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Inductive item tree analysis:
Corrections, improvements, and comparisons

Anatol Sargin, Ali Unli

University of Augsburg, D-86135 Augsburg, Germany

Abstract

There are various methods in knowledge space theory for building knowledge struc-
tures or surmise relations from data. Few of them have been thoroughly analyzed,
making difficult to decide which of these methods provide good results and when
to apply each of the methods.

In this paper, we investigate the method inductive item tree analysis and discuss
the advantages and disadvantages of this algorithm. In particular, we introduce
some corrections and improvements to it, resulting in two newly proposed algo-
rithms. These algorithms and the original inductive item tree analysis procedure
are compared in a simulation study and with empirical data.

Key words: Inductive item tree analysis, knowledge space theory, deriving
knowledge structures

1 Introduction

In this paper, we analyze the inductive item tree analysis (IITA) method for
building a knowledge structure from data (Schrepp (1999, 2002, 2003, 2007)).
A knowledge structure belongs to knowledge space theory (KST) (Albert &
Lukas (1999); Doignon & Falmagne (1999)): Assume a set ) of dichotomous
items. Mastering an item j € () may imply mastering another item ¢ € Q). If
no response errors are made, these implications, j — ¢, entail that only certain
response patterns are possible. Those response patterns are called knowledge
states, and the set of all knowledge states is called a knowledge structure.
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Implications are assumed to form a quasi order, that is, a reflexive, transitive
binary relation, on the item set (). Quasi orders are referred to as surmise
relations in KST, and bijectively correspond to specific knowledge structures
(Doignon & Falmagne (1999)).

Applications are, for example, a questionnaire, where people can agree or dis-
agree to a statement, or an aptitude test, where people can solve or fail to
solve a question. We use the latter interpretation to illustrate the algorithms.
Implications are latent and not directly observable, due to random response
errors. A person who is actually unable to solve an item, but does so, makes
a lucky guess. On the other hand, a person makes a careless error, if he fails
to solve an item which he is capable of mastering. A probabilistic extension of
the knowledge structure model covering random response errors is the basic
local independence model in KST (Doignon & Falmagne (1999)).

Random errors in the responses of an examinee are the reason why deriving
a knowledge structure from data is difficult. Several data-analytic methods
have been proposed, but none of these procedures has proved to give optimal
results nor is, at least, better than all the other methods.

In this paper, we review the IITA procedure, show the advantages and dis-
advantages of the method, and give modifications to correct and improve it.
The results gained in our investigations are illustrated using simulated and
empirical data.

2 Algorithm of inductive item tree analysis

IITA is a data-analytic method for deriving a surmise relation on an item
set. It is similar to item tree analysis, which is another data-analytic method
developed by van Leeuwe (1974). In both algorithms, binary relations are
generated and a fit measure for every relation is computed in order to find the
one that fits the data best.

2.1 Original algorithm

One of the main parts of IITA is the inductive generation of surmise relations
(giving the algorithm its name). We introduce some definitions before explain-
ing the algorithm:

For two items 4, j, the value b;; := |{r € R|r(i) = 0Ar(j) = 1}| is the number
of counterexamples, that is, the number of observed response patterns in the
data R contradicting 7 — ¢. Based on these values, binary relations T, for
L =0,...,m are defined, where m is the number of subjects in the dataset:
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The relation C, is transitive, and based on that, all the other transitive rela-
tions C, are constructed inductively.

Assume C, is a transitive relation. Define the set Sp41 := {(4,j)|b;; < L+ 1A
i [Z, j}. This set consists of all item pairs that are not already contained in the
relation T, and have at most L + 1 counterexamples. From these item pairs
those are excluded that cause an intransitivity in T, U Sp44, and the remaining
item pairs are referred to as Sy1. This process continues iteratively until no
intransitivity is caused anymore. The generated relation £, :=E U S L+1 1S
then transitive by construction. Because C is reflexive, all generated relations
are. Hence C, is a quasi order for every L = 0, ..., m.

Besides the construction of the quasi orders, it is very important to find that
quasi order which fits the data best. In IITA, the idea is to estimate the num-
ber of counterexamples for each quasi order, and to find the minimum value
for the discrepancy between the observed and expected numbers of counterex-
amples over all competing quasi orders.

Let p; := Mm(i):l}l be the relative solution frequency of an item i. A vio-
lation of an underlying implication is only possible due to random errors. To
compute the expected number of counterexamples, bj;, error probabilities are
needed. In this algorithm, the error probabilities are assumed to be equal for
all items. This single error rate is estimated by

_ A/ (em)li E, G A # )
. (IE.1=n) 7

where n is the number of items, and |C, | — n is the number of non-reflexive
item pairs in L, .

In the next step, under every relation, the algorithm computes the expected
number of counterexamples for each item pair. If the relation T, provides an
implication 7 — ¢, the expected number of counterexamples is computed by
bi; =y, pym. If (i, )¢ E,, no dependency between the two items is assumed,
and bj; = (1 — p;)pym(l — 7,). In this formula, (1 — p;)p;m is the usual
probability between two independent items, and the factor (1 —-, ) states that
no random error occurred. As we discuss later in detail, the main criticism on
the algorithm is on the estimates b};.

A measure for the fit of each relation T, to the data R is the diff-coeflicient.
It is defined as

diff (2, R) =3 m

i#]

It gives the sum of the quadratic differences between the observed and ex-
pected numbers of counterexamples under the relation C,. The smaller the
diff-value the better is the fit of the relation to the data. Therefore, the IITA
algorithm looks for the smallest value of the diff-coefficient and returns the



corresponding quasi order.

2.2 Problems of the original algorithm

The inductive construction of the quasi orders is stated as one of the main
advantages of this algorithm (Schrepp (1999, 2003)). However, the inductive
construction can be criticized as folllows. It is possible that two implications
would cause together an intransitivity, but not if added separately. Consider
on a set of four items {a,b,c,d} the implications a — b,a — ¢,a — d and
¢ — d. Assume that the implications b — d and d — c are possible candidates
to be added in the next step. Together these implications lead to an intran-
sitivity, and the procedure excludes both implications until b — ¢ is added.
Each of the two implications, b — d and d — ¢, could be added separately
without violating transitivity. But the procedure does not incorporate this.
Moreover, the underlying (correct) quasi order is not necessarily contained in
the selection set of all quasi orders. In the simulation study reported in this
paper, the underlying quasi order is contained in the selection set 57% of the
trials. In the other 43% it is impossible to reveal the underlying quasi order.
The major problem lies in the computation of the diff-coefficient. It uses
estimates b;; of the expected numbers of counterexamples. Two problems
arise in the calculation of these estimates. For (i,j) ¢ C,, the estimate is
bi; = (1 —pi)pym(1 —~,). But the algorithm does not take two different cases
into account, namely (j,7) ¢ C, and (j,7) € C,. In the first case, indepen-
dence holds, and the correct estimator is bf; = (1 — p;)p;m. This estimator
is used in the first version of IITA (Schrepp (1999, 2002)), but is changed in
Schrepp (2003). This is the common approach in statistics when independence
is present, for instance in the analysis of two-way contingency tables.

In the second case independence can not be assumed, as j T, . In Schrepp
(2003), this problem is briefly mentioned, but not further pursued or even
solved. This, in particular, explains why the original IITA version gives bad
results when longer chains of items are present in the underlying quasi order
(Schrepp (1999)). The correct estimator for bj; is (p; — p; + piy, )m, instead of

(1 = pi)pym(l —,).

3 Corrections and improvements to the algorithm

3.1 Corrected estimation

In this section, we introduce the correct estimators 0j; for the expected num-
bers of counterexamples. These are very important for computing the diff-



coefficient, which is the fit measure for finding the best quasi order. The correct
choice for bj; for (i,7) ¢ £, depends on whether (j,7) ¢ C, or (j,71) € C,.

o If (i,j) ¢ T, and (j,i) ¢ C,, set bj; = (1 — pi)pjm. As stated in Section
2.2, independence holds, and the additional factor (1 —~,) is omitted.

o If (i,j) ¢ C, and (j,i) € T, set bj; = (p; — pi + piy,)m. This estima-
tor is derived as follows. The observed number of people who solve item
1 is p;m. Hence the estimated number of people who solve item ¢ and
item j is pym — bj; = (pi — piy,)m. Eventually this gives the estimate
bi; = pym — (pi — piv,)m = (pj — pi + iy, )m-
This estimator not only is mathematically motivated, but is also inter-
pretable. The first term, p;m, gives the number of people solving item j.
The second term, (p; — piy,)m, stands for the number of people solving
both items, because p;m is the number of people solving item 4, and p;y, m
represents the number of people solving item ¢ and failing to solve item j.

3.2 Minimizing the fit measure

Next, we discuss minimizing the diff-coefficient as a function of the error prob-
ability v, , for every quasi order C, . This minimizes the discrepancies between
the observed and expected numbers of counterexamples.

The diff-coefficient can be decomposed as

o px2
diff= iz (big =)
n(n—1)
ZiZLj b7, —2bij (pj—pitpivy Jm(pj—pit+pivy )*m ZZELJ' b7, —2bijpiy mA(pjy, ) m?
n(n—1) n(n—1)

2

Setting equal to zero the derivative of the diff-coefficient with respect to 7,
gives

ZiZLj —2b;;pim~+2p;p; m? —2p?m2+2p?m2'yL ZiELJ' —2b;;p; m+2p§m2'yL
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This is equivalent to
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Solving for «y, results in v, = % Note that this expression always gives
a value in [0, 1]. This error probability can now be used for an alternative IITA

procedure, in which a minimized diff-value is computed for every quasi order.

4 Comparisons of the three algorithms

The three algorithms are the original IITA version by Schrepp (2003), and
our corrected and minimized corrected IITA versions introduced above. In the
following, the performances of these procedures are compared in a simulation
study. Simulations were realized using the R statistical computing environment
(R Development Core Team (2006); http://www.r-project.org/). The source
files are freely available from the authors.

4.1 Settings of the simulation study

Throughout the simulation study nine items are used. The general simulation
scheme consists of three parts. First, quasi orders are generated randomly.
Second, each of these quasi orders is used for simulating the data. Third, the
three algorithms are applied to and compared on that data. More precisely:

(1) All reflexive pairs are always added to the underlying relation R. A con-
stant ¢ is set, which gives the probability for adding each of the remaining
72 item pairs to the relation. The transitive closure C of this relation R
is computed.

(2) From the set S = {s: I — {0,1}|]: C jAs(j) =1) — s(i) = 1} of all
patterns consistent with C an element is drawn randomly. For this drawn
pattern all entries are changed from 1 to 0 or from 0 to 1, with a same
prespecified error probability 7.

(3) The three algorithms are applied to the simulated data. They are com-
pared with respect to two criteria: the symmetric differences between the
data-analytic solutions of the algorithms and the underlying quasi order,
and the number of erroneously detected implications.

This simulation scheme replicates the one described in Schrepp (2003). How-
ever, the following important changes are made. Schrepp (2003) draws § ran-
domly from the entire unit interval. This leads to the following problem. For 4-
values greater than (approximately) 0.42, the average number of non-reflexive
implications contained in the underlying quasi order already turns out to be
(approximately) 70. This can be seen from Figure 1.

[Insert Figure 1 about here]



Figure 1 shows the average number of non-reflexive implications as a function
of 4. For § ranging from 0 to 1, in steps by 0.01, 100 quasi orders are gen-
erated, and the corresponding average numbers of non-reflexive implications
are calculated. In particular, Figure 1 shows that Schrepp’s choice of d-values
mostly results in generating large quasi orders. This definitely does not give a
representative sample of the collection of all quasi orders.

To avoid this problem, we pursue the following sampling. The J-values are
drawn from a normal distribution with ¢ = 0.16 and o = 0.06. Values less
than 0 or greater than 0.3 are set to 0 or 0.3, respectively. This assures a uni-
form distribution of average numbers of non-reflexive implications. This can be
seen from Figure 2. It shows the average number of non-reflexive implications
calculated for 100 generated quasi orders to 500 d-values drawn according to
our sampling.

[Insert Figure 2 about here]

The following settings are made in the simulation study. The error proba-
bility 7 takes the values 0.03,0.05,0.08,0.10,0.15 and 0.20. The sample sizes
50, 100, 200, 400, 800, 1600 and 6400 are used. For each combination of these
settings, 1000 simulations are made. In each of these simulations, an underly-
ing quasi order is generated, a data matrix is simulated, and for each of the
three algorithms the data-analytic solution is derived.

4.2 Results of the simulation study

For each of the three algorithms, for every combination of error probability
and sample size, two summary statistics are computed. One is the mean of the
numbers of elements in the 1000 symmetric differences between the underlying
quasi order and the data-analytic solutions; in the sequel referred to as dist-
value. The other is the mean of the 1000 diff-values obtained for the data-
analytic solutions. These summary statistics are reported in Table 1; first,
second, and third lines refer to the original, corrected, and minimized corrected
IITA algorithms, respectively.

[Insert Table 1 about here]

Table 1 shows the following results:

(1) For all combinations of settings, the same ranking for the diff-coefficient
is obtained. The minimized corrected version gives the smallest average
diff-value, second comes the corrected version, and the original algorithm
has the largest diff-value. Hence, the match between the observed and



expected numbers of counterexamples can be ranked accordingly. It is
seen from Table 1 that smaller diff-values do not necessarily imply smaller
dist-values.

(2) The average dist-values are quite similar (maximum discrepancy of 0.76)
for the corrected and minimized corrected algorithms. Moreover, in 24
of the 42 combinations the corrected algorithm performs better, in three
they perform identically, and in 15 the performance of the minimized
corrected version is better. In particular, the minimized corrected version
gives smaller dist-values for an error probability of 0.20. On average,
however, the corrected algorithm shows a smaller dist-value.

(3) For the very small error rates 0.03 and 0.05, the original version gives
better results than the corrected and minimized corrected algorithms. It
may seem surprising that, though of the incorrect estimators used in the
original IITA algorithm, this algorithm gives better results. We suppose
that the incorrect estimation, in the case of very small error rates, has a
less negative effect for the underlying quasi order than for the other rela-
tions. This is an interesting open problem which needs to be investigated
in further research. However, for 7 = 0.08, the results are approximately
the same, and for the higher error rates 0.10,0.15 and 0.20, the original
version is clearly outperformed. The differences in these cases are substan-
tially larger than the ones obtained when the original version performs
better. On average, the corrected and minimized corrected algorithms
show smaller dist-values than the original algorithm.

(4) With increasing sample size, the improvements obtained for the two new
algorithms are greater than the improvements for the original algorithm.
For 7 = 0.10, for instance, the original algorithm improves from a dist-
value of 9.01 to 6.87 (difference of 2.14), the corrected algorithm from
a value of 9.61 to 4.25 (difference of 5.36), and the minimized corrected
version from 9.60 to 4.58 (difference of 5.02).

(5) An interesting observation is as follows. For our two algorithms, for any
two error probabilities, the differences between the dist-values decrease
as the sample size increases. For the original algorithm, these differences
range around a constant. For instance, take the error probabilities 0.05
and 0.15. The sequence of differences for the original algorithm is 12.44,
10.91, 11.35, 11.29, 12.95, 12.73 and 13.82. The sequences for the other
algorithms are 5.29, 4.43, 2.86, 2.02, 1.84, 1.56 and 1.47 (corrected ver-
sion), and 5.03, 4.22, 2.69, 1.71, 1.15, 1.19 and 0.82 (minimized corrected
version).

From a practical point of view, it may be important to have only few false
implications being added to the correct underlying quasi order (cf. Schrepp
(2003, 2007)). False implications can lead to incorrect conclusions, and it is
inefficient to try to exclude them afterwards. In the following, we compare
the three II'TA algorithms with respect to the average numbers of erroneously
detected implications. This summary statistic is reported in Table 2; first,



second, and third lines refer to the original, corrected, and minimized corrected
IITA algorithms, respectively.

[Insert Table 2 about here]

Table 2 shows the following results:

(1) Except for 7 = 0.10 and sample sizes 50 and 100, the corrected and mini-
mized corrected IITA algorithms yield smaller average numbers of falsely
detected implications. For example, for the error rates 0.15 and 0.20, the
original version is clearly outperformed. On average, the corrected and
minimized corrected algorithms falsely detect 1.01 and 1.05 implications,
respectively, while the original version adds 2.59 false implications.

(2) The results are quite similar (maximum discrepancy of 0.20) for the cor-
rected and minimized corrected algorithms. Moreover, in 25 of the 42
combinations the corrected algorithm performs better, in six they per-
form identically, and in 11 the performance of the minimized corrected
version is better. For smaller sample sizes, the corrected algorithm per-
forms better than the minimized corrected one. For larger sample sizes,
there seems to be no noticeable difference.

(3) The results for the corrected and minimized corrected versions improve
for increasing sample sizes. The original version, however, jitters between
smaller and larger values, with no decreasing trend observable for larger
error probabilities. For 7 = 0.10, for instance, the sequences of decreasing
values for the corrected and minimized corrected versions are 2.30, 1.49,
0.92, 0.73, 0.55, 0.50 and 0.46, and 2.50, 1.56, 0.99, 0.73, 0.55, 0.49 and
0.43, respectively. The sequence for the original version is 1.95, 1.40, 1.73,
0.95, 1.45, 1.22 and 1.81.

An important remark is in order regarding the simulation study in Schrepp
(2003). The results reported in this simulation study are much better than
the results we have obtained for the original II'TA algorithm. There are sub-
stantial discrepancies between the average dist-values and average numbers of
falsely detected implications. For instance, for 7 = 0.08 and sample size 200,
Schrepp’s study gives 1.67 and 0.09, respectively, while our simulation study
yields 5.12 and 1.57.

This can be explained by the following flaw in Schrepp’s simulation method-
ology. As mentioned in Section 4.1, his choice of d-values leads to the problem
that mostly large quasi orders are generated. The incorrect estimation scheme
of the original IITA algorithm now produces good results for large quasi or-
ders. For a large quasi order C, there are predominantly the cases ¢ C j and
j C 4, for which correct estimators are used. For ¢ [Z j and j C 4, or i [Z j and
j Z i incorrect estimators are applied, and hence the discrepancies between
the observed and expected numbers of counterexamples are large. This implies



that, for an underlying large quasi order, the diff-values for small quasi orders
of the selection set are large. As a result, the underlying quasi order is more
frequently recovered. Moreover, it is not astonishing that in Schrepp (2003)
smaller average numbers of falsely detected implications are obtained. For
quasi orders containing an average number of 70 non-reflexive implications,
there are, on average, two implications left to be added erroneously.

5 Applications to empirical data

In this section, we apply the three IITA algorithms to two empirical datasets.
One is the Aphasic dataset, which is also used in Schrepp (2003), and the
other is from the Programme for International Student Assessment (PISA;
http://www.pisa.oecd.org/).

5.1 IITA analyses of the Aphasic dataset

The Aphasic dataset (Gloning, Lienert & Quatamber (1972)) consists of 162
aphasic patients tested on five tasks. This dataset is used in Schrepp (2003)
for comparing the original IITA algorithm to feature pattern analysis and con-
figural frequency analysis. For details on the dataset, the latter two methods,
and the obtained results, see Schrepp (2003).

Analyses of the Aphasic dataset using the corrected and minimized corrected
IITA algorithms (not reported in detail in this paper) give the same quasi
order as obtained for the original algorithm. Interestingly, though the same
quasi order is obtained for the three algorithms, the computed diff-values are
considerably smaller for the corrected (61.54) and minimized corrected (60.93)
than for the original (165.98) versions.

5.2 IITA analyses of the PISA dataset

We analyze part of the 2003 PISA data consisting of 340 German students an-
swering eight questions on mathematical literacy (available from the authors).
These items are chosen to form a Rasch scale. That is, the dichotomous one-
parameter logistic model (Fischer & Molenaar (1995)) fits (goodness-of-fit and
item fit) the data very well. Under this model, the following item difficulties
are estimated for the eight questions: —2.09, —1.58, —1.23, —0.04, 0.28, 0.66,
1.46 and 2.20. Hence, the items most likely form a chain, which is considered
as the underlying quasi order (see Figure 3) in the subsequent analyses.
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[Insert Figure 3 about here]

Analyzing the PISA dataset using the original IITA algorithm and the cor-
rected and minimized corrected IITA algorithms gives the quasi orders shown
in Figures 4 and 5, respectively.

[Insert Figure 4 about here]
[Insert Figure 5 about here]

The original IITA algorithm yields a dist-value of 19, in contrast to the cor-
rected and minimized corrected versions, which give a clearly smaller dist-
value of 5. Since under all three algorithms no false implications are added,
these are the numbers of true implications missed by the algorithms. The cor-
rected and minimized corrected versions outperform the original algorithm.
This can be explained as follows. The underlying quasi order C, which is a
chain, consists only of cases ¢ C j and j [Z i. As mentioned in Section 2.2, for
these cases incorrect estimators are used in the original version. This leads to
larger discrepancies between the observed and expected numbers of counterex-
amples, hence to a larger diff-value. The corrected and minimized corrected
IITA algorithms, however, use correct estimators and therefore detect true
implications more properly.

6 Conclusion and further research

The original IITA algorithm is one of the few data-analytic methods in KST.
We have made some corrections and improvements to this algorithm. In par-
ticular, we have introduced two new versions, the corrected and minimized
corrected IITA algorithm. These three algorithms have been compared in a
simulation study, and on two empirical datasets. On average, the corrected and
minimized corrected versions have performed better than the original one, in
terms of both smaller dist-values and numbers of erroneously detected impli-
cations.

The current simulation study is a starting point for more in-depth analyses
of the IITA algorithms, especially of the corrected and minimized corrected
versions. Future research may address the effects of deviations from the uni-
form probability distribution on the set S of all consistent response patterns,
and from a single error probability 7 (cf. Section 4.1). This would allow in-
vestigating whether the present algorithms should be generalized to include
different lucky guess and careless error probabilities for every item, and to be
applicable to skew population distributions.

Another interesting direction for further research is to modify the diff-coefficient.
As apparent from the presented simulation study, smaller diff-values do not
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necessarily imply better reconstructions of underlying quasi orders. It seems
that an aggregation (diff-coefficient) of local, two-dimensional views of the
data (b;;) does not provide acceptable results on the relationships among all
items mutually in |@| dimensions. One could consider developing fit measures
incorporating higher-dimensional views of the data.

Work on the generated selection set should definitely be pursued in future
research. So far, for the IITA algorithms the quality of the inductively gen-
erated set of quasi orders has not been systematically investigated. In our
simulation study, on average, the underlying quasi order is contained only 569
(out of 1000) times in the selection set. Since it is computationally intractable
to evaluate all possible quasi orders in large-scale applications, better search
methods are needed to improve the selection set. A data-analytic method op-
erating on a set of candidate models is only as good as the quality of the
selection set is.
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7 Tables

Table 1
Average dist- and diff-values (in parentheses) under original, corrected, and

minimized corrected IITA algorithms (first, second, and third lines, respec-
tively)

Sample size

50 100 200 400 800 1600 6400

-

0.03  3.71(3.79) 2.89(11.67) 2.14(41.16) 2.29(152.10) 1.87(599.61) 1.69(2438.30) 1.99(36528.70)
5.44(1.66) 5.18(4.28) 4.54(11.58) 4.86(38.37) 4.30(128.13) 3.90(489.21) 3.81(7414.34)
5.44(1.58) 5.30(4.04) 4.67(10.76) 5.11(34.92) 4.77(114.65) 4.58(438.49) 4.51(6635.50)

0.05  4.24(3.73) 4.05(11.32) 2.87(38.28) 2.59(138.35) 2.11(517.96) 1.77(2094.56) 1.10(32968.50)
6.89(1.93) 5.69(5.13) 4.91(14.35) 5.09(44.49) 4.22(152.74) 4.33(587.63) 3.63(8172.90)
6.90(1.81) 5.67(4.68) 5.02(12.67) 5.40(39.24) 4.91(130.82) 4.89(489.52) 4.39(6892.42)

0.08  7.66(3.96) 5.95(12.18) 5.12(41.09) 4.91(149.30) 4.43(606.56) 4.47(2392.01) 3.69(37444.40)
8.61(2.24) 6.36(6.05) 5.70(17.35) 5.28(52.26) 4.46(196.09) 4.5(702.46) 3.99(9870.19)
8.45(2.09) 6.30(5.58) 5.90(15.38) 5.70(45.48) 4.88(163.70) 5.06(582.79) 4.55(8102.32)

0.10  9.01(4.23) 7.87(12.71) 7.89(45.51) 6.14(166.79) 6.67(682.10) 6.37(2808.66) 6.87(44472.91)
9.61(2.43) 7.65(6.75) 6.37(18.70) 5.37(59.49) 5.26(203.67) 4.35(765.31) 4.25(11373.20)
9.60(2.31) 7.47(6.21) 6.42(16.84) 5.66(52.69) 5.58(175.46) 4.85(644.15) 4.58(9491.62)

0.15  16.68(4.55)  14.96(14.81)  14.22(58.53)  13.88(221.76)  15.06(935.71) 14.50(3664.33)  14.92(62646.07)
12.18(2.59)  10.11(7.45) 7.77(21.90) 7.11(67.43) 6.06(250.24) 5.89(877.53) 5.10(14659.14)
11.93(2.48)  9.89(7.09) 7.71(20.49) 7.11(62.26) 6.06(226.58) 6.08(790.18) 5.21(13027.16)

0.20  23.38(4.53)  25.41(16.69)  24.93(62.96)  24.02(276.97)  23.72(1148.28)  24.65(4699.31)  23.46(76842.70)
14.81(2.59)  11.40(7.34) 9.81(22.34) 8.00(71.94) 7.96(254.09) 6.79(930.46) 6.79(14769.23)
14.68(2.52)  11.36(7.12) 9.62(21.53) 7.91(68.79) 7.93(240.95) 6.75(879.06) 6.58(13893.23)
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Table 2

Average numbers of erroneously detected implications under original, cor-
rected, and minimized corrected IITA algorithms (first, second, and third lines,
respectively)

Sample size

20 100 200 400 800 1600 6400

0.03 2.69 223 180 191 147 143 1.65
1.82 092 048 0.38 0.23 0.17 0.18
1.90 096 0.48 0.37 021 0.16 0.17
0.06 230 208 124 1.28 1.11 0.51 0.23
210 1.14 064 045 0.30 0.20 0.13
220 1.20 0.66 042 0.28 0.19 0.11
0.08 2,69 1.79 157 137 099 1.23 0.98
226 147 092 058 042 040 0.35
244 154 095 059 042 040 0.34
0.10 195 140 1.73 095 145 1.22 181
230 1.49 092 0.73 0.55 0.50 0.46
250 156 099 0.73 055 049 043
0.15 3.02 2.03 233 3.13 3.78 4.08 3.84
257 1.72 128 1.08 097 0.82 0.82
27 1.8 136 1.13 1.02 0.82 0.83
020 3.46 5.68 5.80 6.38 6.89 838 7.00
2,71 208 152 127 1.09 1.11 0.99
287 216 157 134 1.16 1.17 1.02
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8 Figure captions

Fig. 1. Average number of non-reflexive implications as a function of §. The
d-values range from 0 to 1, in steps by 0.01. For each §-value, 100 quasi orders
are generated, and the corresponding average number of non-reflexive impli-
cations is shown.

Fig. 2. Average number of non-reflexive implications calculated for 100 gen-
erated quasi orders to 500 d-values drawn according to our sampling. Points
are ordered by average number of non-reflexive implications.

Fig. 3. Rasch scale of the eight assessment items (from bottom to top, items
sorted according to increasing difficulty). Assumed to underly the PISA dataset.

Fig. 4. Quasi order obtained for the PISA dataset under the original IITA
algorithm.

Fig. 5. Quasi order obtained for the PISA dataset under the corrected and
minimized corrected IITA algorithms.
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9 Figures
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5
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