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Abstract—Traditional, strictly deterministic algorithms are
reaching their limits as modern information systems are often
challenged with tremendously complex optimisation tasks. This
can be in terms of reasonable computational effort or due
to the lack of gradient information. Therefore, a necessity of
designing Intelligent Systems becomes apparent and the in-
creasing appearance of such systems substantiates the currently
observable advent of Artificial Intelligence. Thus, Computational
Intelligence methods, such as metaheuristics, gain entry into
modern systems in order to render the challenging problems
tractable again, sometimes with the downside of only converging
to approximately optimal solutions. An approach inspired by
chemical reactions which attracted rather less research attention
so far, especially with regard to the utilisation in Organic
Computing research, has been proposed recently. In this working
paper, the Chemical Reaction Optimisation (CRO) algorithm is
transformed towards a parallel variant, called pACRO, in order
to decrease convergence time and scalability by exploiting multi-
core computing architectures. The proposed parallel algorithm
is empirically validated on well-known benchmark functions and
set in relation to the findings reported in the literature. First
results indicate that pACRO can compete with its predecessors.
Furthermore, initial steps towards an application in the highly
complex task of RNA Secondary Structure Prediction (RNA-SSP)
are taken by outlining novel ways to construct the search space
for helices as well as a solution candidate encoding based on
which pACRO can be utilised.

Index Terms—Organic Computing, Population-based Meta-
heuristics, Chemical Reaction Optimisation, RNA Secondary
Structure Prediction

I. INTRODUCTION

In light of the recent advances in Artificial Intelligence
(AI) which allows machines to deal with highly complex
tasks, naturally the imposed demands on Information and
Communication Technology (ICT) systems also increase dra-
matically. The transfer of AI technology to systems deployed
in the context of realistic and critical domains such as Health-
care, Traffic Control, Avionics and Autonomous Driving, to
name a few, opens numerous potentials but also introduces
challenges regarding the careful and safe design of these
inevitably occurring Intelligent Systems (IS). Besides these
specific design challenges regarding the increasing degree of
autonomy of IS, the need for continual improvement, i.e.
self-optimisation of such systems is a crucial requirement.
Search and planning together constitute a major branch in
AI research. Stochastic population-based search heuristics

have proven themselves very successful in various domains
where the underlying search space is opaque and gradient-
information are missing. Prominent representatives are Evolu-
tionary Algorithms with their numerous derivatives, Particle
Swarm Optimisation or Ant-Colony Optimisation. IS need to
be self-adaptive in a sense to be able to quickly respond, i.e. re-
optimise, in highly dynamic environments and their resulting
ever-changing contextual observations on which predictions or
even control decisions are based. One way to achieve such a
progressing self-optimising behaviour is to incorporate such
previously mentioned competent and efficient optimisation
algorithms allowing for rapid responses to changing system
states. But self-adaptation is not the only scenario where the
efficiency of optimisation heuristics plays an important role.
Real world applications from the domain of biology come
with their idiosyncratic characteristics such as highly complex
and vast search spaces due to e.g. epistatic gene interactions
and heterogeneity. The identification of the most suitable
candidates among the great variety of existing approaches and
their purposeful improvement in view of their application in
very specific tasks is a very important step on the way to
reaching superhuman performance.

The need for IS involving AI technology in order to support
biological engineers and geneticists to discover e.g. genetically
induced disorders has attracted a lot of research during the last
decades. For instance, Evolutionary Rule Machine Learning
(ERBML) techniques such as BioHEL [1] or ExSTraCS [8]
have been specifically devised to predict protein structures
or for the identification and modeling of predictive single
nucleotide polymorphisms (SNPs), respectively. Another par-
ticular problem domain that falls in the same category is the
task of RNA Secondary Structure Prediction (RNA-SSP) [12].
RNA is not only an intermediate in the synthesis of proteins
from DNA, but also provides essential structural and chemical
functions. Since functionality of molecules always depends
on their structure, knowing this structure is imperative for
understanding and influencing their objective.

In this working paper, we first introduce the state of the art
of the Chemical Reaction Optimisation (CRO) [3] algorithm,
a bio-inspired population-based optimisation heuristic, and
describe the pursued domain of application, namely RNA-
SSP (Section 2). To this end, the adaptive CRO algorithm is
enhanced with regard to its optimisation efficiency by means
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of reframing it into a parallel implementation which allows
for faster convergence towards approximate minima (Section
3). The superior performance is underpinned by results of
conducted experiments on well-known and thoroughly selected
benchmark functions (Sections 4 and 5). Preliminary results
promise improved efficiency in terms of both the number
of optimisation steps as well as time consumption. As a
second contribution, a way to adequately model the RNA-
SSP problem to be solvable by the introduced parallel CRO
mechanism (pACRO) will be initially outlined and discussed
(Section 6).

II. BACKGROUND

A. Chemical Reaction Optimisation

The chemical reaction optimisation algorithm is a
population-based optimisation heuristic which was first de-
vised by Lam and Li in 2010 [3]. It was extended to a real-
coded version for solving continuous optimisation problems
called RCCRO by introducing a new parameter stepSize in [5]
and further refined to a so-called Adaptive CRO (ACRO)
variant, in which the number of predefined (hyper-)parameters
is reduced in [10]. ACRO is used as a basis for the proposed
pACRO algorithm described later on.

All variants of CRO are built on the same basic structure.
The population is composed of molecules, which represent
possible solutions and can take part in four different kinds of
reactions. The reactions themselves underly the laws of energy
conservation and can only occur in accordance to those. All
those processes are contained in a closed system, i.e. no energy
can be added or lost.

In ACRO, molecules have three necessary attributes as
defined in [10]: the structure ω, the potential energy PEω and
the kinetic energy KEω . The structure ω encodes the solution
the molecule has reached so far and its specific configuration
(encoding) is dependent on the underlying optimisation prob-
lem. The potential energy PEω denotes the value f(ω) of the
objective function f : ω �→ R of the molecule’s structure,
i.e. PEω = f(ω). The minimisation of PEω is the overall
aim of the CRO algorithm. The kinetic energy KEω serves as
a tolerance offset regarding less optimal structures, i.e. PEω

values, resulting from ‘chemical’ reactions in order to support
escaping from local optima.

The four reaction types, listed in Table I, are similar for all
CRO variants: There are two unimolecular reactions, the on-
wall ineffective collision and the decomposition, as well as two
bimolecular reactions, the intermolecular ineffective collision
and the synthesis [4].

TABLE I
CRO’S FOUR REACTION TYPES AND THEIR CATEGORISATION INTO
SUPPORTING EITHER EXPLORATIVE OR EXPLOITATIVE BEHAVIOUR.

Reactions

unimolecular bimolecular
exploitation on-wall intermolecular

ineffective collision ineffective collision
exploration decomposition synthesis

All reactions must follow the law of energy conservation.
Accordingly, the total amount of energy in the system needs
to stay constant at every point in time t. Thus, the condition

popSize(t)∑

i=1

(PEωi
(t) +KEωi(t)) + buffer(t) = C (1)

must hold, where popSize(t) denotes the number of molecules
at time t, buffer(t) determines the overall amount of energy
molecules lose during reactions and C is the value denoting the
total energy contained in the system. Additionally, reactions
can only take place if an energy threshold is overcome
in accordance with the activation energy in real chemical
reactions, i.e. the molecule has enough kinetic energy to start
a reaction.

1) On-wall ineffective collision: The on-wall ineffective
collision describes the effects of a molecule colliding with
a wall of the container without breaking apart. However, the
structure of the molecule changes, i.e. ω −→ ω′.

In this case, the neighbourhood search operator for the
change of ω is realized by Gaussian perturbation with re-
flection. One of the i = 1 . . . n components of the molecule’s
structure, denoted by ω(i) is chosen at random and replaced
by a new value within the boundaries of the solution space.
In RCCRO and ACRO, the pertubation is determined by

ω′(i) = ω(i) + Δω(i), with Δω(i) ∼ N (0, σ). (2)

In ACRO, the step size σ is adaptive according to the 1/5th

success rule [10]. This self-adaptation mechanism works as
follows: Every n reactions, the number of successful reactions
in the last 10n reactions is reviewed. If 20 percent of those
reactions were successful, the stepSize is divided by 0.85, if
fewer than 20 percent were successful, stepSize is multiplies
by 0.85. After generating ω′, the new potential energy PEω′

is set to f(ω′) and the new kinetic energy KEω′ = α(PEω−
PEω′ + KEω), with α ∈ [KELossRate, 1] denoting the
factor by which the kinetic energy is reduced in the molecules.
The lost kinetic energy is transferred to the buffer, a container
to store this lost energy and provide it when necessary.

Before adopting the new values, it is validated if the KEω

of the molecule is high enough to allow for a reaction, i.e.
the energy threshold has been exceeded. This is the case if
PEω + KEω ≥ PEω′ . If the KEω is not high enough, the
reaction is aborted and the new values are discarded.

2) Decomposition: In a decomposition, the molecule col-
lides with a wall, but breaks apart into two new molecules. In
terms of its structure, that means: ω −→ ω′

1 + ω′
2

The new structures are generated by a half-total change
of the former structure ω. Half of its values are randomly
picked and distributed over the new structures. The remaining
values of the new structures are randomly picked within the
boundaries of the solution space. The new PE values, PEω′

1
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and PEω′
2
, are set to f(ω′

1) and f(ω′
2), respectively. The new

KE values are computed as follows:

Edec = (PEω +KEω + δ1 · δ2 · buffer)−
(PEω′

1
+ PEω′

2
) (3)

KEω′
1
= Edec · δ3 and KEω′

2
= Edec(1− δ3), (4)

where all δi are random numbers within [0,1].
The decomposition is only valid, if the energy conservation

is satisfied, i.e.:

(PEω +KEω + δ1 · δ2 · buffer) ≥ (PEω′
1
+ PEω′

2
) (5)

If so, then the new molecules are instantiated with their re-
spective values, the molecule entering the reaction is removed
and the buffer is set to its new value:

buffer′ = (1− δ1δ2)buffer (6)

3) Intermolecular ineffective collision: The intermolecular
ineffective collision describes the event of two molecules
colliding and bouncing apart, similar to the on-wall ineffective
collision: ω1 + ω2 −→ ω′

1 + ω′
2.

Both molecules experience a change in their structures,
following the same procedure as in an on-wall ineffective
collision. In both structures, only one value is changed. The
PE values are updated by evaluating the objective function on
the new structures ω′

1 and ω′
2. The KE values are updated by

KEω′
1
= Einter · δ4 and KEω′

2
= Einter · (1− δ4) (7)

with Einter = (PEω1
+ PEω2

+KEω1
+KEω2

)

− (PEω′
1
+ PEω′

2
). (8)

Energy conservation is given if

PEω1
+ PEω2

+KEω1
+KEω2

≥ PEω′
1
+ PEω′

2
. (9)

4) Synthesis: A synthesis occurs if two molecules collide
and fuse into a single new molecule. In terms of their struc-
tures, that means: ω1 + ω2 −→ ω′.

The new structure ω′ is generated using probabilistic select,
i.e. choosing its values randomly from ω1 and ω2. PEω′ is
set to f(ω′) and

KEω′ = (PEω1
+PEω2

+KEω1
+KEω2

)− (PEω′) (10)

The energy conservation condition in this case is

(PEω1
+ PEω2

+KEω1
+KEω2

) ≥ PEω′ . (11)

5) Algorithm: The pseudocode of ACRO is presented in
Algorithm 1. For ACRO, only the parameters popSize, molColl
and changeRate need to be set. molColl describes the ratio
between unimolecular and bimolecular reactions. changeRate
is responsible for the frequency of synthesis and decomposi-
tion reactions, in combination with the parameters fdec and
fsyn for the decomposition and synthesis thresholds. Those
thresholds are dependent on the popSize, so that the number
of molecules does not increase or decrease excessively, i.e.
there are about as many syntheses as decompositions.

Algorithm 1 ACRO
1: Input: popSize, molColl, changeRate
2: Initialise molecule population M
3: while termination criterion not met do

4: Adapt fsyn and fdec
5: if Random ∈ [0,1] > molColl or popSize < 2 then

6: Randomly select one molecule
7: if Random ∈ [0,1] ≤ changeRate and Random ∈

[0,1] ≤ fdec then

8: trigger decomposition
9: else

10: trigger on-wall ineffective collision
11: end if

12: else

13: Randomly select two molecules
14: if Random ∈ [0,1] ≤ changeRate and Random ∈

[0,1] < fsyn then

15: trigger synthesis
16: else

17: trigger intermolecular ineffective collision
18: end if

19: end if

20: ω∗ ← minωPEωω∈M

21: end while

22: Output: ω∗, PE∗
ω

B. RNA Secondary Structure Prediction

The task of RNA-SSP is important as an imperative inter-
mediate step to predict RNA tertiary structures. By knowing
the teritary structure of a molecule, it is possible to gain
information on its biological function, and thus, about feasible
ways to influence this function, e.g., to provide cures for
diseases.

The secondary structure of RNA is provided by the internal
bindings in an RNA sequence. RNA consists of four different
nucleotide bases capable of forming specific bonds between
each other. Those bases are adenine (A), cytosine (C), guanine
(G) and uracil (U), with bonds forming between A and U, C
and G and G and U. Molecules are usually found in their
most stable configuration, i.e. their free energy is minimal.
Thus, nucleotide pairs form accordingly.

Most methods for RNA secondary structure prediction
are based on a thermodynamic approach. They predict the
structure by minimising the free energy of the folded RNA
sequence. The necessary information about binding energies of
nucleotide pairs and unpaired bases of different substructures
is provided by the nearest-neighbour parameter database by
Turner et al. [7]

One of the most commonly used algorithms for RNA-SSP
is mfold by Zuker et al. [12]. It is based on a dynamic pro-
gramming approach to minimise the free energy. The downside
is, however, the duration of the computation. For long RNA
sequences, these methods can be extremely time-consuming.
Thus, heuristic approaches to this optimisation task have been
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proposed recently. SARNA-Predict, for example, is based on
simulated annealing and achieves results as good as those of
mfold [6]. Another example is HelixPSO, using particle swarm
optimisation to minimise the free energy of RNA secondary
structures [2]. To the best of the authors knowledge, there is no
study utilising CRO-based approach to accomplish RNA-SSP.

III. PARALLEL ACRO

A. Description of pACRO

A first attempt to parallelise CRO as proposed in [9] was
to split the population of molecules between several CPUs,
with each CPU running one instance of the conventional
CRO algorithm. The buffer is kept in a central coordinating
instance which also compares the new molecules obtained
by the parallel instances after each step of the algorithm. It
then conveys the best molecule back to the parallel instances,
which all substitute one of their molecules with the best
of the iteration. The idea behind pACRO, however, is to
assign an individual thread to each molecule, i.e. making them
actors of an AKKA 1 based actor system, with each molecule
performing the ACRO algorithm independently. Only essential
information should be communicated between the actors. A
master actor is responsible for the evaluation of the current
optimum and the termination of the system. To prevent the
master from an overloaded message queue, two additional
actors are implemented, one called helper for pre-evaluating
the optimum and the other called market for aiding molecules
in bimolecular reactions. The specifics of each of those actors
are described in the following:

1) Molecule: There are two main differences between
molecules in ACRO and its parallel version proposed in this
work: (1) Each molecule in pACRO runs its own algorithm.
That is no problem for unimolecular reactions, whereas for
bimolecular reactions a way of communication was needed.
A direct communication between molecules is not desirable,
thus, the market was introduced. If one molecule wants to take
part in a bimolecular reaction, the market obtains the second
molecule and the reaction can take place.

The other difference to the sequential ACRO implemen-
tation is that the stepSize is no longer a global attribute of
the algorithm itself, effective for all molecules. It is now a
specific attribute of each single molecule. This was necessary
because a repeated update of stepSize by the 1/5th success
rule has to be communicated between all molecules, as well
as the overall reaction count. This would cause delays in
the synchronised adaptation. However, we deem an individual
step size σ beneficial since this should allow for different
exploitation behaviours in different niches within the search
space determined by the structures (solutions) encoded by the
individual molecules.

The termination criterion for ACRO was the number of
function evaluations (FE). To use the same criterion, this
number is now distributed among all molecules by dividing the
overall number of FE by the number of molecules and setting it

1https://akka.io/ [Last accessed: 28.02.2019]

as a parameter for each individual molecule. Thus, the overall
number of function evaluations should remain comparable to
ACRO.

2) Master: The master actor is responsible for the creation
of the molecules and the monitoring of the population size
(popSize). The popSize parameter is the only value which
is regularly distributed among all molecules. This is done
because after a successful decomposition or synthesis, the
popSize changes. The current popSize, however, is necessary
for deciding between a decomposition or a synthesis. Thus,
that master is informed of those successful reactions and
molecules are deleted or added, respectively.

In addition, the master saves the final optimum and is
responsible for the termination of the optimisation process
after all molecules finished their computation.

3) Helper: The only task of the helper is to monitor the
development of the optimum. Each time a molecule finds a
new minimal structure, it reports the new locally optimal value
to the helper, who determines the current overall optimum.
This task has to be distributed to an additional actor to prevent
the master from a congested mailbox, which would delay the
updates of popSize.

4) Market: Since molecules should not share their informa-
tion in an uncoordinated manner, the market was introduced
to mediate bimolecular reactions. If a molecule wants to take
part in a bimolecular reaction, it reports its intention to the
market. As soon as the market has received two requests, it
provides those two molecules with the necessary information.
This corresponds closely with the random selection of two
molecules in ACRO.

This design allows for any number of molecules to receive
their own thread, thus running the algorithm in parallel and
rendering it highly scalable as will be shown in Table III. It has
to be noted, however, that there are three additional threads
for master, helper and market necessary for monitoring and
coordination purposes.

IV. EXPERIMENTAL SETTING

The pACRO algorithm is tested on a subset of those
benchmark functions used for testing RCCRO and ACRO
(cf. [5], [10]). The selected functions and their specifics are
shown in Table II.2 Parameters were also set according to
the propositions for ACRO: the number of function evalua-
tions was set to 300’000, molColl to 0.2 and changeRate to
10−4. For further examination of the parameter sensitivity of
pACRO, three additional tests were performed with a change
in exactly one of those parameters, while leaving the remaining
unchanged: in one test the number of function evaluations was
set to 600’000, in the next, molColl was set to 0.5 and in the
last case, changeRate was set to 10−3.

2The benchmark functions were chosen to give an adequate review on the
functioning of pACRO. Those taken from [5] are named accordingly and are
either functions, where RCCRO performed well, or badly. f9 was added to
see how pACRO performes with many local minima. Functions taken from
[10] were named according to the paper with the letter ’A’ marking their
utilisation for the ACRO algorithm. They were chosen to provide shifted
versions of benchmark functions from [5].
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TABLE II
CHARACTERISTICS IN TERMS OF DEFINITION, DIMENSIONALITY, DOMAIN AND GLOBAL MINIMUM OF THE BENCHMARK FUNCTIONS USED TO COMPARE

ACRO AND RCCRO WITH THE NOVEL PACRO.

Function Name n Search space S fmin

fA1(x) =
n∑

i=1
z2i ∗ Shifted sphere function 30 [−100, 100]n 0

fA11(x) = −20 exp(−0.2

√
1

n

n∑
i=1

z2i )− exp(
1

n

n∑
i=1

cos 2πzi) + 20 + e� Shifted Ackley’s function 30 [−100, 100]n 0

f1(x) =
n∑

i=1
x2
i Sphere Model 30 [−100, 100]n 0

f2(x) =
n∑

i=1
|xi|+

n∏
i=1

|xi| Schwefel’s problem 2.22 30 [−10, 10]n 0

f5(x) =
n−1∑
i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2) Generalised Rosenbrock’s function 30 [−30, 30]n 0

f9(x) =
n∑

i=1
(x2

i − 10 cos(2πxi) + 10) Generalised Rastrigin’s function 30 [−5.12, 5.12]n 0

f10(x) = −20 exp(−0.2

√
1

n

n∑
i=1

x2
i )− exp(

1

n

n∑
i=1

cos 2πxi) + 20 + e Ackley’s function 30 [−32, 32]n 0

∗z = x− σ with σ being a shifting vector
�z = (x− σ)× 0.32 with σ being a shifting vector

The optimal population size determined for ACRO was 20
[10]. In pACRO, however, the variations in the results for
different numbers of molecules are relevant, e.g. changes in
computation time and the precision of the predicted optimum.
Therefore, for each parameter setting the algorithm was run
with 2, 4, 8, 16, 20, 32 and 64 molecules. The standard
number of FE was set to 300’000, which were distributed over
the molecule, i.e. in the case of 2 molecules, each performs
150’000 FE.

All experiments were performed on an Intel(R) Xeon(R)
CPU E5-2640 0 @ 2.50GHz CPU based multi-core computing
server with 48 GB DDR3 RAM and Linux operating system
with Kernel version 4.14.92 with exclusive use, i.e. no other
computing intensive processes had to be scheduled by the OS
during the computation.

V. RESULTS

This section summarises the simulation results and statistics
of pACRO as described in Section 4 and compares them to
the results of RCCRO and ACRO as reported in [5] and [10],
respectively.

A. Results of pACRO

Table III shows the results for each selected benchmark
function. It provides the mean optimum value, its standard
deviation, the median optimum value and the average comput-
ing time for 50 simulation runs, respectively. 300’000 func-
tion evaluations (FE) denotes simulations with the standard
parameter configuration of ACRO, other parameter settings
describe the parameter changed. Respective results of RCCRO
and ACRO are given at the bottom of Table III.

All simulations display the best results for only 2 molecules.
With increasing number of molecules, the optimum value
also increases, while computation time decreases. Different
parameter settings for fA1 show changes in the optimum
value for higher molecule numbers. As expected, increasing

Fig. 1. Development of Optimum over the optimum updates for 2 molecules
and benchmark function fA1 with standard 300’000 FE. The grey lines show
the optimum development of all 50 runs, the black line shows the mean
optimum development with the standard deviation (dotted black line). In the
left picture, a linear scale is applied, in the right one the scale is logarithmic.

the number of function evaluations provides a better optimum
value. A higher value for molColl worsens the optimum value,
while a higher value of changeRate has almost no effect. For
f9 a higher changeRate provides a better mean optimum value
for smaller numbers of molecules.

In comparison to the results of RCCRO and ACRO, the
mean optimum values of pACRO in the simulation runs with
two molecules are similar. For example, the mean optimum
value for fA1 and f1 provided by pACRO is worse than the
given values, for f10 pACRO presents a better result.

In addition, the development of the optima was analysed.
Figure 1 shows the evolution of the optimum value over
its updates for all 50 simulation runs of fA1 with 300’000
FE. Over the simulation, the optimum values are decreasing
exponentially.

The plots in Figure 2 display the achieved optimum value
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Fig. 2. Distribution of Optimum Values for 2, 4, 8, 16, 20, 32 and 64 molecules. Each plot shows the final optimum values and the corresponding number
of updates for 50 runs.

and its corresponding number of updates, i.e. the number of
better optimum values being found in 300’000 FE, for the
test function fA1. For 2 molecules, most optimum values are
updated about 500 times in one simulation run and their value
reaches about 1E − 07. There are, however, some aberrant
values up to 1E−02 with a much smaller number of updates.
For a higher population size, the overall number of optimum
updates decreases, while the optimum value increases, and the
optimum values differ more strongly in one population size.

B. Discussion

Overall, pACRO shows similar results to former CRO
variants. However, this is only if a population size of two
molecules is chosen.3 For higher population sizes, the pitch
between the expected and the resulting optimum value in-
creases, a problem which still needs to be addressed. A
further examination of the increase in the optimum value
with an increase in population size is shown in Figure 2.
The computation times, however, decrease with an increase
in molecules. Changes in the parameter setting of the pACRO
algorithm also provided the expected results. A higher number
of function evaluation leads to an improvement of the optimum
value, especially for increasing population sizes. Increasing the
molColl, i.e. the ratio of unimolecular to bimolecular reactions,
has a negative effect on the resulting optimum. An increase
of the changeRate, i.e. more synthesis and decomposition

3Unfortunately, the original CRO source codes are no longer available to
be compared to the pACRO implementation.

reactions, has almost no effect on the results, except in the
case of benchmark function f9, which includes many local
optima. For this function, more exploratory reactions prove to
be advantageous, as was expected.

pACRO is shown to provide a promising tool to solve
many kinds of optimisation problems. It performs well on the
selected benchmark functions. The next step is its adaptation
to the more complex problem of RNA-SSP.

VI. TOWARDS RNA-SSP WITH PACRO

The thermodynamic approach, i.e. minimising the free en-
ergy, makes RNA secondary structure prediction a suitable
optimisation problem for pACRO. To adjust the problem to
the algorithm and vice versa, two main subjects need to be
adressed: The solution representation of the algorithm must
be fitted to RNA-SSP and the four reactions changing it need
to be adapted.

A. Solution representation

The solution, i.e. the structures of the molecules in pACRO,
will be represented by a set of helices, similar to the approach
used in SARNA-Predict [6]. Helices are stretches of the
RNA sequence where binding between nucleotides is possible.
The generation of this set, however, differs from previous
approaches. Instead of iterating over the RNA sequence, the
sequence is used to create a matrix containing information of
all possible nucleotide pairs. Then, a particle based algorithm
is used to search this matrix for stretches of nucleotide pairs
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with a minimal length. This particle approach allows for not
only one particle to search for helices, but can be extended
to any number of particles. It is also easy to parallelise if
time-consumption is too high.

The particle generates a set of all possible helices the RNA
sequence is able to form. From this set, the pACRO structures
are formed by drawing random subsets. These are validated,
i.e. helices not compatible with each other are removed, as
described for SARNA-Predict [6].

These subsets represented in the structures allow evalua-
tion in terms of their free energy, according to the nearest-
neighbour model [7]. They can also be changed in the four
reactions provided by pACRO.

B. Reactions

The ACRO algorithm is designed to incorporate a molecular
structure containing numerical values. Thus, the four reaction
types provide only possibilities to change those values. In this
approach to RNA-SSP, however, the structure will consist of
helix objects, each defined by a sequence and a starting point.
Therefore, it is necessary to adapt the reactions of the pACRO
algorithm to the structures given, but without disturbing the
function of the algorithm.

For synthesis and decomposition reactions, there will be
only minor changes in the implementation. With a structure
composed of helices, it is still possible to perform probabilistic
select and half-total change. It is, however, necessary to
validate the structures after the reaction to prevent it from
containing mutually exclusive helices. In both cases it might
additionally be required to inhibit the structures from growing
too short due to validation.

The on-wall ineffective collision and the intermolecular
ineffective collision need more alteration. In both, only one
numerical component of the structure is changed by multipli-
cation with a value generated by Gaussian perturbation with
reflection depending on the stepSize. For a structure composed
of helices, this procedure is not feasible. One possible way to
solve this problem is to substitute single helices with more or
less similar ones. Similarity between helices can be defined
in regard of their starting points and sequences. Thus, when
the value of stepSize is high, i.e. the value in the structure is
changed strongly, the helix is substituted by another with low
similarity. Accordingly, for a lower stepSize, a more similar
helix is included.

Implementing these changes is one possible way to adapt the
pACRO algorithm to the problem of RNA-SSP. The feasibility
of this approach still needs to be verified and changes due to
unforeseen difficulties might need to be made.

VII. CONCLUSION

In the present paper, a novel means for a parallel version
of the Chemical Reaction Optimisation (CRO) heuristic has
been developed in view of the utilisation in Intelligent RNA
Prediction Systems. The presented pACRO algorithm yields
superior optimisation efficiency in terms of steps to approxi-
mate optima (so far only for the 2 molecule configuration) as

well as reduced time consumption due to a speedup obtained
by utilising AKKA-based parallelisation. Accordingly, the
algorithm’s scalability is substantially improved, allowing for
the application on more complex search spaces in contrast
to its sequential version. Regarding application of pACRO
within Intelligent RNA Prediction Systems, the underlying
optimisation task that needs to be solved in the context
of RNA-SSP has been outlined and an adequate solution
candidate encoding as well as a novel methodology to helix
identification have been briefly sketched.

At the time of preparing this working paper, preliminary
experiments already indicated postive results when the in-
troduced pACRO algorithm is applied to the RNA-SSP op-
timisation problem. However, a more thorough assessment of
the preliminary results as well as comprehensive comparative
studies with further state of the art optimisation heuristics
have to be conducted which is already part of current research
activities. Further aspects that are going to be investigated in
the near future comprise: (i) the refinement of the exploration
mechanisms of CRO, (ii) the incorporation of information
obtained from neighbouring molecules in a PSO-resembling
fashion to further control the optimisation process as proposed
in [11], and, (iii) the extension of pACRO toward a more self-
adaptive optimisation technique in order to reduce the influ-
ence of a priori, possibly inappropriately set hyperparameters
on the optimisation progress.
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