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Exact solution and thermodynamics of the Hubbard model with infinite-range hopping
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The Hubbard model with unconstrained hopping of the particles on a lattice is solved exactly. It
is shown that in this case the kinetic energy commutes with the interaction part, i.e., the model is

essentially trivial. The thermodynamics is worked out explicitly. One finds that the results of the
quasichemical approximation for the occupation probability of lattice sites are exact for this model.
The ground state is insulating at half-filling and U )0 and is conducting otherwise.
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The Hubbard model' is the simplest model for interact-
ing, itinerant electrons on a lattice. Nevertheless, except
for dimension d =1, it is still much too diScult to be
solved exactly. In this situation it is natural to investi-
gate the model in simple, yet perhaps unrealistic, limits.
The most common is that of an infinite-range (rather than
zero-range) interaction, which leads to a trivial mean-
field theory. Another limit is that of high dimensions,
d ~~, which has only recently been introduced for the
Hubbard model, and which may be expected to lead to
new insight into the properties of the model in finite di-
mensions.

In this paper we discuss, and solve exactly, a version of
the Hubbard model where the hopping of particles, rather
than their interaction, has infinite range and occurs with
equal probability. This is rather artificial in view of the
physics underlying the derivation of the Hubbard model
where hopping is assumed to be of short range (tight
binding). Nevertheless, since the exact solution of this
model has not been available so far, we will discuss it
here.

The Hubbard model has the form'

still obeys Fermi statistics with 3 A =nk 0 . Note,
that —in contrast to naive expectation —the hopping
constant must not be scaled with I for the average kinetic
energy

Eo — g Ek — 2tL
k & kF'o

to remain extensive. Equation (2) implies that the two
particles in the state k =0 carry the entire kinetic energy
of the system, while states with k&0 do not contribute
and are degenerate. The question is then whether k=0
contributes significantly to the interaction terms at all.
Below we will show that this is not the case, i.e., that the
expectation value of [HO, Ht] vanishes in the thermo-
dynamic limit, such that H0, HI may be diagonalized sep-
arately.

To calculate the expectation value of H, (la), with (2),
we introduce the partition function via a time-ordered ex-
ponential

Z(t, U)=tr T exp —J de(~)P

0
(3a)

unimportant. From (lb) it follows that

= —tL, 5k, O

where L is the number of lattice sites. Clearly, the opera-
tor

A =L '~Xc, =ak o

where the kinetic energy H0 and the on-site interaction
HI have been expressed both in position and momentum
representation. Here c; (ak ) creates a particle with spin
o at site i (with momentum k), respectively, and

=Zo exp — d~HP0, 0
(3b)

Here H(r) is given by (la) with ni, =nk (~) and
Ht=Ht(r), and ( )o is the thermal average in terms of
Z&=Z(t, O). In principle Z can be calculated from (3b)
in a diagrammatic expansion, using Wick s theorem. The
grand canonical potential 0= —p 'lnZ follows as
Q=QO —P 'W, (P, U), where Qo= —P 'inZo and

p
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is obtained from ( )o by retaining only connected dia-
grams. The subscript t indicates the explicit dependence
of W, on the hopping constant. The propagators in these

—1/2
pi a =L ga q~aq+k ~

q

is the Fourier component of the local density. We as-
sume n

&
=n

&
=n /2 with p as the common chemical po-

tential. While H0 is diagonal in k space, HI is diagonal
in position space since it is given by the number operator
of doubly occupied sites D =g, D, , with D; =n;tn;i . We.
now assume the hopping to have infinite range, with
t,"—:—t for all i,j. In this case the actual lattice struc-
ture, as well as the dimensionality of the system, becomes
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diagrams are calculated with respect to Z0 and have the
form

(T&» (&)&» (&'))0=&»»& G» (&—&'),

where

e " (1 f»—) (r) 0),

Z (t, U) =Z (0, U)exp(2PtL)

with

Z(0, U)= g exp Ppgn; P—UQD,
I n,.

The Hamiltonian in (9) is site diagonal, such that

(9a)

(9b)

-(.„-p).—e " f» (~~0)
(6) Z(O, U)=(1+Zz+z e ~ ) (10)

with f» = Iexp[P(E» —(M)]+1( as the Fermi function.
Equation (6) implies that G» is independent of k for all
km0, while for k =0,

G» 0 (r)=0, ~&0 or 0«&P
and G0 (0)= —G0 (P)= —1. If one now calculates 8;,
(4), in perturbation theory, one has

f dr) Jd. r (Hl(~, ) . Hl(g ))0 .( —1) t3 n

m~ 0 0
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Clearly, S; is completely determined by contributions
from k&0 since the propagator for k=0 vanishes accord-
ing to (7). One may therefore just as well put t =0 in (4)
but nevertheless include the momentum k=0 in the k
sums, since the error introduced thereby is only of rela-
tive order 1/L:

where z =e~" is the fugacity. In this way one finally finds

0=L [—2t —P 'ln(1+2z +z~e ~U)],

which is exact in the thermodynamic limit. The contri-
butions from H0 and Hl are seen to decouple completely,
since k=O (the only relevant state for the kinetic energy)
is irrelevant for the interaction energy in the thermo-
dynamic limit. Hence, both parts of the Hamiltonian
may be diagonalized individually. In this sense the model
is essentially trivial.

A11 thermodynamic quantities of the model are deter-
mined by (11). In particular, the chemical potential )((, is
obtained from the density

n =NIL = L'(BQ—/B(M )&

p, = U+k&Tln( I[(1—n) +n (2 —n)e ~ ]'

W;= W, = +0(1/L) .
—(1—n) J /(2 —n)), (12)

In the thermodynamic limit 8', is therefore seen to be in-
dependent of t. Hence the partition function Z(t, U) in
(3a) may be expressed in terms of the partition function
for t =0 as

which for n =1 reduces to p= U/2. For n ~ 1 the densi-
ty of doubly occupied sites, d =D/L = (HI )IU, is found
as'

d(n, PU) = [(n —1) +n(2 —n)e ~ ]'~ —1+n(l —e tU)

2(1 —e -)'U) (13)

In particular, for n =1
1

d ——
2 1+e~U" (14)

The parameter d only depends on temperature and in-
teraction via the single parameter PU. Equation (13) may
also be written as

d(1 n+d ) —
t)U

(n/2 —d )
(15)

This expression has the form known from the law of mass
action, with the Boltzmann factor e ~ regulating the
equilibrium between the total concentration of doubly oc-
cupied sites (d ) and empty sites (1 n+d ) rela—tive to
that of the singly occupied sites [(n/2 —d) ]. Equation
(15) is typical for a result obtained within the "quasi-
chemical approximation" in the theory of mixtures. It
is interesting to note that (15) is also identical to the re-
sult of the Gutzwiller approximation' for the conven-
tional Hubbard model, if e ~ is replaced by g, where g
is a variational parameter entering the trial wave function

d( U) = — — PU, PU~On n(2 —n)
2 4

(16a)

used in the approach. Indeed, this approximation is pre-
cisely of the quasichemical type and is known to yield the
correct result for expectation values of the ground-state
energy, etc. , in terms of the trial wave function in
d = oo. Equation (14) had already been obtained by
Seiler et al. "within a phenornenological extension of the
Gutzwiller approximation' to finite temperatures. In the
model discussed here (15) is exact; hence, the quasichemi-
cal approximation, with equilibrium constant e ~, is
found to be exact in this case. This is not surprising since
hopping is completely unconstrained in the model and
every site can be reached without restriction.

At T =0 (13) implies that d( U) =0 for n ~ 1 and
d( U) =n —1 for n ) 1, independent of the strength of U,
i.e., the unrestricted hopping allows the system to assume
a ground state with the least possible number of doubly
occupied sites. Hence, d(U) has a kink at n =1. On the
other hand, for T )0 one obtains

2 2
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and

n 2

e P, n&1, PU
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—,
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insulating if the difference of the energies E (N t, N i )

N N N N
Ap=—lim E —+1,—+E ——1,—

T~O 2 2 2 '2

(23)
Hence for T )0, d( U) has the form one should expect it
to have in the conventional Hubbard model, namely
d(0)=(n/2) and an exponential decrease for U —+co.
Note that the half-filled case (n =1) leads to a different
dependence on Uthan that for n (1.

The pressure, P = —0/L, of the model is given by

2t +nk~ T, n ~0, T fixed
P=

ln 1 ——
2

' —2

k~T, n-~2, T fixed

(17)

and by

P=2t+ —,'U+in2(k&T), n =1, T~O . (18)

C = ktiLUP—
n

(20)

At low temperatures (pU~ ~ ) it approaches zero ex-
ponentially fast

2

ktiL(PU) e ~ (n &1),
. 4(1 n)—
,'ktiL(PU) e —~ ~ (n =1), (21)

Hence, P remains finite even for n ~0. This unrealistic
dependence is caused by the two particles at k =0, which
produce the complete extensive kinetic energy.

The entropy is given by

S=ktiL[PUd Ppn+—1 (n1+2z+ ze ~ )] .

It approaches a finite value both for T~O (due to the
large degeneracy of the ground state) and for T~ ~ (due
to the finite number of possible states on a lattice). From
the internal energy

E = f),+ TS +pN =L ( 2t + Ud )—
the specific heat follows as

is positive, and is conducting for hp=0. In the model in-
vestigated here Ap is entirely determined by d(N&, Nt )

Ap= UL lim d —,——1 +d ——2, ——1
T~o 2 2 2 '2

N N—2d ——1,——1
2 '2 (24)

Since d has a kink at half-filling [cf. the discussion
above Eq. (16a)] it follows that in this case hp) 0 (insu-
lating ground state), while hp=O (conducting ground
state) for all other fillings. It is interesting to note that
the exact ground state of the ordinary Hubbard model in
d =1 is insulating too at half-Ailing. However, in the
latter case the origin of the insulating behavior is
different, being a consequence of the antiferromagnetic
correlations by the perfect nesting property of the lattice
for U)0.

In summary, we have presented the exact solution and
thermodynamics of the Hubbard model in the case where
hopping of particles may occur to any lattice site with
equal transition rate. In this situation the two terms of
the Hamiltonian commute, i.e., do not compete with each
other, and can thus be diagonalized independently. This
is true also for general interactions and kinetic energies,
as long as Ek&0 only for a nonextensive number of k
states. Although the model is, therefore, essentially a
trivial one, its solution allows for some interesting con-
clusions: (i) the result for the interaction energy, i.e., the
number of doubly occupied sites dL, has a form known
from the law of mass action with equilibrium constant
e ~, (ii) in the ground state d( U) =0 for n & 1 and arbi-
trary U, (iii) at any T )0 with T fixed d( U) has a form
that one expects from the conventional Hubbard model,
(iv) the ground state is insulating in the half-filled case for
all U )0 and is conducting for other fillings.

while at high temperatures (PU —+0) it vanishes as T
according to

C =[—,'n(2 n)] k~L(PU—) (22)

Finally, we remark on the conduction properties of the
model. Introducing independent chemical potentials p,
i.e., particle numbers N, for the spins, the criterion of
Mattis' and Lieb and Wu states that the ground state is
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