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Rigorous Criteria for Ferromagnetism in Itinerant Electron Systems
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We derive the first detailed, rigorous criteria for the stability of saturated ferromagnetism in the most
general single-band model of itinerant electrons, valid for arbitrary translationally invariant lattices, at
half filling. These conditions are given by inequalities for the model parameters. Of all interactions only
the on-site and the exchange interaction are found to be essential. By the same approach we also derive
rigorous criteria for the stability of saturated ferromagnetism in the Hubbard model with a magnetic
field.

PACS numbers: 75. IO. Lp

Ferromagnetism is a quantum-mechanical many-body
phenomenon caused by electronic interactions. Since the
direct spin-spin interaction between electrons is very

weak, ferromagnetism in itinerant electronic systems,
e.g. , in transition metals, must be due to a combination of
the electrostatic Coulomb interaction and the Pauli prin-

ciple. This was already known to Heisenberg in 1928 [I].
Nevertheless, until today it has not been possible to work

out exact, detailed theoretical conditions for the oc-
currence of ferromagnetism in itinerant electronic sys-

tems. Such conditions must be derived from a microscop-
ic band model of interacting electrons. To this end the
simplest generic model of interacting electrons, the Hub-

bard model [2-4], where all interactions but the on-site

term are neglected, was studied most intensively. Howev-

er, even for this model secured knowledge about fer
rontagnetic phases exists only in special limits [5]. There
do exist ferromagnetic solutions for the Hubbard model

[6], based on various approximation schemes, but their
stability is not proven. The importance of the neglected
nearest-neighbor exchange interaction for the stabiliza-
tion of ferromagnetism was stressed by Hirsch [7,8] and

discussed by him and Campbell, Gammel, and Loh [9].
I n this Letter we construct the first detailed, rigorous

criteria for the stability of saturated ferromagnetism at
n =1 valid for arbitrary translational invariant lattices
with I sites and the most general single-band model of
itinerant electrons with spin-independent interactions
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where n; =c;~; and n; =g n; While .U parametrizes
the on-site interaction and V describes the usual interac-
tion between charges (= densities) at arbitrary sites i &j,
the remaining interactions are off diagonal. Hence Xj—;
corresponds to a density-dependent hopping between i
and j, FJ; is the familiar Heisenberg exchange integral
[note that this interaction term may be written as

g;~tFJ —;(—S;.St —
—,
'

n;nt), with spin operator S;], and
FJ'—;generates hopping of doubly occupied sites. Let us
first discuss some special limits of (2), with I =j —i: (I)
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The first term is a general kinetic energy due to hop-

ping between two sites i,j, and the second term describes

the electronic interaction, where matrix elements i;J„,n
=(ij ~lt„(r —r')~mn) are expressed in terms of Wannier

t
orbitals localized at sites i,j,m, n. As usual c; (c; )
creates (annihilates) a cr electron at site i We w. ish to

know under which circumstances is the saturated fer-

romagnetic state ~+F) =p;c;I ~0) the unique ground state

of H. The central question is then: For what choice of
coupling parameters in (I) does ~+F) become the lowest

eigenstate'? To find an answer we (i) transform (I) into a

sum of positive-semidefinite operators, i.e., construct a

lower bound Et on the ground state energy (this is the

hard part), (ii) show that ~+F) is an eigenstate of (I),
i.e., obtain an upper bound E„, (iii) determine the condi-

tions for Et =E„[10],and (iv) prove the uniqueness of
e'F). "

3,4We write (I) as H=H' +H ' where H ' contains
"
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the sum over all 1- and 2-site terms and H ' involves all
"

3,4 ~

interactions involving 3 and 4 different sites. We first

solve the problem for H ' and then include H ' after-
" l, 2 ~

"
3,4

wards. Because of translational invariance the (real) ma-

trix elements in (I) depend only on the separation be-

tween sites, l.e., tIJ —= tj —i &'ijmn =&'j —i,m-i, n-i The 1- and

2-site contributions to the interaction are given by
~l

~j—i —~ ijiJ s +j—I' I I'IIJ's Fj —I' IJJI s 'j I

Hence
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On-site linet: for VI=L~=FI=FI'=0 one recovers the

Hubbard model with general hopping. (2) Nearest
neighbor (NN) limit: for [I) = I, with t ~:——t, V~ = V,

X~:X, F] —=F, and F~ =F', Eq. (2) corresp—onds to a gen-

eralizedd

H ubbard model where all N N interactions
are included [7,9]. For t =X= —V = —F = —F' = I,
U U —Z one obtains the supersymmetric model of
Essler, Korepin, and Schoutens [11].

We now rewrite (2), making repeated use of the opera-
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tor identity
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for all a&0. Introducing the nonlocal operators
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Pl
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Qij~=, ni W—in+ ~ I nj —Wje ~ (3b) and aj —,~0 is real but otherwise arbitrary, it can be
verified that
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z g(v(((, V( V(+ z IV( in (Sa) and (5b), and F( F(
4Z(l V(oi I in (5a), where 8'( =2((l('o((l+ I('lli I )

+g 'jl V;(jl and the prime (double prime) on the sum im-

plies iWO, I (i&0,l,j ) This .means that under the above
conditions, given only by inequalities, the ground state of
the general Hamiltonian (I ) has saturated magnetization.
This rigorous result holds for arbitrary translationally in-

variant lattices, i.e., even in d= I [14]. Note that these
are sujj(rcienr conditions; i.e., they do not rule out the sta-
bility of saturated ferromagnetism outside the above pa-
rameter range, e.g. , in models where F is put to zero [5].

We now consider the NN limit, i.e., the Hubbard mod-
el with all NN interactions, with a(=a, etc. The sum
over I in (5b) then only leads to an overall factor Z, the
number of NNs [15]. If (5a) is taken as an equality, a
may be eliminated from (5); the parameter restriction for
the stability of the saturated ferromagnet is then given by

F!(= Ft I x(+ (i I/aP. Fi = F( ar'I x(+ ri I,

V( = V( —
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for all l~0, and
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+

I V( I
+
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Except for the U and F terms and the unimportant C~, all
terms in (4) are positive semidefinite. For n = I it is seen
that I+F) is an eigenstate of H': (i) The P, Q, A, B
terms have zero eigenvalue and hence I+F) even repre-
sents a ground state of these terms; (ii) from DI+F) =0 it

follows that, for U ~ 0, I% F) is also a ground state of this
term; (iii) the V term has eigenvalues Lg~~ol V(l for
V(&0 and zero for V(~0; since these values coincide
with the lower bound of that term obtained by application
of the Schwarz inequality I+F) is a ground state of the V

term too; (iv) Iv(rF) is the unique ground state of the
Heisenberg term provided F( & 0. For F( & 0 it is then
clear that I+F) is the unique ground state of (4). That
this is true even for F(=0, provided L(~ —t( at least for
i = I, can be proved by induction [12]. Hence for n = I,
arbitrary a(WO, and in the parameter regime,

U X—r
'

Z
—~ 41(1+ I V —FI+ ' + F' ', —(6)F F

with F &0. For an fcc lattice this condition can be fur-
ther improved [13]. We observe that of all interaction
parameters t~o are most important for the stabilization
of ferromagnetism: the on-site repulsion U and the ex-
change coupling F. This rigorous result supports the
findings of Hirsch [7] which were obtained by mean-field
calculations as well as numerical studies in d= 1. For
V,L,F'=0 Hirsch also derived an exact lo~er bound on
F as a function of U below which the saturated ferromag-
netic state on a d-dimensional hypercubic lattice is unsta-
ble [II]. Equation (6) shows that as long as F is nonzero
(as in real physical systems), even if arbitrarily small,
there exists a critical value of U above which the fully po-
larized state is stable. For a cubic lattice (Z =6) and the
estimated values V =2 eV, X= —,

' eV, F =F'=,'& eY [3]
with 0.5 eV ~ t ~ 1.5 eV one finds critical values between
U =24 eV for t =0.5 eV and U =528 eV for t =1.5 eV.
These values can be improved [13] by using new opera-

F) &0, for X) = —t),
(5a)

F(~ a(IX(+i(I, otherwise,

F(+ aP I X(+ i( I

2
U~ Z 41((l+ V(—

Ixi+i(lI xi+i(l+ + F('—
a(

(5b)

the unique ground state of the Hamiltonian (4) is a fully
polarized ferromagnetic state. The ground state energy is

given by E =
2 Lg~~o(V( Fi). The above —procedure

can even be extended to include H ' . In this case one
has to introduce operators as in (3) that depend on 3 and
4 different site indices. Details will be presented else-

H"= -' Z Ir —lg(Pj, oP;, , +Qitj, Q(, )+Ixj +r-j IA-i(Aij+IFj' IB(-B(
i&j

+UD+ 4 Q I Vj —,.1[n;+sgn(Vj-;)nj] +Cf —p Fj (S( S-, .
i~j i'

A

Here D =p;n(fn;I is the number operator for doubly oc-
cupied sites and Cf = —

z Lg(~o[1 Vi I n+41((l (I n)], where [13]. These co
with n =(I/L)g; n; . Furthermore, site terms i.e. the
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tors P&, =(I —n„—)(c; +k~cj )(I —nj —) and g~,
=n; (c; +) ~c~ )n~ . —instead of (3a) and (3b). There-

by the critical U value for t =0.5 eV is lowered to U=12
eV, which is then actually in the range of physically
relevant interaction parameters. A rigorous condition can
even be derived for the stability of saturated ferromagne-
tism in the presence of a single hole ("Nagaoka state")
[13]. This itinerant ferromagnetic state is found to be
stable in a parameter regime very similar to (6), i.e.,

at finite U. Thereby Nagaoka's theorem for the Hub-
bard model [16] is generalized considerably. For
»&ltl, IVI, I+I, IFI, IF'I the condition (6) may be writ-
ten as J—=4Z(L —t) /U —2F (0. In this limit and for
8=1 —n«1 the Hubbard model with all NN interac-
tions can itself be transformed into an effective t-J model
[13] by use of the usual transformation [17]. The ef-
fective Heisenberg coupling comes out as J =4(X
—t) /U —2F [18]. Since t and X can have quite similar
values [19] the antiferromagnetic contribution to the
effective coupling may, in principle, be very weak even if
U is not extremely large. Hence, for F & 2(X —t) /U
one obtains a ferromagnetic t-J model which is worth

studying [20] for clear physical reasons. This model then
allows one to treat also the more general cases n & 1 and
T & 0, e.g. , ferromagnetic states without full polarization.
Apart from a factor Z the (nonrigorous) condition J (0,
obtained from the t-J model, coincides with J &0; hence
the rigorous condition is more restrictive.

t

Conditions (5) even hold for complex hopping matrix

elements tt =lttle' '
T. his case is relevant, for example,

in the presence of magnetic flux. The two terms in the
operators (3a)-(3c) then have to be multiplied by phase

factors, e.g. , e '
in (3a) and (3b), which drop out in

+itlt(/2 .

the end.
An external magnetic field B polarizes the electrons

and will thus enhance any tendency towards ferromagne-
tism caused by the electronic interactions. In this case
one should expect saturated ferromagnetism to become
stable for finite U and arbitrary lattices even in the Hub-
bard model with NN hopping,

HHUb t g (c (ycj +c~ c; ) +Urn; In;I
&ij ),a I

—8 + (n;I n; —I ) (7)

with 8&0 along the = direction. Except for d=l [21]
nontrivial, rigorous criteria for the stability of a fully po-
larized ground state IOF) of (7) were so far not known.
To derive such conditions for n =1 we rewrite the kinetic
energy in (7) in terms of (3a) and (3b), with

=sgn(yt), and the new operators

R;, =c; +osgn[(1 —y)t]c, ,
J% —I" A

O,z
=a c; —~; —sgn'yt 'ae; —~j

and

Y=g&;J&[l —
—,
'

(n;I n;I+—nit
—nlI)]

where a&0 and y are real but otherwise arbitrary. The
Hamiltoniun (7) then takes the form

yl(~y, t~~j~, I+(Iij~, t(I J,I)+ I yl Z(p&, P~j,o+gj, gj,o+O; OJ +0; Oj, )+2a lyt.
l
Y

iJ CT

where

+ 2 a'I ytl 2 (ni n, )'+U—gn;In;I+C2 —Bg (n;I n;I), —
&ij & I I

c = —z(
I ytl [2(l n)+a'(—I+n)] —z(. l(l —y)t,

U =U —4Z
I yt I( I + I /2a ),

and

8 =8-
z I (I y) t

I
2za'I y—t

I
. —

4 t 1+Z t B, O~B~B*,z,41t 1(3+Js)(I —8/zlt I), 8* ~ 8, (9)

For U~ 0 all but the last term and the unimportant C2
are positive semidefinite and have eigenvalue zero with

respect to I+F). For 8&0, 1%'F) is the unique ground
state of the last term in (8), and for 8 =0 this can again
be proved by induction in analogy to Ref. [10]. Hence it
follows that for U, B» 0, 1@F) is the unique ground state
of (7), with energy E= —8( Eliminating a fr.om the
two inequalities and maximizing the ferromagnetic re-
gime with respect to y the fully polarized state at n =1 is
seen to be stable for

where 8*=(J2 —l)Zlt I. Again the result holds for
arbitrary translationally invariant lattices. The phase
boundary is the convex envelope of the stability regimes
obtained for y=0 and y= 1, respectively. Note that for
hypercubic lattices and U=O the critical B value is

8 =Zlt I; i.e., (9) cannot be improved. The phase bound-

ary of the fully polarized state is shown in Fig. 1 together
with the result for Z=2 obtained from the Lieb-Wu
equations [21]. The overall behavior, i.e., a linear and a
I/U dependence at small and large U, respectively, is the
same. For 8((zlt I

the condition (9) is identical to (6)
with V =X=F' =0 if F is replaced by 8/2Z. Clearly, the

exchange coupling F and the magnetic field B act in a
very similar way. The conditions (9) even hold for t
= It le'~ as discussed above.

The same analysis can be applied to the spinless
Falicov-Kimball model [22] at n = I. In this case the en-

ergy of the static electrons, Ef, corresponds to the mag-
netic Iield 8 in the Hubbard model, (7). Hence one can
show [13] that for any Ef~0 there exists a critical value
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FIG. l. Above the full line the ground state of the Hubbard
model in a magnetic field 8 is proved to be fully polarized for
arbitrary lattices with coordination number Z. Black dot:
8* =(s/2 —l)Z~t ~; dashed line: boundary for Z =2 (Bethe-
ansatz solution [21]).
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