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ABSTRACT

We derive an exact expression for the grand potential of the Hubbard model
in d = oo dimensions. By simplifying the energy transfer between up and
down spins we obtain a comprehensive mean-field theory for this model. It
is (i) thermodynamically consistent in the entire range of input parameters,
(ii) conserving and, (iii) exact in several non-trivial limits, e. g. in the free
(U — 0), atomic (¢ — 0) and Heisenberg (U > t, n = 1) limit.

1 Introduction

In condensed matter physics the Hubbard model® represents the generic lattice model
for strongly correlated fermions with a local interaction. Most recently the questions
arising in the context of high-T. superconductivity have further stimulated intensive
investigations of this model. However, in spite of undisputable progress a secured
understanding of the model is still lacking. In statistical mechanics a first rough
description of the properties of a model is often obtained within mean field theory
(MFT). For example, the Weiss molecular field theory is a MFT for the Ising model,
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which becomes exact in the limit of high dimensions (d — 00).? This MFT contains
no unphysical singularities and is applicable for all values of the coupling, temper-
ature and external field. It is also diagrammatically controlled.? The construction
of a MFT for fermionic models with on-site interaction is made complicated by the
additional energy transfer between particles. There do exist well-known mean-field-
type approximation schemes (e. g. Hartree-Fock, RPA, saddle-point evaluations of
path-integrals, decoupling of equations of motion, etc.). However, these approxima-
tions are not MFTs in the statistical mechanical sense, since they are not able to
give a comprehensive description of the model (e. g. the phase diagram, thermody-
namics, etc.) in the entire range of input parameters. Clearly, a MFT based on the
exact solution of the Hubbard model in the limit d = oo would be desirable. For
fermionic lattice models this limit has been introduced only recently.>* In d = oo
substantial simplifications occur in the spatial properties (reduction to an effective
single site problem).3® However, the dynamics of systems with an on-site interac-
tion is not affected.® Hence so far only a simplified Hubbard model (“Falicov-Kimball
model”), where one of the two spin components is static,®~® has been solved exactly
in d = 00,271

In this paper a local expression for the exact grand potential of the Hubbard
model in d = oo will be derived. From this we construct an approximate theory
for the Hubbard model with the comprehensive properties of a MFT in statistical

mechanics.

2 The Hubbard model in high dimensions

The Hamiltonian

H=3 t,88,+ U iy — ) pottio 5 (1)
(ij)v” i i,o

where y, = p+0h is the chemical potential of o-spins with h as the external magnetic
field, represents both the Hubbard model (t; = t;, = —t) and its simplified version

(e. g t; = —t,t; = 0). Here &, ¢;, and #;, = & &, are the usual fermion operators.
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For fermionic models to remain non-trivial in the limit d = co the hopping amplitude

has to be scaled as
t— f/\/ig , (2)

with 7 = const.® This square-root scaling law follows from the fact that the free
energy, and all measurable quantities, are determined by even powers of the hopping
amplitude, the lowest power being 2 for single-particle quantities. (The same scaling
applies in the case of the classical spin glass problem where the average (JS) of the
spin-spin coupling is only non-zero for even n.1?) By contrast, the Hubbard inter-
action, being purely local, is completely independent of the surrounding of a given
lattice site. Hence the dimensionality of a lattice does not enter at all. Therefore the
Hubbard interaction U does not have to be scaled in the limit d — oo. This property
distinguishes the Hubbard interaction from all other interactions. In particular, non-
local interactions of the type V{§ "'ﬁi,ﬁj‘,: have to be rescaled as in classical models,
e.g. the Ising model, namely V{{"’ — VZ{" /2d for nearest neighbor interactions.
Hence they reduce to the corresponding Hartree approximation.® This implies that
of all interactions it is only the Hubbard interaction that remains dynamical in the
limit d — oo. Note that the scaling (2) does not imply particles to be localized in
d = oo. Particles still move, but they hop with a reduced amplitude to very many

possible sites so that the overall kinetic energy Eiin remains finite

Bun= =3 ¥ [ duluy(e)  IF, )

27 (o)~

where L is the number of lattice sites. Here G, j;(w) is the propagator, which ob-
viously is of order 1/v/d small, since t ~ 1/v/d and the sum over nearest neighbors
gives a factor ~ d. We see that, although we calculate the kinetic energy strictly in

d = o0, we have to include contributions of order 1/ Vd!

As a consequence of the scaling (2) the proper self-energy X,ij(w) becomes site-
diagonal,®® i.e. its Fourier transform becomes a k-independent quantity ,(w). This
result may be understood as follows. Let us consider the motion of a particle on a
lattice. The interaction between particles will affect the motion. This change is de-

scribed by a complex, spatially dependent, dynamical field — the self-energy ,;5(w).
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In the case where a lattice site has a very large number of nearest neighbors the spatial
dependence of this field becomes increasingly unimportant and vanishes completely
for d — o0o. So the field becomes a mean field in position space, while retaining
its full dynamics. (In the case of a broken symmefry in position space this picture
has to be slightly modified , but still holds ). There is a direct analogy with the
problem of non-interacting electrons in a random medium: in the limit d — oo the
self-energy becomes a purely local, i.e. k-independent, quantity, sometimes called
”coherent potential”.!® In this limit the coherent potential approximation (CPA) be-
comes exact.! CPA is a single-site theory where a particle moves through an effective
medium described by a self-energy ¥,{w). It should be noted, however, that the
coherent potential in the Hubbard model is more complicated due to the interaction

between particles.

We now want to construct the exact grand potential Q of the Hubbard model in
d = oo. Within the general approach of Baym!® ) has the form (8 =T"1,kg =1)

AO{S} = 8{G} — tr(3G) —trln ((G°)* - T) (4)

where

1

Gl = i maw

(5)

is the free propagator and G is the full Green function which is determined by

6Q
= =0. 6
6% 0 (6)
The quantity ® is a functional of G and is obtained from a self-consistent perturbation

expansion in G for the self-energy ¥ ,' the latter being defined by

5@
— =X. 7
3G (7)
Hence § is a functional of ¥ only. To define @ unambiguously, i.e. to reproduce the

grand potential for the non-interacting case, one has to impose a boundary condi-
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tion on (7), namely ® = 0 for £ = 0 . The construction of 2{X} amounts to the

construction of the functional
AME,G} = ®{G} — tr(ZG) . (8)

For the Hubbard model in d = oo the self-energy ¥ was found to be purely local.
Consequently the A-functional is fully determined by the local part of ¥ and the local
part of the full Green function G . So the problem reduces to an effective single-site
theory. In particular, this means that e P can essentially be constructed from a
single-site Hubbard model. Technically this is achieved by making use of a functional
integral representation for the partition function of the Hubbard model in the atomic
limit (¢ = 0), where the atomic U = 0 propagator, G? ,,(2) = (2 + #s)™" , is replaced

by an effective propagator G given by!6:11

G=(G'+%)". (9)

To fulfil (7) with the boundary condition A = 0 for £ = 0 we must subtract a term
trin G from the corresponding local grand potential. Writing the trace explicitly we
obtain the exact grand potential for the Hubbard mode! in d = oo

G,5)} = ~LTh [ [vDw exp{ S 5 e ()G (in) o ()

n=—o0 o

U /0” drd);(T)d)T(r)dJI(T)dJl(T)H ~ITS Y InG,(iw)

n=-=00 ¢

TS S Infion + o — S (iton) — (k)] , (10)

n=-00 ko

where w, = (2n + 1)7T are Matsubara fermion frequencies, and ,,1? are Grass-
mann variables. Note that the potential 2 can be viewed as a functional of X only,
as described above, or equivalently as a functional of both ¥ and G with the supple-
mentary condition (7). In (10) we used the latter approach. The condition (7) can

then be expressed as

80
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It should be pointed out that, in contrast to the approach of Baym,!® we did not
attempt to calculate #{G} , but rather A{X,G}. Indeed, ®{G} is not the suitable
quantity to determine because of the dependence of the effective propagator G, (9),
on both G and . At least for the problem under investigation, where only the local
parts of G and ¥ enter, it is A, not ® , which can be found in closed form. Of course,

® can be obtained from A by the Legendre transformation (8).

The expression for {2 in (10) may be interpreted as the thermodynamic potential
of L separate lattice sites where electrons can interact (first two terms on the r. h. s.),
which are immersed in a fermionic bath made of non-interacting, itinerant electrons
moving in a homogeneous, complex field £ (last term). There is no direct coupling
between the electrons on different lattice sites; rather, they communicate only with
the effective medium through their propagator G. Generally ¥,(z) are arbitrary
complex functions with the Herglotz property (i.e. £,(2*) = X,(z)* and ImZ,(z) x
+Imz). Only when the system of the interacting electrons is in equilibrium with the
surrounding bath, i.e. when (6) and (11) are fulfilled, do the complex functions £, (z)
and G,(2) become the self-energy and and the diagonal element of the Green function
of the Hubbard model in d = oo , respectively.— A different construction of the local
equation for the self-energy of the Hubbard model in d = oo was recently presented by
Georges and Kotliar,!” who mapped the lattice model onto a single-impurity Anderson

model supplemented by a self-consistency condition. Their equation for ¥ corresponds
to (11).

We can rewrite the formal Grassmann functional integral using the Hubbard-

Stratonovich transformation

exp{ ~U [ dri(r i irnin)} =

J Dape exp{ 3 [ e[+ e

+ V2O {n(r)[$5(r)r(7) — ¥} ()u(r)] + i (r) 5 (r)hr(7) + ¢I(T)¢1(T)}] } (12)
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Eq. (12) is equivalent to the standard operator identity

[(Rag + 3y)? — (Rig — 7qy)?) (13)

N

nini =

for the Hubbard interaction, where the two terms on the r.h.s. correspond to charge
and spin fluctuations, respectively. In {12) these fluctuations are described by real
fluctuating fields £(7) and 5(7), respectively. Note that the square of the integrand
on the Lh.s. of (12) is not zero because the fields ¢,(r) are distributions! The grand

potential (10) can then be represented as

G, 3} =

g n==—0

1T 3 [ / dEp, (E)lnfiwn + fto — So(iwn) — E] +10(1 + Gy (iwn)So(iwn))

oo

—~ LTIn [/DnDéexp{—% > (& +nd)

v=-—00

9> lln(1+0\/gﬁéa+i\/§fga)]n,n}], (14)

o n=—0o0

where (é)myn = 6171—"7 (ﬁ)m,n = Nm—n, (Gu)m,n = 6m,nga(iwn) . EXPICSSiOH (14) deter-
mines the ezact grand potential of the d = oo Hubbard model.

Although the self-energies X, (iw,) are local, different frequencies are non-trivially
coupled through the infinitely many fields n and £. In other words, although the
interaction between electrons on different lattice sites has been reduced to an inter-
action of electrons with a mean field, the dynamics of the latter interaction is still
non-trivial. Hence the many-body nature of the Hubbard model is seen to survive
even in d = 0o. Thereby the explicit evaluation of the exact self-energy from (14) is

made impossible.

In the following we want to find the minimal, controllable approximation to (14)

that leads to solvable equations. As a first step one might try to solve (14) in the
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static limit (n, = £ = 0 for v # 0), although there is no physical justification for
that. It seems that even this restricted problem cannot be solved explicitly, since the
coupling between frequencies is still present. Indeed, the evaluation of 2 appears to
be possible only if the coupling is removed, e.g. by decoupling one species of particles
from the surrounding medium. This is achieved by restricting the dynamics of the
Hubbard model (1) to that of the simplified Hubbard model.

3 The simplified Hubbard model

In the simplified Hubbard model®~® one of the spin species, say T, is mobile while
the other one () is fixed, i.e. t; = —t,¢; = 0. In the limit d — oo it can be solved
exactly by various techniques.®~!! In this case one has G (iw,) = (fw, + p;)~! and the
static approximation becomes exact. This fact can be understood both in the time
and in the frequency representation. The time dependent atomic propagator has the

Markov property, i. e.
Gi(r =G (" —7") =G(r - ') (15)

for any 0 < 7" < 7”7 < 7 £ B. This is equivalent to a separation of the dynamics
of the two spin populations, as can be demonstrated in a diagrammatic perturba-
tion expansion in frequency space (see Fig.1). There is no energy transfer at vertices
between up and down spins due to the é-function dispersion of fixed electrons . Effec-
tively this means that closed loops factorize and thus contribute only globally. This
decoupling of the dynamics of opposite spins was first utilized in the solution of the

deep impurity X-ray scattering problem.!®

Let us denote the grand potential of the simplified model, where o-spins are mobile
and (—o)-spins are fixed, by (2, . Say the {-spins were mobile. Introducing n;, the
density of static electrons, into the grand potential ; and performing the analytic

continuation to real frequencies we finally get!!

(T, pry 1, m; {G1},{21)) =
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%/dwf;r(w){ / dEpo(E)Imin(w + gt — Tt(w) — E +i0T)

I (14 Gr()B1(w) | + 10 =m0l = n0) ] + (e = ), (1)

where fr(w) is the Fermi function and

17 _ UGHw)
e = ;_!0 dw fr(w) Imln(l T LI M) (17)

is an energy shift of the atomic level of static electrons due to the closed loops of mobile
electrons. Note that only G;(w) and ¥t(w), describing the mobile electrons, remain
frequency-dependent variational parameters in (16), while the down spins enter only
through one frequency independent (global) parameter, namely n|. According to (6)
and (11) Q; is stationary with respect to variations of Gy(w), L4(w) for arbitrary w

and n;.

Fig.1. Diagrammatic demonstration of the simplifications arising from a restriction of the
dynamics of the electrons. The second order contribution to the local self-energy
Z;ii(w) in d = oo is shown: (a) Hubbard model, full lines correspond to G;, G|;
(b) simplified model with |-spins static; full line: Gy, broken line: g‘ft, i. e. G| with
t; =0.
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4 Mean field expression for the grand potential
of the Hubbard model

The exact grand potential for the simplified Hubbard model in d = oo, 2, , will now
be used to construct an approximate grand potential Qpr for the Hubbard model.
This is achieved as follows. Let the density of o-particles be given by n,. We first
restrict the dynamics of the Hubbard model, where both spin species are dynamical,
to that of two simplified models where only one spin species is dynamical (1 and |,
respectively) and the other is static. There is then no energy exchange between the
two spin populations. In the second step the missing exchange is introduced on a

mean field level by parametrizing it in terms of a few mean-field energy parameters.

To construct a grand potential s for the Hubard model out of the potentials
Q, , we note that Qar should (i) depend linearly on Q, and Q2_,, (ii) be symmetric
in the spin index and, (iii) reproduce the atomic limit correctly. For the theory to
be self-consistent we require that the particle densities ny and n| determined from
Q4,9 and QpF be the same, i. e. n, = -0, /0, with Q; = Qy, Q), Qumr, since all
these potentials describe syst‘ems with the same particle densities n,. The simplest

possible choice for QpF is
Qmr =N+ Q) — Qo (18)

where Qg = —T In(1+4¢€#1/T +e#1/T 4 k144, -U)/T) is the grand potential of the atomic
problem. The above self-consistency conditions require the chemical potentials g, to
be adjustable. This may be taken into account by introducing two pairs of energies
EL EI where EL describes the effective mean field energy of fixed o-spins, and E!
parametrizes the mean energy transfer between mobile and fixed spins. E! shifts
the center of the band of mobile electrons relative to the free case. This dynamical
simplification is illustrated in Fig.2.
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The chemical potentials entering 1, and Q,; must then be changed as

Hlat = Hr — Ef’, in Qat.
pr = § #ra = g Ef, in (19)

pi=p—EF +Ef, in Q.

In the case of y; all spins on the r.h.s. of (19) must be reversed.

Ay

I Lgl L

ﬁ — B\, , 5 Efl . A
Lgl T

IE‘ el W el

f

Fig.2. Restriction of the dynamical exchange between opposite spins is illustrated in terms
of the densities of state of T and | spins.

The mean field energies EL/ have been introduced in such a way that they enter
as variational parameters in Qpp and are thus determined from 8Qyr/OELT =
0; this condition is identical with our self-consistency condition n, = —9Q,/du,.

Eliminating EL from Qpr we arrive at an explicit expression for Qpsp:
QMF(Ta Moy Mo, Ega {20}$ {GU}) =

%E /dwa(w)[ /dEp,(E) Im In(w + po — EI = T,(w) — E +i0™)
+ Im In(1+ G,(w)E,(w))] + T In(l —n,)

+ Tln [1 + 3 koezpl(e-o — ED)/T) + k15iexpl(er + €, — ETI — E{ -U)/T]| , (20)
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where £k, = n, /(1 — n,) and

UG, (w)

T 1+ G, (w)Z, (w) @)

1 oo
== / dw fr(w)Imn [1

is a shift of the atomic (—o)-energy level as in (17). In Qpp the functions X,{(w), G, (w)
and the parameters E!,n, appear as conjugate variables and are now determined by
8OMrF/6Gs = 6Qmrp/6E, = 0 and ONyr/On, = Ouyr/BEL = 0, respectively. The

corresponding equations are:

Golw) = _Z oo E) T = ;,(w) —E+0+ (222)
O Team A (220)
n = —}_Zdwa(w)fmGam (220)
=1 SRl Z BTG L epl(e — BL, — )T (224)

Q

where
Q = 1+ Yy expl(eo — BI)/T]+ ryxy expl(es + ¢, — Ef — EL — U)/T]. (29)

Setting pt(E) = poo(E) and p|(E) = §(E), this set of equations coincides with the
exact solution of the simplified model in d = co. The grand potential (20) con-
structed above defines a thermodynamically consistent, conserving approximation for
the Hubbard model in the entire range of input parameters ¢,U,T and p, (or n,).
The solution (22) is particle-hole symmetric. The self-energies ¥, (w) are determined
from CPA-like algebraic equations and possess the necessary Herglotz property assur-
ing uniqueness of the solution for fixed n, and E!. The self-energy does not, however,
fulfil the Luttinger theorem,'? i. e. ImX,(0) # 0 unless there is a band gap. This
is a consequence of the simplified energy transfer between up and down spins taken

over from the simplified Hubbard model where ImX,(0) # 0 is an exact property.
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Luttinger’s theorem does not hold when there is a degeneracy in momentum space
at T = 0. Such a degeneracy is present in the case of fixed spins. Note, however,
that the subtle question of possible degeneracy in the exact solution for the Hubbard
model has not been answered yet in generality. OQur mean field theory is therefore
applicable either to the calculation of spectral properties away from the Fermi-level
discontinuity or to global, e. g. thermodynamic, features of the model. In this respect

it is complementary to Fermi liquid theory and the approach of Ref. 17.

In analogy to , the grand potential Qpsr can also be obtained diagrammatically.
Let Q) = U™ fdv D(T")DE") be a diagrammatic contribution to Qsr with n vertices,
where D(™ is the part of the diagram due to o-spins and [dv is the integral over
all intermediate states. In our MFT £, is evaluated by use of the spin-symmetric
replacement (cf. Fig.1)

/dV Dy(p1)Dy(p1) /d'/[ D%, (#-0,0)Ds(to,0) = DY (t1,06) DY (B1,at)| - (24)

Here the superscript at means that the propagators are made static ( atomic limit,

= 0). The construction of QyF is conceptually similar to that of the Hubbard-
III solution;® actually the self-energy %(w) derived from Qar coincides with the
Hubbard-III solution in the paramagnetic phase (h = 0) either at T =0 or n = 1.
Note, however, that the latter approximation has a number of serious deficiencies (it
does not allow for any magnetic order and does not reproduce the Heisenberg limit
at n =1and U — o0, T — 0). Moreover, there is no generating functional for the
Hubbard-III solution, and thus it is diagrammatically uncontrolled. For example,
the contribution from closed loops of mobile electrons that leads to the shift ¢, in
(20),(22) is neglected. By contrast, the mean-field solution (22) correctly reproduces
the Heisenberg model with the Curie susceptibility and allows for antiferromagnetic
ordering, at least at large U. The fact that this limit is described correctly in our
theory is due to the existence of the mean field energies EX7, which simulate the
effect of magnetic fluctuations. These parameters are missing in the Hubbard-III

solution.
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5 States with broken symmetry

Besides the paramagnetic state discussed so far, our theory can also describe states
with broken symmetry. For example, to discuss a solution with finite magnetization
m = n; —ny # 0 the spin dependence of the parameters E! and n, in (20) has to be
kept, even in the case h = 0. The instability of the paramagnetic state towards such
a ferromagnetic state is found as usual from the divergence of the susceptibility x,
equal to the negative second derivative of Qpp with respect to k. Alternatively, one
may calculate the inverse of x by taking the second derivative of Qpp with respect
to the order parameter m. An instability is then signalled by x~! < 0. Numerical
investigations of (22) in the limit U = oo, T = 0 show that x > 0 for all n. The
paramagnetic state is found to have a lower energy than any spin polarized solution.
This is in contrast to an analytic result obtained by us at an earlier stage of this work,
where we assumed that for T = 0,U = oo and § =1 — n <« 1 there exists a strongly
polarized ferromagnetic state (n; < 1,n; < 1) in the thermodynamic limit. We then
found the Nagaoka state to decay into an unsaturated ferromagnet with a band of
minority spins. In fact the current numerical calculations show that the assumption

ny < 1 does not lead to the correct ground state.

In the case of an antiferromagnetic state one has the additional complication of
a broken translational symmetry. The grand potential Qpp, (20), then has to be
modified by introducing A-B sublattices. In general one has to add one more index
to all variables in (20) that refers to their sublattice (e. g. n, = n40,a0 = A,B). In
the case of a pure antiferromagnet (n4, = np_,) only those terms in Qpr have to
be modified which depend on the density of states, i. e. one has to replace the first
term in (20) by

L 7dwa<w) dep,(E)

xIm In [(w + po — EI — Za(w)) (w +po—EL, — E_,(w)) - E2] (25)

as in the case of the simplified Hubbard model.!! The spin index is then uniquely

coupled with the sublattice index and the magnetic field, which enters Qur via o,
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coincides with the staggered field. The instability of the paramagnetic state with
respect to antiferromagnetic fluctuations is again signalled by the divergence of the
second derivative of Qyp (with the substitution (25)) with respect to A. For U < t
we obtain Hartree-Fock theory. However, the terms beyond Hartree-Fock lead to
ImZ # 0 (see the discussion in Sec.4). This implies that in our theory at n = 1 the
Hubbard model has no antiferromagnetic state at very low U even for lattices with
perfect nesting. On the other hand in the Heisenberg limit (U > t,n = 1,T — 0)

one finds for the inverse staggered susceptibility

X_l = 2[T + O(Ua T)] > (26)

where 8 is still a function of U and T', with # = 0 for U = co,T = 0. For fixed U the
T-dependence of 8 is only exponentially small. For fixed T the leading U-dependence
is @ o —1/U . This indicates that there exists a finite critical temperature Ty < 1/U ,

the Néel temperature, at which the transition to the antiferromagnetic state occurs.

6 Discussion

We derived in this paper an exact expression for the grand potential of the Hubbard
model in d = oo in closed form. From this we constructed a comprehensive, thermo-
dynamically consistent, conserving mean field theory for the Hubbard model. It is
applicable in the entire range of input parameters and is exact in the following limits:
(i) free case (for U — 0 Hartree-Fock is reproduced), (ii) atomic limit (¢ = 0), (iii)
simplified Hubbard model (¢, = —t,t_, = 0) in d = oo, (iv) Heisenberg antiferromag-
net (U > t,n = 1). This is the first approximate theory which correctly reproduces
these non-trivial opposite limits. In particular, no other mean-field-type theory has so
far been able to yield the Curie susceptibility in the Heisenberg limit.2° That means
that our theory not only describes the ground state correctly in this limit, but even

the excited states.

The theory is diagrammatically controlled, i. e. the entire perturbation theory is

summed by assuming a simplified energy transfer between up and down spins. How-
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ever, as a consequence of the simplified energy transfer the imaginary part of the
self-energy does not vanish at the Fermi surface unless there is a gap. Hence Lut-
tinger’s theorem is not fulfilled. OQur theory can therefore not be used to investigate
questions related to Fermi liquid behavior of the Hubbard model. Rather, it may be
applied to calculate spectral properties away from the Fermi-level discontinuity, and
to construct a global phase diagram for the Hubbard model. It may also be applied
to other fermionic models (e. g. t — J model, periodic Anderson model, etc.) and can
be extended to include disorder. This allows one to investigate the interplay between

interactions and disorder on the same mean field level.

Finally, we would like to comment on the role of the mean field energies EX/
whose existence is crucial to obtain a thermodynamically consistent, conserving the-
ory. These energies, which renormalize the spin-dependeflt chemical potentials p, ,
enter as variational parameters in our theory. For fixed n, they mazimize the free
energy, as do the chemical potentials p, . It can be shown that at 7' = 0 the ground
state energy obtained from our mean field theory is an eract lower bound for the
ground state energy of the Hubbard model in d = 00.2!

This investigation started when one of us (VJ) held an Alexander-von-Humboldt
Research Scholarship, which he gratefully acknowledges. We thank Jan Masek for
useful discussions and for supplying us with a numerical evaluation of the equations
(22). The work was supported in part by the SFB 341 of the Deutsche Forschungs-
gemeinschaft.
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