
Towards Metrics for Analyzing System Architectures Modeled with
EAST-ADL

Christoph Etzel, Florian Hofhammer and Bernhard Bauer
Institute of Computer Science, University of Augsburg, Germany

Keywords: System Architecture Metrics, Model-based Systems Engineering, Automotive Systems Engineering, EAST-
ADL.

Abstract: Quality of system and software architectures plays a major role in today’s development to reduce the com-
plexity of systems during design and ensure maintainability and extensibility. Metrics can provide system
architects with information about the quality of the system architectures and support them to ensure the qual-
ity characteristics defined in ISO 25010. In this position paper, we look on selected metrics from code and
object-oriented design analysis to use them for the evaluation of system architectures modeled with EAST-
ADL. Therefore, the metrics (collections) Lines of Code, Cyclomatic Complexity, Chidamber and Kemerer
and MOOD are examined for their application on EAST-ADL models.

1 INTRODUCTION

Since the 1970s, software quality became more and
more important in the course of the evolution of soft-
ware development towards an engineering discipline.
For this reason, metrics were developed to enable
comparability of the software systems quality as key
figures. The comparison of different systems as well
as of revisions of a single system played are use cases.
At the time, quality was mainly defined and measured
with regard to the prevailing imperative programming
paradigms. The change to object-oriented program-
ming then required fundamental changes and exten-
sions of the previously defined key figures. Since the
publication and subsequent distribution of the Uni-
fied Modelling Language (UML), extensions emerged
with the possibility not only to measure code quality,
but also to analyze models and architectures already
before the implementation.

Today it is important not only to examine pure
software architectures and measure their quality, but
also to consider system architectures (more precisely,
functional and logical architectures). A prominent ex-
ample for complex system architectures are modern
automobiles, which contain various electronic control
units, sensors, actuators and entertainment systems,
communicating with each other by an interaction of
software and hardware. Among others, the architec-
ture description language EAST-ADL can be used to
model such systems.

In the context of the Electronics Architecture and
Software Technology - Architecture Description Lan-
guage (EAST-ADL), literature lacks of concrete met-
rics for measuring the quality of modeled system ar-
chitectures. In this position paper, we present some
potential metrics to narrow this gap. If available, such
quality measuring metrics can then be used in review
processes like Architecture Tradeoff Analysis Method
(ATAM) and support the decision-making. There-
fore, approaches of quality analysis from the software
development are studied and afterwards possibilities
for the adjustment and application of these on EAST-
ADL models are pointed out. The aim is to form the
basis for empirical evaluations of the quality of sys-
tem architectures (functional/logical architecture) and
thus to lay the foundation for an automated quality
analysis of such models. In the context of this position
paper, explicitly no extensive evaluations and classi-
fications of applied metrics are made, but possible in-
terpretations for the analysis are pointed out. Further-
more, currently only metrics from software develop-
ment are considered and none from hardware design.

First, this paper explains the basic structure of the
modeling language EAST-ADL. After a clarification
of the quality concept in software development, met-
rics for the analysis of code and object-oriented soft-
ware designs are presented and transferred to EAST-
ADL models where possible. We conclude with a
summary and outlook on further steps that can follow
this work.

Etzel, C., Hofhammer, F. and Bauer, B.
Towards Metrics for Analyzing System Architectures Modeled with EAST-ADL.
DOI: 10.5220/0009165704410448
In Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2020), pages 441-448
ISBN: 978-989-758-400-8
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

441

E
nv

iro
nm

en
t

M
od

el

System Model

Vehicle Level

Analysis Level

Design Level

Implementation Level

Technical Feature Model

Functional Analysis Architecture

Functional Design Architecture Hardware Design Architecture

AUTOSAR
Application SW

AUTOSAR
Basic SW

AUTOSAR
HW

R
eq

ui
re

m
en

ts

V
ar

ia
bi

lit
y

T
im

in
g

..
.

Extensions

Figure 1: EAST-ADL abstraction levels with the containing
models and extensions (based on (Blom et al., 2016)).

2 EAST-ADL

The Electronics Architecture and Software Technol-
ogy - Architecture Description Language (EAST-
ADL) is developed and administered by the EAST-
ADL Association. The current version of the spec-
ification is 2.1.12 (EAST-ADL Association, 2013).
This architecture description language can be consid-
ered an extension of the UML and a specialization of
Systems Modelling Language (SysML) (Blom et al.,
2016).

EAST-ADL allows to comprehensively represent
and model the electronic systems of a vehicle, their
features and characteristics, the requirements and the
communication from the hardware to the software
level (Blom et al., 2016). The system is described in
several horizontal levels, which are extended by verti-
cal layers (Extensions) to model concerns on different
degrees of abstraction.

The horizontal structure consists of the System
Model (see Figure 1) and provides the means to
model system architectures. This is supplemented
by the Extensions with additional modeling possibili-
ties. These are of particular importance with regard
to ISO 26262, for example. ISO 26262 describes
the functional safety requirements for road vehicles
(ISO, 2018). Using the EAST-ADL extensions (e.g.
Requirements, Dependability), modeling means can
be used to ensure that safety requirements are docu-
mented and met by model (Blom et al., 2016). The
Environment Model describes the external influences
on the system. For example, mechanical and hy-
draulic systems in the vehicle, the environment in-
cluding road surface, adjacent vehicles and traffic
information systems can be included (Blom et al.,
2016).

In this paper, just the architectures on Analysis
and Design Level of the system model are further
investigated, since these contain functional architec-
tures. The System Model itself is divided vertically

into four levels, which abstract the system to different
degrees. At the Vehicle Level, the vehicle is described
from a feature perspective. The Analysis Level pro-
vides the FunctionalAnalysisArchitecture (FAA) that
defines systems from a functional perspective. The
architecture describes “which” functions are required
and which data they exchange. Figure 1 shows the
Design Level further subdivided into the Function-
alDesignArchitecture (FDA) and the HardwareDesig-
nArchitecture (HDA). On this level, the FDA models
“how” functions are realized from a more technical
viewpoint. However, no concrete software elements
are modeled. The hardware design architecture, on
the other hand, represents the structure of the sys-
tem in hardware so that different functions from the
FDA can then be mapped to the hardware entities of
the HDA. Finally, the Implementation Level models
the actual implementation of the software and hard-
ware. This level is not defined by the EAST-ADL,
but by AUTomotive Open System ARchitecture (AU-
TOSAR). This part is outside the definitions of the
EAST-ADL and not analyzed in this paper.

3 THE CONCEPT OF SOFTWARE
QUALITY

Ensuring high software quality is an important part of
software engineering and plays a major role in reduc-
ing the time and cost of developing a software project
(Liggesmeyer, 2009). Therefore, more and more at-
tention is placed on this and quality assurance tech-
niques have been developed that deliver comparable
results as far as possible, e.g. an absolute numerical
value as a result of the application of a quality metric.

When talking about software quality, reference is
often made to the ISO 9000 series of standards, which
generally provides standards for quality management,
and specifically to the ISO/IEC 9126-1:2001 (ISO
9126) standard, as the mention in literature shows:
(Liggesmeyer, 2009), (Sneed et al., 2010), (Abran,
2010), (Hoffmann, 2013), (Kan, 2003). ISO 9126
defines criteria for product quality in software devel-
opment and thus criteria for software quality. It has
been replaced by the standard ISO/IEC 25010:2011
(ISO 25010) in 2011 (ISO, 2011).

Since this is a standardized and globally recog-
nized definition of the quality of a software product,
the content of this standard is used in the following as
criteria for software quality.

Quality Characteristics According to ISO 25010.
According to ISO 25010, there are both quality char-
acteristics for software in use and for product quality.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

442

The first grouping refers to the interaction of users
with the software and to what degree it meets the spe-
cific requirements. The quality characteristics for the
software as a product defines quality independently
of the user, based on objective requirements (ISO,
2011). This also means that product quality can be
determined statically without user interaction. There-
fore, only this part of the ISO standard is considered
in this paper, since the quality of an architecture is to
be determined and not the quality of the final product
(usefulness, freedom from health risks ...).

The criteria for product quality can be divided into
eight characteristics according to ISO 25010: func-
tional suitability, reliability, performance efficiency,
usability, security, compatibility, maintainability and
portability. These are further divided into sub-criteria.

4 METRICS FOR EAST-ADL

In the previous section, ISO 25010 was introduced
as a foundation for the definition of software quality.
Now it is a matter of measuring this software quality.
For this purpose, many metrics have been published in
literature, which are supposed to summarize the still
abstract concept of quality in numbers. In this sec-
tion, metrics from code analysis and object-oriented
design analysis are presented to calculate key values,
which can be used to evaluate architectures according
to the quality criteria. The selection of metrics is not
intended to be exhaustive.

4.1 Selected Code Metrics

A large number of metrics refer to findings from the
source code of a finished software product, which
cannot provide direct findings in the case of the analy-
sis of EAST-ADL architecture models. Nevertheless,
for the sake of completeness and due to the great im-
portance in literature, two metrics have been selected.

4.1.1 Lines of Code

Lines of Code (LOC) is a software metric for the
source code size of a program. A simple connection is
established: the higher the number source code line,
the more extensive the software project. If the LOC
for individual software modules or classes are calcu-
lated, conclusions can be drawn with the LOC as a
basis, for example with regard to freedom from er-
rors, by evaluating a correlation between LOC and the
number of errors. Mapping the metric to quality char-
acteristics of the ISO 25010, high values may neg-
atively influence the functional suitability, reliability

and maintainability.
With regard to the freedom from errors, particu-

larly small or particularly large modules usually have
more errors per LOC. Since the number of external
interfaces of a module is usually relatively constant
regardless of its size, errors in the interfaces are of
greater impact for smaller modules or classes. Large
modules become more confusing and difficult for de-
velopers to control, which is why more errors creep
in. (Kan, 2003)

This metric is supposed to be easy to measure,
since you only have to count the lines of the source
code files. In fact, this metric is much more complex
and difficult to use, because the comparability of the
values is usually not given. It depends on many vari-
ables like the programming language, programming
style, coding guidelines for code formatting, to men-
tion a few (Hoffmann, 2013) (Kan, 2003). In terms of
quality, it is very difficult to draw comparable conclu-
sions.

Transfer to EAST-ADL. Although one could mea-
sure the LOC of EAXML files, which contain EAST-
ADL models in a standardized eXtensible Markup
Language (XML) format, this would not provide any
significant findings for the quality an architecture. On
the one hand, such files generally contain more than
the elements of the FAA, FDA and HDA, on the other
hand the goal of the analysis of system architectures
on the basis of their representative diagrams is missed.
Therefore, the application of this metric to EAST-
ADL does not provide any valuable insights.

4.1.2 Cyclomatic Complexity (McCabe)

In 1976, McCabe presented the Cyclomatic Complex-
ity (McCabe, 1976), which is based on a completely
different approach than LOC. The method does not
analyze the program code itself, but creates a control
flow graph from the code, from whose structure the
complexity of the code could be calculated.

The formula for calculating the cyclomatic com-
plexity is a slightly modified formula from graph the-
ory, which describes the maximum number of lin-
ear independent cycles in strongly connected graphs
(McCabe, 1976) (Liggesmeyer, 2009). The modifica-
tion refers only to the insertion of an additional edge
from the end node to the start node of the control flow
graph, otherwise control flow graphs usually cannot
be considered as strongly connected. The following
terms apply in the further course of this section:

Towards Metrics for Analyzing System Architectures Modeled with EAST-ADL

443

G = control flow chart,
Gi = single independent control flow graph,
E = set of edges,
N = set of nodes,
n = # independent control flow graphs

The cyclomatic complexity of a single strongly con-
nected control flow graph is indicated by the follow-
ing formula:

V (G) = |E|− |N|+2 (1)
This formula results from

V (G) = |E|− |N|+2n (2)
with n = 1. This generalized form calculates the cy-
clomatic complexity of several independent control
flow graphs (e.g. several methods of a class).

V (G) = |E|− |N|+2n =
n

∑
i=1

V (Gi) (3)

Thus, the calculation of the cyclomatic complexity of
a network of functions and methods is only as com-
plex as the calculation of the cyclomatic number for
the independent graphs of the individual functions
and methods.

During the calculation, it becomes clear that the
cyclomatic number does not change when sequential
instructions are inserted, since in this case the addi-
tional edge is compensated by the additional node.
The same applies when removing instructions from
sequential program parts (McCabe, 1976) (Hoffmann,
2013). Therefore, in principle, no causality can be es-
tablished between program size and cyclomatic num-
ber, even if a certain correlation often occurs (Kan,
2003). A similar correlation can also be observed be-
tween the number of errors in the program and the
cyclomatic complexity, whereby here too a causality
cannot be proven (Abran, 2010) (Kan, 2003).

Nevertheless, McCabe suggests a maximum cy-
clomatic complexity of 10 (McCabe, 1976). This
automatically limits the number of loops and deci-
sions because, unlike sequential statements, they in-
sert more new edges than nodes into a control flow
graph. This approach should keep the code readable
and thus enable a more efficient and error-free imple-
mentation. In addition, this metric simplifies the iden-
tification of code sections that have been implemented
in an excessively complex way (Kan, 2003). The
term “complex” is to be understood as “with many
loops and decisions” . Since the cyclomatic complex-
ity specifies the maximum number of test cases for a
complete branch coverage, this metric is also suitable
as the upper bound of the effort estimate for branch
coverage tests (Liggesmeyer, 2009). Thus, the cyclo-
matic complexity has a direct influence on the ISO
25010 maintainability quality criteria.

Transfer to EAST-ADL. The calculation of the cy-
clomatic complexity is not directly transferable to
EAST-ADL models, because there is no code with
control flows in the architectures modeled. Neverthe-
less, this metric is of interest in the context of EAST-
ADL models.

If one considers the representation of a FAA, FDA
or HDA as control flow graphs, the calculation rules
could be applied. However, this requires redefinitions,
because these models are not control flow graphs but
data flow graphs. In the considered EAST-ADL mod-
els, connections between entities define mostly di-
rected information flows, which justifies this adapta-
tion. Thus, the entities of the models are not states in
the program flow, but states in the data flow.

The problem occurs, however, that entities in
EAST-ADL can have several incoming and outgoing
edges, since information can enter or being sent at the
same time. This could be seen in a control flow graph
as an expression of parallelism or concurrency. How-
ever, the cyclomatic complexity only considers se-
quential program flows (de Paoli and Morasca, 1990).
In their paper, De Paoli and Morasca propose the use
of Petri nets instead of normal control flow graphs and
based on this an extension of the cyclomatic complex-
ity to parallel software. The parallelism is modeled
by several incoming and outgoing edges in and from
transitions.

The necessary intermediate step is a transfer of an
EAST-ADL model like the FAA to a Petri net. For
example using the functions of the model as places
of the Petri net, every place could have exactly one
incoming and one outgoing edge of exactly one tran-
sition. This transition can then have several incoming
or outgoing edges.

A continuation of this consideration as well as
its evaluation or other approaches for the transfer of
EAST-ADL models to Petri nets, go beyond the scope
of this paper. The application of the cyclomatic com-
plexity to EAST-ADL architecture models needs fur-
ther research.

4.2 Selected Object-oriented Metrics

In addition to the code metrics discussed so far, which
mainly refer to code implemented with imperative
programming paradigms, there are also many metrics
published referring to object-oriented code or object-
oriented models.

4.2.1 Chidamber and Kemerer

The metrics by Chidamber and Kemerer (Chidamber
and Kemerer, 1994) have often been quoted in litera-
ture (Sneed et al., 2010). Most of these metrics can

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

444

be applied directly to models such as UML class or
sequence diagrams, since they do not require a refer-
ence to the code for the calculation.

In this paper, we focus on the metrics Coupling
between Object Classes (CBO) and Response for a
Class (RFC). The other metrics Weighted Methods
per Class (WMC), Lack of Cohesion in Methods
(LCOM), Depth of Inheritance Tree (DIT) and Num-
ber of Children (NOC) are not explained, since we see
no portability to EAST-ADL models and omit them
for reasons of space. See the original publication for
further information.

Coupling between Object Classes (CBO). The
metric CBO is supposed to be a measure for the cou-
pling between classes. In (Chidamber and Kemerer,
1994) it is defined as the number of associations of
the considered class to other classes, where in (Sneed
et al., 2010) represents another interpretation of the
metric using the formula

CBO = 1− # classes with associations
associations

(4)

In this way, they generalize the measure from one
class to an entire system.

Chidamber and Kemerer present three possible in-
terpretations for this metric. First, they write that too
high coupling speaks against a modular design and
limits the reusability of the class in question due to
its many dependencies. Subsequently, they conclude
from high coupling to high maintenance effort or poor
maintainability, since the high coupling increases the
sensitivity for changes in other parts of the software
system. Finally, they state that an increased coupling
also entails more testing effort. Therefore, the cou-
pling should be kept as low as suitable in order to im-
prove the ISO 25010 characteristics reusability, main-
tainability and testability.

Response for a Class (RFC). The RFC measure in-
dicates how many methods can be called in response
to receiving a message from an object. It is defined
by the following formulas:

RFC = |RS| (5)

RS = {M}∪all i {Ri} (6)

Where RS is the so-called Response Set, which is
defined as the methods M of the class to which the
called object belongs, and the methods Ri, which can
be called by the methods of the class. Thus, this set
contains either directly or also transitively all those
methods which can be called when receiving a mes-
sage of the object, no matter whether as direct method

call, when creating the object by the constructor or in
other ways.

It should be noted, however, that the calculation of
the metric is not recursively carried out for reasons of
meaningfulness and practicability and therefore only
the methods called directly by methods of the class in
question are actually included in the set of Ri (Chi-
damber and Kemerer, 1994).

An alternative definition of the metric is provided
by (Sneed et al., 2010):

RFC = 1− # dynamic calls+1
potential target methods

(7)

The difference to the original definition by Chidamber
and Kemerer is that not the number of potentially
callable methods is measured, but a rational measure
for the polymorphism is given. In this context, a dy-
namic call is one that can have several different target
methods, for example, if the same method signature
occurs with different implementations of the method
body in connection with inheritance at several levels
of the inheritance hierarchy. For this reason, the defi-
nition uses a subset and does not include all methods
of a class and messages to it as in the original defini-
tion.

The idea of this RFC definition is that an increased
polymorphism increases the complexity of the call,
since it is less predictable which actual implemen-
tation of the method will be called. A similar re-
lationship is established with the original definition.
Chidamber and Kemerer describe that an increased
value for RFC requires a better code understanding
and makes testing and debugging more difficult (Chi-
damber and Kemerer, 1994). They therefore conclude
that increasing the RFC value also increases the com-
plexity of the class. Therefore, one can conclude that
the value of this metric should be kept low. However,
it does not make sense to keep the number of methods
unnecessarily low, but an appropriate mean should be
sought.

Transfer to EAST-ADL. As initial stated, some of
measures can be excluded from an application to the
FAA, FDA and HDA. This is because the considered
parts of the EAST-ADL system models have no cor-
respondences for methods and inheritance. Thus, the
metrics WMC and LCOM are ruled out due to a lack
of methods, since they are based only on instance
variables, complexity or number of the methods. The
same applies to the metrics DIT and NOC, which re-
quire an inheritance hierarchy for the calculation.

The metric CBO can be transferred to EAST-ADL
models. All entities of the considered models are
used as correspondences of classes. The connections

Towards Metrics for Analyzing System Architectures Modeled with EAST-ADL

445

between the input and output interfaces of the enti-
ties are regarded here as connections. Since the mea-
sure of coupling aims to measure the information flow
between individual entities or objects, this metric is
meaningful on the levels of FAA and FDA, since the
connections model the data flow. If, on the other hand,
the HDA is considered, the meaningfulness of this
metric can decrease, because in addition to data flow
paths (bus systems), electrical power supply lines can
also be modeled. From a functional data flow per-
spective, connections representing power lines should
not have an influence on the coupling and therefore be
excluded.

The RFC metric requires closer consideration,
since it depends on knowledge of the methods of
a class to calculate this metric. According to Chi-
damber and Kemerer, this metric is generally a mea-
sure for the potential communication between classes
(Chidamber and Kemerer, 1994). Based on the idea
of communication potential, a definition for the cal-
culation of this metric can be derived for EAST-ADL
models. The RS is not understood as a set of poten-
tially callable methods inside and outside the class,
but is redefined as the set of potentially usable mes-
sage channels for sending messages as a reaction to
incoming information. This corresponds to the idea
that entities in the FAA, FDA and HDA react to some-
thing. For example, in the case of sensors in the HDA
model, this can be environmental influences detected
by the sensors. Or in the case of an AnalysisFunction
of the FAA model, this can be data received through
incoming connections. As a response, any entity with
outgoing connections can then output processed data.
Depending on the number of outgoing connections,
the potential for outgoing data flows is different, so
this modified metric provides an indication of this po-
tential. In this definition, however, the number of out-
going messages per connection is irrelevant. This is
equivalent to the original definition of Chidamber and
Kemerer, where only the set of potentially callable
methods plays a role and not the number of method
calls.

Analogous to the original metrics of Chidamber
and Kemerer it is advisable to keep the values of the
CBO and RFC low. This makes individual functions
or components more easily interchangeable, which
makes the system easier to adapt to special deploy-
ment scenarios during development or, in the case of
defective hardware components during run-time, eas-
ier to maintain.

4.2.2 MOOD

The set of Metrics for Object-Oriented Design
(MOOD) contains metrics to determine the quality of

an object-oriented software design. It was published
in 1994 with a number of eight metrics (Abreu and
Carapuça, 1994).

The eight metrics have in common that their val-
ues are all in [0,1] ⊂ R and therefore can be given
as degrees from 0% to 100%. 0% stands for total
absence and 100% for total presence of a property
measured by the corresponding metric. Furthermore,
the metrics do not refer to a single class (as the Chi-
damber and Kemerer metrics), but to the whole sys-
tem. Since we did not transfer all metrics for the use
with EAST-ADL models, we ommit the description
of the Method Hiding Factor (MHF), Attribute Hiding
Factor (AHF), Method Inheritance Factor (MIF), At-
tribute Inheritance Factor (AIF), Polymorphism Fac-
tor (PF) and Reuse Factor (RF).

Coupling Factor (COF) and Clustering Factor
(CLF). The Coupling Factor (COF) indicates how
strong the coupling of the classes of the system is.
The formula for this metric is

COF =
all refs from classes to other classes

n2−n
(8)

where n is the number of classes in the system (Abreu
and Carapuça, 1994). The term references must be
understood here very comprehensively: according to
the authors, for example, method calls can be summa-
rized here just like global or local variables with ref-
erence to another class (Abreu and Carapuça, 1994).

As already stated for the metric CBO in Sec-
tion 4.2.1, the coupling should be kept as low as suit-
able. Abreu and Carapuça also confirm this objective
by writing that classes should communicate with each
other as little as possible and if it is not avoidable, ex-
change as little data as possible. In addition, a high
coupling would increase the complexity and would
reduce the encapsulation, reusability, comprehensibil-
ity and maintainability of the code. This would either
directly or indirectly counteract the goals of the ISO
25010 quality model (see Section 3).

The Clustering Factor (CLF) metric is similar, be-
cause it is a measure for the coupling in a system,
albeit on a different level. A cluster of classes is to
be understood as a coherent subgraph of a graph that
represents the system, with the classes representing
the nodes and any associations, references, or inheri-
tances representing the edges between the nodes. This
graph can consist of disjunctive and unconnected sub-
graphs, each such subgraph being a cluster. Thus, the
CLF is defined by

CLF =
clusters

classes in the system
(9)

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

446

It can be concluded from the definition that a higher
CLF is desirable, since smaller clusters can be an indi-
cation of good function and data encapsulation in the
individual clusters and better reusability due to less
dependence on other classes.

Both COF and CLF are difficult to calculate from
a component model or class diagram alone, since they
are not only based on associations and inheritances,
but also explicitly on references such as method calls
in the code. One could limit the metrics to the cal-
culation by means of information readable from class
diagrams, but this falsifies the expressiveness of the
metrics and should therefore not be understood as a
fully-fledged alternative, but at most be used as a sup-
plement to other, more expressive measures.

Transfer to EAST-ADL. The lack of correspon-
dences for methods or inheritance in EAST-ADL of-
ten prevents the direct transfer of the MOOD metrics.
Attributes can be provided to entities in the EAST-
ADL architecture models, e.g. for electrical compo-
nents of the HDA, but there exists no equivalent for
the visibility of attributes. However, in cases where
attributes are used to calculate metrics, the visibil-
ity or inheritance of the attributes plays a role. For
these reasons the metrics MHF, AHF, MIF, AIF and
PF are excluded for further consideration. In addition,
the number of library classes is used for the calcula-
tion of RF. Although there are packages defined in
EAST-ADL, they are intended to structure the entire
EAST-ADL model in a human understandable way
and should therefore not be understood as packaging
in the sense of software libraries.

In contrast, the CLF can be transferred without
problems. As in the original definition, the dis-
joint, coherent subgraphs are understood as clusters.
Classes correspond in this interpretation to the ele-
ments of the considered architecture model. Thus,
the value of this metric can be calculated as the quo-
tient of the number of clusters and the number of el-
ements in the model. As in the version intended for
software architectures, it can also be concluded here,
that a larger value is desirable for the CLF in order to
keep the dependency on other elements.

Finally, the coupling is measured by the COF,
which is originally defined by the references between
classes and the number of classes. The entities con-
tained in an EAST-ADL model can be used as classes
again. With the references, however, a new defini-
tion of this term is necessary. According to the orig-
inal definition, references can be both associations
between elements and method calls on other objects
(Abreu and Carapuça, 1994). Since the aspect of
methods is missing in the architecture models of the

EAST-ADL it cannot be considered and is omitted for
the calculation. Analogous to the CBO metric (see
4.2.1) , the power lines on the HDA should be ex-
cluded from the set of associations.

5 RELATED WORK

There are many publications regarding quality metrics
for software and system engineering. An overview of
metrics can be found for example in (Mohagheghi and
Dehlen, 2009).

MATLAB Simulink models are commonly used in
the automotive domain to solve control system engi-
neering tasks. EAST-ADL provides the feature to link
such models to have a behavioral description of func-
tions via the behavior extension. Scheible (Scheible,
2012) presents an approach for automatic quality rat-
ing of MATLAB Simulink models. The metrics in
this approach are created for Simulink models and
cannot simply be applied to the FAA, FDA or HDA
of EAST-ADL models.

SysML is closely related to EAST-ADL. Frieden-
thal et al. describe in their book “A Practical Guide to
SysML” (Friedenthal et al., 2014), that model-based
metrics are a good tool to assess on the quality of a
design. They do not define concrete metrics, but give
hints, which parameters of a SysML model are of in-
terest for different kinds of metrics.

Architecture evaluations represent a comprehen-
sive approach to the evaluation and analysis of
specific or general quality criteria. Examples are
Architecture-Level Modifiability Analysis (ALMA)
(Bengtsson et al., 2004), Scenario-based Architec-
ture Analysis Method (SAAM) (Kazman et al., 1994)
and Architecture Trade-off Analysis Method (ATAM)
(Kazman et al., 1998). These evaluations go beyond a
pure metric assessment. However, metrics can play a
supporting role in the various evaluation steps of the
processes.

6 CONCLUSIONS AND FUTURE
WORK

In this position paper, we presented metrics to support
system designer in development process of EAST-
ADL system architectures. Therefore, we gave a
short introduction of the quality characteristics for
system and software development defined by ISO
25010. In order to be able to conclude on the qual-
ity of EAST-ADL architectures we examined selected
metrics from code analysis and object-oriented design

Towards Metrics for Analyzing System Architectures Modeled with EAST-ADL

447

and proposed the application of these on EAST-ADL
architecture models where possible.

The results of this paper do not provide a classi-
fication of which values can be regarded as “good”
or “bad” for the metrics. For this purpose, a detailed
evaluation of the metrics on models of already known
quality is necessary. Then, using these metrics as key
values to support other analysis like the partition anal-
ysis of EAST-ADL models (Etzel and Bauer, 2019)
would be an application.

Section 4 exploits only a very small selection
of available metrics for the quality determination of
software, system and hardware design. Many more
measures can be examined for their transferability to
EAST-ADL models (see Section 5). Transferring the
presented metrics to the more widespread SysML was
not considered in this paper but may be of particular
interest, since EAST-ADL is a specialization of this
modeling language. As mentioned, a further analysis
of the cyclomatic complexity in the context of EAST-
ADL models may be valuable (see Section 4.1.2).

ACKNOWLEDGEMENTS

This work was partially funded within the project
ARAMiS II by the German Federal Ministry for Edu-
cation and Research with the funding ID 01IS16025.
The responsibility for the content remains with the au-
thors.

REFERENCES

Abran, A. (2010). Software Metrics and Software Metrol-
ogy. John Wiley & Sons, Inc., Hoboken, New Jersey.

Abreu, F. B. and Carapuça, R. (1994). Object-oriented
software engineering: Measuring and controlling the
development process. In Proc. Int’l Conf. Software
Quality (QSIC).

Bengtsson, P., Lassing, N., Bosch, J., and van Vliet,
H. (2004). Architecture-level modifiability analysis
(alma). Journal of Systems and Software, 69(1):129 –
147.

Blom, H., Chen, D., Kaijser, H., Lönn, H., Papadopoulos,
Y., Reiser, M., Kolagari, R., and Tucci-Piergiovanni,
S. (2016). EAST-ADL: An architecture description
language for automotive software-intensive systems
in the light of recent use and research. International
Journal of System Dynamics Applications, 5:1–20.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Transactions
on Software Engineering, 20:476–493.

de Paoli, F. and Morasca, S. (1990). Extending software
complexity metrics to concurrent programs. In Pro-
ceedings., Fourteenth Annual International Computer

Software and Applications Conference, pages 414–
419.

EAST-ADL Association (2013). EAST-ADL Domain
Model Specification. Version V2.1.12.

Etzel, C. and Bauer, B. (2019). Extending EAST-ADL
for modeling and analysis of partitions on functional
architectures. In Proceedings of the 7th Interna-
tional Conference on Model-Driven Engineering and
Software Development - Volume 1: MODELSWARD,,
pages 169–178. INSTICC, SciTePress.

Friedenthal, S., Moore, A., and Steiner, R. (2014). A Practi-
cal Guide to SysML, Third Edition: The Systems Mod-
eling Language. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 3rd edition.

Hoffmann, D. W. (2013). Software-Qualität. Springer
Vieweg, Springer-Verlag Berlin Heidelberg, 2 edition.

ISO (2011). ISO/IEC 25010:2011. Standard, International
Organization for Standardization.

ISO (2018). ISO 26262-1:2018. Standard, International
Organization for Standardization.

Kan, S. H. (2003). Metrics and models in software quality
engineering. Pearson Education, Inc., 2 edition.

Kazman, R., Bass, L., Webb, M., and Abowd, G. (1994).
Saam: A method for analyzing the properties of soft-
ware architectures. In Proceedings of the 16th Inter-
national Conference on Software Engineering, ICSE
’94, pages 81–90, Los Alamitos, CA, USA. IEEE
Computer Society Press.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lip-
son, H., and Carriere, J. (1998). The architecture
tradeoff analysis method. In Engineering of Complex
Computer Systems, 1998. ICECCS ’98. Proceedings.
Fourth IEEE International Conference on, pages 68–
78.

Liggesmeyer, P. (2009). Software-Qualität – Testen,
Analysieren und Verifizieren von Software. Spektrum
Akademischer Verlag Heidelberg, 2 edition.

McCabe, T. J. (1976). A complexity measure. IEEE Trans-
actions on Software Engineering, SE-2(4):308–320.

Mohagheghi, P. and Dehlen, V. (2009). Existing model met-
rics and relations to model quality. In Proceedings
of the Seventh ICSE Conference on Software Qual-
ity, WOSQ’09, pages 39–45, Washington, DC, USA.
IEEE Computer Society.

Scheible, J. (2012). Automated quality rating on the ex-
ample of matlab simulink models in the automotive
domain. Dissertation, Universität Tübingen.

Sneed, H. M., Seidl, R., and Baumgartner, M. (2010). Soft-
ware in Zahlen - Die Vermessung von Applikationen.
Carl Hanser Verlag München.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

448

