triply
[ll. RESULTS AND DISCUSSION degeneratéy, irreducible representation of this group. Hence

the corresponding Green function and self-energy matrices
have diagonal form with equal diagonal elements. As shown
in Appendix A, the results of the Hilbert transformation us-

dure i lid f ¢ here the bands of int " ing LDA DOS must coincide with the results of the proce-
groce urt?[ IS vall cl))r' SYS ertnf W ereA € ‘1? S:Glg INterest alfure of integration over the Brillouin zone with the projected
egeneratéas in cubic crystals; see Appendiy.A-or more 5 o t,, Hamiltonian.

complicated systems with lower symmetry one needs to em- We Use the same LDA DOS and interaction parameters

ploy the scheme prpposed in this work, where the noninterfOr SrVOsas in our previous papefdThe V-3(ty,) states
acting HamiltonianH""(k) [Eq. (23] (projected on WFs  form a partially filled band in Srv@ All t, orbitals
describing theN orbitals under consideration is used for the (xy,xz,zy) are equivalent due to the cubic symmetry of the
calculation of Gyy(e) [Eq. (37)] within DMFT (see Sec. |attice, so only the results for one of thg orbitals are pre-
Inc). _ sented in Fig. 2. In this figure V-dBt,,) spectral functions,

In this section we present results of LBADMFT calcu-  cajculated using the LDA DOS and the projected Hamil-
lations using the projected Hamiltoni&t¥'F(k). The scheme tonian are shown. It is easy to see that both results are almost
was applied to SrV@which has a cubic perovskite crystal identical. The small differences between these two curves are
structure, and to the trigonally distorted,®; (both in the due to the MEM(Ref. 46 used for the calculation of the
insulating and metallic phaseThe results are compared with spectral function on the real energy axis from the DMFT
previous LDA+DMFT calculations where the Hilbert trans- Green function.
formation of the LDA DOSs was used for Sr'{QRef. 49 We also applied our Hamiltonain scheme to a more com-
(see Sec. Il A. A similar scheme was used by Lieb4&to  plicated system with lower symmetry where one can expect
compute surface properties of Sr¥.GDne should note that deviations from the results obtained using the LDA DOS. We
the DOSs used for DMFT calculations of,®; were ob- performed LDA+DMFT (QMC) calculations for the insulat-
tained by the TB-LMTO-ASA code version 47jn contrast  ing and metallic phases of 05 with the projected X 3 t,,
to Ref. 44 where the DOSs were calculated by the ASWHamiltonian and severdl values(unless stated otherwise
method* However, the DOSs obtained in both methods arethe values olU are the same as in Ref. ¥4ere and in the
very similar and do not produce much different LDA following we use an exchange Coulomb parameger
+DMFT results. =0.93 eV for \,03.* In contrast to SrvV@, V,0; has a non-

In our earlier LDA+DMFT calculation scheme the spe-
cific properties of a material entered only via the LDA patrtial
densities of state$DOS9 for the orbitals of interest. This
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I I I
= ’\ DOS
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>
) FIG. 2. Comparison of V-8(ty,) spectral
% functions for SrvVQ calculated via LDA-DMFT
=1 (QMC) using: LDA DOS—light line; projected
17 02 Hamiltonian—black line. The Fermi level corre-
wcaheni ] ds t :
=t sponds to zero
Q
A
l N l L |
0 -2 4 6

0 2
Energy (eV)

cubic trigonal symmetry(space grougR3c). Therefore we position and the height of the quasiparticle peak are quite
use the basis functions of the trigoraky point group in-  different for the Hamiltonian calculation, indicating a more
stead of the cubi©®,, group. In this basis set the Vd3hell is  insulating solution than for the DOS calculations at the same
split into two groups of bands. The thrég bands are lo- U value. The similarity between the results for the DOS and
cated around the Fermi energy, the two degenegateands  Hamiltonian calculations is not surprising, because the trigo-
are at higher energies. Interesting to us are the partially filledhal distortion in \bOgs is relatively small. Therefore the cen-
t,y bands which are formed by ome, and two degeneratg  ter of gravity and the bandwidth of the threg bands do not

orbitals. change much and the DOS calculations can still produce
In Fig. 3, we present V-@t,,) spectral functions result- accurate results.
ing from DOS(LMTO and ASW and Hamiltonian calcula- The differences between DOS and Hamilton calculations

tions atU=4.5 eV, averaged over the thrég bands. The are more pronounced when one compares the band-resolved
spectrum computed with ASW input is taken from Ref. 44. t,y spectra. In Figs. 4 and 5, the, and eg spectra for the

As mentioned before, the differences between the curveisulating and metallic crystal structure are presentedJfor
calculated with ASW and LMTO DOS as input are small; =4.5, 5.0, and 5.5 eV.
there are only minor deviations in the peak height. In the Here the curves calculated by different schemes are dis-
comparison between the DOS calculations and the Hamiltinctively different. This is especially clear from the upper
tonian calculation, it is interesting to note that for these av-part of Figs. 4 and 5 corresponding to thg orbital of the
eraged spectra, the differences are relatively small. We findf —3d(t,,) subband. This is due to the fact that the hybrid-
the typical four peak structur@vith lower Hubbard, quasi- ization effects are better accounted for by the projected
particle peak, and double-peaked upper Hubbard band spl{amiltonian, which includes not only intraband hoppings but
by Hund’s rule couplingfor all three calculations. Only the also interband on-site and intersite hoppings. The latter ef-

n )
| 1 V203 (metallic, U=4.5 eV)
R
—_ L
53 1
3= 'l LDA DOS (LMTO)
g 1 -~ LDA DOS (ASW)
<) '| — Projected H FIG. 3. Comparison of V-8(ty,) spectral
5 1 functions for \,O3 in the metallic phase calcu-
8 '| lated via LDA+DMFT (QMC) using: LDA DOS
a2 \ (LMTO)—light line (Ref. 44; LDA DOS

(ASW)—dashed line; projected Hamiltonian—
black line. The Fermi level corresponds to zero.

2
Energy (eV)
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Q N FIG. 4. Comparison of V-G(t,;) spectral
S oM N ] R functions for \,03 in the insulating phase calcu-
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fectively increases the bandwidth of thg, orbital. The cor- Valence-band photoemission spectroscqfES using
responding spectral functions have a different peak structurbigh photon energies and G+ 2p x-ray-absorption spec-
and different intensities. troscopy(XAS) were performed on the beamline BL25SU at

Another conclusion from this series of figures is that thethe SPring-8 synchrotron radiation facility. The PES spectra
results obtained with the Hamiltonian procedure show avere taken using a GAMMADATA-SCIENTA SES-200
more insulating behavior for the same valuesothan the  €lectron energy analyzer and XAS spectra were measured by
results with the scheme using the LDA DOS. the total electron yield. The overall energy resolution was set

to 0.2 eV. The pressure in the analyzer chamber was about
4x 10°8Pa. Single crystals of SrVQwere cooled to 20 K

B. Results of full-orbital calculations: Comparison of and clean surfaces were obtained by fractuiingitu for the
calculated spectra with experimental photoemission PES spectra, and by scrapiimgsitu for the much more bulk
and x-ray-absorption data sensitive XAS spectra. Well-oriented single-crystallingdy

samples were cleaved situ at a temperature near the metal-

The full-orbital calculations scheme proposed in this workinsulator transition, yielding clean specular surfaces. The sur-
produces an interacting Green functiéfr ,r’, &) [Eq.(26)].  face cleanliness was confirmed before and after the spectral
The knowledge of the full Green function allows us to cal-ryn,
culate the spectral function not only for the states with cor- We start with the results for the Sr\{@ystem. In Fig. 6,
relations [V -3d(t,) orbitals in the case of SrvVQand the self-energy on the real energy axis for Sp@lculated
V,03], but also their effect on the lower-lying occupied oxy- via Eq. (B2) is shown. Them'/m ratio is calculated via
gen % states and the higher-lying unoccupied W&)  m'/m=1/{1-[J R&X(w)/dw]}. This self-energy was used for
states, thus facilitating a comparison of the calculated anthe calculation of total and partial DOSs in the full-orbital

experimental spectra in a wide energy region. Hilbert spacesee Figs. 7 and)8In Fig. 7, the total spectral
L | I 1 I I I I | |
041 1 1F =

]
o
Na) a
5 02 1t 1t lg
N
Q9 FIG. 5. Comparison of V-8(ty) spectral
8 (1) Y —— 1 | functions for \,O5 in the metal phase calculated
§ 041 4 F - via LDA+DMFT (QMC) using: LDA DOS—
Z) light line; projected Hamiltonian—black line.
= U=4.5eV] 3 . : ™ ;
7] n Upper figures—a,,; lower flgures—eg orbitals.
o e The Fermi level corresponds to zero.
Q 0a2_ = [ i Lis g

0 lf\/\ 1

502 46 50 2 46
Energy (eV)

L1 Y
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Q_ | i FIG. 6. Self-energy on real energy axis for
= 2
O SrVOs;. Real part—full black line; imaginary
: part—full light line. The Fermi level corresponds
3 —_— * to zero.
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functions of SrvQ are presented. Differences between LDA siparticle peak. Our calculations suggest a strongly corre-
and full-orbital LDA+DMFT (QMC) spectral functions lated but still metallic ground state for SryO

mainly occur near the Fermi level. In particular, the LDA ~ To compare our results with the experimental PES we
spectral function has a more pronounced quasiparticle peat@lculated a weighted sum of Vd3and O-2 spectral func-
near 1 eV. The DOS calculated using the full-orbital self-tions according to the photoemission cross section ratio 3:1,
energy(see Fig. $ has a three-peak structure: lower Hubbardcorresponding to an experimental photon energy 900 eV. The
band from —4 to —Isuppressed by oxygen stateguasipar-  theoretical spectra were multiplied with the Fermi function
ticle peak and upper Hubbard band located at about 3 e\gorresponding to 20 K and broadened with a 0.2-eV Gauss-

The origin of the upper Hubbard band becomes clear fronf&" to take into account the instrumental resolution. In Fig. 9
Fig. 8. One can see that this broad peak is the sum of yone can see that the full-orbital spectra obtained in this way
3d(ef) and V-3(€?) states. It should be noted that correla- describe not only the quasiparticle peak, but also the peak at

. p : C —6 eV and the shoulder at3.5 eV of the PES spectra.
tions on the V-8(eg) orbitals were not explicitly included ;.o previous LDADMFT (QMC) results were taking

here. We find, however, that the \d@&;) states are slightly —into account only the,, states they were not able to describe
modified by the full-orbital Self-energy due to the hybridiza- PES Spectra below-2 eV. It is interesting to note that pre-
tion with the correlated V-@(ej) orbitals. The question of vious experimental studies did not find any states-&t5
how correlations affect the position and width of \#®&])  eV; only the new spectra reported here show this feature. The
states directly can only be answered by employing the fulagreement between the experimental and theoretical spectra
3d-shell 5x 5 projected Hamiltonian. is expected to improve whee, states are included in the
Introducing correlations betweey, states changes sig- correlation problem and when also the charge and LDA po-
nificantly the total and partidis not shown here directly but tential self-consistency is fully implemented.
can be conjectured from Fig) DA DOSs of SrVQ,. The The influence of correlation effects on the electronic
main modification is a transfer of spectral weight from thestructure will be more pronounced for systems close to the
energy region near the Fermi level to the lower and uppeMott insulator transition. For this purpose we compare the
Hubbard bands, and the reduction of the weight of the quatotal and partial DOS’s for ¥O; in the insulating and me-

10 T T T T T T T T
i LDA
— s SI'VO3 — — LDA+DMFT(QMC)
= (full-orbital)
8 I
; |
Q 6 l. I 7] FIG. 7. Comparison of total spectral functions
ﬁ 'q of SrVO; calculated via: LDA—full light line;
S / 1 \ using the full-orbital self-energy from LDA
& 4r hl' \| ‘ I 7 +DMFT (QMC)—dashed black line. The Fermi
8 i Il "‘ Iy 'y level corresponds to zero.
=S N | 1 A I Py ]
v 7\ frr~ =" \ A
: \\ 7 l‘,‘ \foa s
0 J ] nY /i A | I
-8 0 8
Energy (eV)
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tallic phases calculated via LDA and full-orbital the calculated V-8 and O-2 spectral functions, according
LDA +DMFT.#849 Since the V-8(t,y) orbitals in trigonal to the photoemission cross-section ratio 2:1, corresponding
V,0; split into nonequivalent,y and €] states, the self- to the experimental photon energy of 500 eV. The theoretical
energy will be different for these orbita?see Fig. 10 spectra were multiplied with the Fermi function and broad-
In Fig. 11 one can see that the introduction of correlationened with a Gaussian of 0.2 éVBelow the Fermi energy
effects changes the total DOS drastically. Whereas the LDAhe LDA+DMFT (QMC) spectral functionsfor t,q only and
DOS is metallic for both metallic and insulating phases, thethe full-orbital schemeagree quite well with the PES spec-
LDA +DMFT spectra clearly show the metal-insulator tran-tra. However, the theory curves do not yet describe fine de-
sition. Although the change near the Fermi level is the mostails. For example, the PES spectrum of the insulator phase
prominent, modifications betweer3 to —7 eV are also shows two definite slope changes, at roughl.6 and—1.5
seen. Moreover, there are also changes irefhstates which eV, producing a rather flat topped spectrum centered-a@n
are caused by the hybridization with the correlatgdands, eV, whereas the theory curves show a single peak centered
and are not due to a direct calculation of correlations in theon —1 eV.
ej states. In Fig. 12 the total-state DOS above the Fermi A comparison of the calculated LDADMFT (QMC)
energy, consisting ob, ande] states, is shown. fuII—or_bltaI spectral ]‘unc'uons and the G+ 2p XAS spec-
In Fig. 13 a comparison of experimental PES and calcutrum is shown on Fig. 14. The full-orbital spectmhich are
lated LDA+DMFT (QMC) (t,4 only and full-orbita) spectra  the partial O-p spectra for the unoccupied Wtateg are
is presented. The full-orbital spectrum is a weighted sum of

T | T T Y T
o Experiment
LDA+DMFT(QMO) (t,, only)
— LDA+DMFT(QMC) (full orbital) =
—~ <
2 = 2t - ‘,
§ < Insulating | |- phase -10
"g § | 1 | | 1 1 1 1
%" , & T T T T T T T T T
S ~~ m—  Real
5 g | e - g €7 10
S \ﬁ’ 2k g
\ —— N
: ; 7 P 9 If "‘1!\\, 0
-8 -6 -4 2 0 . ‘
Energy (eV) - Metal | |-phase +-10
FIG. 9. Comparison of photoemission spectra of Sg\M@th L L L L L L L L
spectral functions calculated via LDADMFT (QMC): taking into 4 4 0 4 8 4 4 0 4 8
account onlyt,,—light line; using full-orbital self-energy—black Energy (eV)

line. Theoretical spectra are multplied with the Fermi function cor-

responding to 20 K and broadened with a 0.2-eV Gaussian to ac- FIG. 10. Self-energy on real energy axis fo4. Real part of
count for the instrumental resolution. Intensities are normalized tdhe self-energy from LDA-DMFT (QMC)—full black line; imagi-
yield the same height for the quasiparticle peaks. The Fermi levehary part—full light line. The Fermi level corresponds to zero.
corresponds to zero.
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FIG. 13. Comparison of photoemission spectra gDY with
spectral functions calculated via LDADMFT (QMC): taking into
account onlyt,;—light line; using full-orbital self-energy—black
line. Theoretical spectra are multiplied with the Fermi function and
broadened with a 0.2-eV Gaussian to simulate instrumental resolu-
tion. Intensities are normalized for peaks situated arotideV.

found to agree with the experimental spectrum as to the relarpe Fermi level corresponds to zero.

tive weights of the part nearest the Fermi energy and the

parts at higher energy. This is due to the inclusion of -2 jzation of the O-p with the d states is described more cor-
and V-3d(ej) states in the calculations. The strong hybrid-yectly in the full-orbital calculations and the inclusion
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FIG. 12. Partial V-8 spectral functions for ¥O5 calculated
using full-orbital self-energy from LDADMFT (QMC). Total
d—full light line; t,;—full black line; e;—dashed black line. The
Fermi level corresponds to zero.

states(even without correlationssignificantly changes the
V-3d spectrum in the energy region above the Fermi edge.
The inclusion of correlations in thef states within a %5
projected V-8 Hamiltonian is expected to add spectral
weight in the energy interval between 3 and 5 @ée Fig.
14).

IV. CONCLUSION

We formulated a fullyab initio and self-consistent com-
putational scheme based on Wannier functioNgs) for the
calculation of the electronic structure of strongly correlated
compounds. The WF formalism provides an explicit strategy
for the construction of the matrix elements of the required
operatordHamiltonian, self-energy, ef¢.both in full-orbital
and few-orbital bases, in real and reciprocal representations.
The WF formalism allows one to project these operators
from the full-orbital space to the few-orbital space and back,
keeping the complete information about all orbitals. These
projections are the essential ingredients of the computational
scheme presented here. The self-consistency involves not
only the self-energy but also the WF basis itself, the charge
density with the LDA potential and the interaction strength
parameters between the electrons on the WFs. The spectra
obtained thereby found to be in good agreement with new
bulk-sensitive experimental data.

In the present work we did not yet employ the full scheme
(see Fig. 1to investigate spectral functions of strongly cor-
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' T " T APPENDIX A: HILBERT TRANSFORMATION
Insulating phase V.O
273 For cubic systems the matrix of the self-eneffiyr ex-
ample, fort,, orbitalg is diagonal and all diagonal elements
are equal. Therefore the calculation of the Green function
within DMFT by integration of the Hamiltonian over the BZ
is equivalent to the Hilbert transformation of the noninteract-

2 ing (LDA) DOS N°e):
E
. . I T olw) 0 ... O
'-g ! O  Experiment ‘ 0 ofw) 0
\; Metal phase —— LDA+DMFT(QMC) (full-orbital) S(w) = : : : 0 Glw)
§ 0 0 .. ow)
2
= = | [w-3(w) - Hlpa] Mk
1BZ
=G w- o(w)]
N(e)
1 3 = ————de. Al
Energy (V) J ool (AL

FIG. 14. Comparison of Osl-2p x-ray-absorption spectros-
copy (XAS) spectra of VO3 with spectral functions calculated via APPENDIX B: SELF-ENERGY ON THE REAL
LDA+DMFT (QMC) using full-orbital self-energy. Theoretical ENERGY AXIS

spectra are multiplied with the Fermi function and broadened with a
0.2-eV Gaussian to simulate instrumental resolution. Intensities of DMFT produces Green functions and self-energies on the

the theory curves are normalized to the correct number ofdV-3 imaginary energy axis. With the maximum entropy metffod,
electrons in the unit celleight electrons The experimental curve is  the spectral function on the real energy axis is calculated,
normalized to the same peak height as the full orbital curve. Thavhich yields the imaginary part of the Green function. In
Fermi level corresponds to zero. order to obtain the self-energy on the real energy axis, the
full complex Green functionG(e) is calculated using its

related systems but used only few-orbital Hamiltonians withimaginary part obtained by MEM:
t,g symmetry. Clearly, fulld-shell DMFT (QMC) results in- . o
cluding e, states will provide additional information about _ 1 (7 ImG(e')de

. . . Ge) = —_—.
correlation effects in the system. Such studies, as well as m)_, e—¢& +iy
constrained LDA calculations in the WF basis and investiga-
tions of the feedback from the DMFT to the LDA part, are in The self-energy for real energies is then calculated by solv-
progress now. ing the following two equations with the two variables

Re3(e) and Im2(¢):

(B1)
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F=012H0"?, (CD) |0 =2 Op ) (C2)
n!
~=0l/7?
C=0""C. Then for the nonorthogonal LMTO the trial functi¢s,) has
This orthogonalization is equivalent to the basis set transforto be replaced by, and the eigenvectors with coefficients
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