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Drude weight and dc conductivity of correlated electrons
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The Drude weight D and the dc conductivity os, (T) of strongly correlated electrons are investi-
gated theoretically. Analytic results are derived for the homogeneous phase of the Hubbard model at
d = oo, and for spinless fermions in this limit with 1/d corrections systematically included to lowest
order. It is found that os (T) is finite for all T ) 0, displaying Fermi-liquid behavior, os, oc 1/T,
at low temperatures. The validity of this result for finite dimensions is examined by investigating
the importance of umklapp scattering processes and vertex corrections. A finite dc conductivity for
T ) 0 is argued to be a generic feature of correlated lattice electrons in not too low dimension.

I. INTRODUCTION

Strongly correlated electron systems, such as heavy
fermions and high-T superconductors, have very unusual
thermodynamic and transport properties. To understand
the physical mechanisms underlying these properties, the
temperature-dependent dynamic ("optical" ) conductiv-
ity o.(io, T) is one of the most meaningful physical quan-
tities to be studied both experimentally and theoretically.
Of special interest is the low-frequency behavior of the
conductivity since it provides information about scatter-
ing processes close to the Fermi level. Theoretical stud-
ies of cr(io, T) for w ~ 0 so far concentrated on the limit
T = 0, where the real part of the conductivity can be
written as

os, (T) = o((u = 0, T) (2)

at T & 0 is not so well understood theoretically and re-
ceived attention only most recently. If a system has
continuous translational invariance, og, must be in6nite
even at Gnite temperatures since the momentum acquired
from the external electric field cannot be degraded. (Here
we do not consider scattering with phonons or impuri-
ties. ) Indeed, the Hamiltonian H commutes with the

total momentum P operator

Here and in the following, operators carry a hat. Hence

any expectation value of P, and thus of the current op-

lim Re o.(u), T) = Db(~) + o.;„, i, (io) .
T—+0

Here D is the weight of the Drude peak and o;„, h is an
incoherent background. As pointed out by Kohn, the
Drude weight D is of particular importance since it pro-
vides a direct and sensitive criterion for a metal-insulator
transition.

The behavior of the dc conductivity
ninj)., Z" (4)

where c; (c, ) is the creation (annihilation) operator of
an electron with spin o at site i and n; = P c; c, is the
total particle density at site i. The coeFicients t;~ and
Ui~ are hopping and interaction matrix elements, respec-
tively. The coordination numbers Z;~ count the number
of sites that are in the same point-symmetry group as

j with respect to site i. We assume the system to be
invariant under discrete lattice translations and transfor-
mations of the point-symmetry groups of each site. In
all explicit calculations, we restrict ourselves to nearest-
neighbor hopping on a hypercubic lattice (with coordi-
nation number Z = 2d, where d is the dimension), i.e. ,

assume t,~
= —t' for nearest neighbors and t;z ——0 oth-

erator J = —eP/(mIi), is constant in time. (Here the
electron charge is —e, m is the electron mass, and Ii
is the length of the sample in the direction of P.) No
damping occurs.

For a lattice system, characterized by a tight-binding
Hamiltonian, this argument no longer holds. The cur-
rent operator and the Hamiltonian do not commute and
there is no reason why the conductivity should not be
finite. Yet even on a lattice there are constraints on the
destruction of momentum: the crystal momentum is con-
served modulo reciprocal lattice vectors. In the absence
of phonons or impurities, crystal momentum can only be
destroyed by umklapp scattering. Now, it is not a pri-
ori clear whether umklapp processes alone are sufBcient
to reduce og, (T) to a finite value. For one-dimensional
fermion systems this problem has been investigated in de-
tail by Giamarchi. In this paper, we will approach the
question of whether or not the dc conductivity of corre-
lated electrons may diverge at T ) 0 &om the opposite
direction, i.e., the limit of high dimensions.

In the following, we consider a general lattice Hamil-
tonian of the form
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erwise. We set t = 1, i.e. , measure all energies in units
of t*. The kinetic energy then reads

&&kin c c = g 8knp
(~j) ~

where z& is the energy dispersion,

2
sk = — ) cos kj

Z;='
(5b)

1
IIHubbard- c c + U nqgnqg)

Z ~ 20

(ij);cr
(6a)

with unit lattice spacing, and ng denotes the moment
distribution operator. Due to particle-hole symmetry, it
is suKcient to discuss densities n = %/L not larger than
half filling. Here N is the total number of particles and L
is the number of lattice sites. The doping b is measured
relative to half filling, i.e. , b = 1 —n for the Hubbard
model and b =

2
—n for spinless fermions.

The scaling of the hopping by the square root of the
coordination numbers in (4) is essential to obtain a well-
defined limit d ~ oo for fermionic lattice models. The
scaling of the interaction terms in (4) is more straightfor-
ward: it must be chosen such that the total interaction
strength over all sites does not diverge. For explicit cal-
culations, we will consider electrons (with spin a =g, $)
interacting via a Hubbard interaction

genuine correlation terms are generated. We will refer to
this limit as "spinless fermions with 1/Z terms. "

To be able to study the effects of correlations on ag, (T)
at low temperatures we will deliberately ignore the on-
set of long-range order (i.e. , spin and charge order in
the Hubbard model and spinless fermion model, respec-
tively), since the existence of an energy gap would nat-
urally lead to an exponential suppression of ag, (T) for
Tm0.

The paper is structured as follows. In Sec. II, the
dynamic conductivity 0 (ur, T) is calculated in the limit
of high dimensions. A detailed investigation of the limit
ru ~ 0, i.e., of the Drude weight D at T = 0 and the
dc conductivity ag, (T) at T ) 0, is presented in Sec.
III. Explicit results are obtained for the Hubbard model
in d = oo and spinless fermions with 1/Z terms. The
finiteness of ag, (T) at T ) 0 and its validity for dimen-
sions d ( oo is discussed in Sec. IV by examining the
importance of umklapp scattering processes and vertex
corrections.

II. CONDUCTIVITY a(cg, T)
IN THE LARGE-D LIMIT

Our analysis is based on the Kubo formula, i.e. , the
system is investigated close to its equilibrium. Then the
dynamic conductivity is given by

a(~, T) = g a, ((u, T) + a2((u, T)

Hspinless =
Z ' 2

cc + ~g nnj.
(~j)

(6b)

as well as spinless fermions (no spin index) with nearest-
neighbor interaction

where

ai(~, T) =

a2(~, T) =

ie2 d~k B2s-

B2; (2vr)~ Bki2

J-J(

(7b)

(7c)
The limit d ~ oo is carried out on the level of ordinary
diagrammatic perturbation theory where it leads to con-
siderable simplifications. These simplifications make
an analytic solution of (6b) possible since the Hartree
approximation becomes exact in this case. ' By
contrast, the Hubbard model remains dynamic even in
d = oo and thus cannot be solved analytically. It re-
duces to a single-site theory, which is equivalent to an
effective single-impurity problem with a self-consistency
condition. ' This equivalence makes numerical
and approximate i solutions possible.

In the following we will investigate the dc conductivity
ag, (T) for the two models (6a) and (6b) in the limit of
large dimension d, i.e. , large coordination number Z (this
limit is denoted by d -+ oo or, equivalently, by Z ~ oo).
In the case of the Hubbard model, we work strictly at
Z = oo. However, in the case of spinless fermions all
terms up to order 1/Z are explicitly included. Not only
is this managable in this case, but, more importantly,
it is mandatory for obtaining finite results for o'. In the
limit Z = oo the theory is purely static (Hartree the-
ory), leading to an infinite conductivity, since scattering
processes are absent. The latter first enter into the the-
ory through the inclusion of 1/Z corrections, whereby

Here g is a spin degeneracy factor, i.e. , g = 1 for spinless
fermions and g = 2 for the Hubbard model, and y (w)
is the retarded current-current correlation function; the
current is chosen to flow in direction 1. Since the cur-
rent flows into a given direction, i.e., is proportional to
the effective hopping matrix element, which itself is of
order 1/~Z small, the current-current correlation func-
tion, and thereby the conductivity o. itself, is propor-
tional to the square of the effective hopping. Hence it
is of order 1/Z small. Strictly speaking the scaling of
the hopping would therefore imply that the conductivity

like any other transport coeFicient would vanish
in the limit Z + oc. In the following we therefore in-
vestigate the leading order contribution in 1/Z to a, i.e. ,

limz~ Zo (w, T), which essentially represents the sum
of that quantity over an entire shell of nearest-neighbor
sites.

For the infinite dimensional Hubbard model, the con-
ductivity is given diagrammatically by the dressed bub-
ble diagram. ' ' ' Vertex corrections do not enter
since they are of order 1/Z2. The conductivity is hence
given by a convolution of two one-particle propaga-
tors Gg(in~) = Gg = [in~ + p —Z~ —skj where
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d"ky~ ~(i(u„, T) = ) sin (kl)Gk
ml

x GA )6~ ~ ~l (8a)

Z = Z(iur ) is the self-energy [which is k independent
in d = oo (Refs. 15 and 16)] and )M is the chemical poten-
tial, i.e.,

B)((u, T) =

B2((u, T) =

d~'[f (~'+ ~) —f (~')1

(14a)

(14b)

gR((u'+ ~) —gA((u')
Cu —[ZR((u'+ (u) —ZA(~')] '

If ( p)
gR(~ + ~) gR(~ )

~ —[ER(~'+ ~) —ZR((u')]

gA(~ ) —gA(~ —~)
I+~(~') ~~(~' ~)l )

2yo (i~„,T)
~spinless i ~ i 2 U J J T

~a~
gp &~n)

(8b)

In the limit d ~ oo, the term sin (kl) can be replaced by
its average in the Brillouin zone, i.e., by 1/2. Then the in-

tegrand in (8a) depends on k only through the energy dis-
persion e& of the noninteracting electrons. This demon-
strates clearly the mean-Geld character of the d = oo
limit. The density of states (DOS) of the noninteracting
system, No(s), which for a hypercubic lattice [see (5b)]
in d = oo takes the form

For spinless fermions with 1/Z terms, the right-hand side
of (8a) yields the auxiliary function ys (iu, T), from
which the full correlation function follows as

Here g& and g& are the retarded and advanced local one-
particle propagators, respectively, and f (x) = (el +1)
is the Fermi function. In the limit T, ~ ~ 0 the term Bi
dominates since it reduces to a constant and hence leads
to a divergent contribution to 02(u, T) [(7c)] and thereby
to (T(u, T) itself. However, in the case of spinless fermions
with 1/Z terms, B2 has to be taken into account, too (see
below) .

III. THE LIMIT u m 0

A. T = 0: Study of the Drude weight D

To obtain an analytic expression for the Drude weight
D in (1), we use (14a) for B) in the limit of small u

N() (s) = exp( —s /2), (9)
Bl (ur, 0) = 2vriN(0) m* m ++i' (15)

may then be used to express (8a) as an energy integral

y~ J(i~„,T) = ) dhNO(s)G (s)z
m

Here N(0), the value of the DOS N(w) = —m Img&
of the interacting electrons at the Fermi level, enters.
Furthermore m*, with m'/m = 1 —dRe Z/d(rJ~ —p, is
the effective mass, and ig is an imaginary part which is
inGnitesimally small at T = 0 but becomes Gnite at finite
temperatures. From (7a) we find for D

xGl(s)b „ I

D = 2 d~ Re(72(~, 0),
I

(16)
where G (s) = [iw + p —Z —s) ~. If the self-energy
Z is known, the best way to proceed is to use a partial
fraction expansion

G (s) Gl(s) = —[(i~ —Z ) —(iurl —Zl)]

x [G (s) —Gl (s)],

which permits one to perform the s integral in (10) as

J g(. T)
2T ) gm

Z t(dm Zldl (~m ~l )m

where g' is also inGnitesimally small at T = 0. The con-
tribution of ol [(7b)] need not be considered here since
it is purely imaginary. For the same reason B2 is unim-
portant in the evaluation of D for the Hubbard model.
The combination of (15) and (16) yields

4me2
ZDHubbard ~

N (0) .
*/m (17)

The situation is diferent in the case of spinless fermions
with 1/Z terms 2Here . the limiting value of B2
vip (Hk;„) for small w must be taken into account, too,
where

xb (12) ~Zg Fock (18)

where g = J' dsN0(s)G (s) is the local one-particle
propagator. Analytic continuation then leads to

is a renormalization factor resulting from the frequency-
independent Fock contribution to the self-energy. Fur-
thermore, N(u) must be replaced by the spectral density

((u, T) = . (Bl + B2),i Z7r N, ((u) = ——Im c((u), (19a)

where defined through
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N, p(e)
c((u) = de (19b)

I ~ I I I I I I3 I I I I l
I ~ I I

with N, p(s) determined &om Np(w) as
7

dN, p

2
(19c)

5=0; total weight

5=0

In d = oo, with Np(w) given by (9), this implies

( ) = N—(s) and therefore c~ ~ (~) =
2 gz z (~

and N, s) = 2N(e'). Finally, by increasing the e

tive hopping of spinless fermions wi, e
also reduces the effective mass, i.e., m*/m

1 —dRe Z/dw~ p)/p. In this way one finds
to (17)

4m. e2pN, (0)
ZDsPinless =

+/ + gZ ] UN (0)

and (~20~~at T = 0, it is helpful
to note that in d = oo the quantities p —Z 0 or e
Hubbard model) and [p —Z(0)j/p (for spinless fermions
with 1/Z terms) are independent of U. This is a direct

f L ttin er's theorem on the constancy ofconsequence of Lu inger s
the volume wit in e eh th Fermi surface and the fact a

ictl local (Hubbard model). It even holds when
al to the kinetic en-Z contains terms that are proportzona o e

er ' f Z ' for spinless fermions wither as in the case o
1 Z terms), even w en ey aree, h th are &equency dependent as

d b N (0) and N, p(0), respectively, i.e. , by t e
U = 0 at the same filling. Note thauantities at =, a

but
q

d t '
ly another approximation ureplacement does no imp y

is exact in the present &amework.
d

'
ht ZD for spinless fermionsThe scaled Drude weig

20~ in d = 3
(s) and N, p(e), is shown in

d 2 as a function of interaction U an op-

to the kinetic energy Z I dwrr(w) = —2vre Hk, „
e). The difFerence between the two curvessum rule~. ' e i e

Both ZD and the total weight de-d~o incoh (~) ~

Atll 'th U at small U (Fig. 1). Acrease quadratica y wi
ZD oc (lnU) which implies a verylarge U, however, oc

&
n

nce ofow ecrease. The latter behavior is a consequence o
the suppression of long-range or er: n e
unbroken p aseh Z adds to the hopping such that ex-
t ded states are favored even at large U.ene s

While the decrease of the Drude weigei ht with increas-

the global suppression of ZD upon doping, nee s exp a-
nation. e a er e

ZD found to decrease monotonica ywhere ZD is oun
1 se to half fillingof b. This is surprising since c ose to a

~~small b~ one would expect doping o z p
~ erved in the case of thebility of the particles, as it is observe i

Hubbard model. ' ' ere e essH the essential difference between

5W.1

5W.25

5=0.4

Ii & i i I I i i & I & s i i0
10 15

U

20

FIG. 1. Sca e ru e1 d D d weight ZD vs interaction U for spin-
yZ terms at. T = 0 for di6'erent billings.

~ ~

less fermions with 1 Z terms a .

tantha" where a is the lattice constan;[Di nuitnosfe t, w e
Uinunitso t . oi cf *

j S l'd curve: total weight f duo'(&u) (saine
units as D) for b = 0.

h Hubbard model and in the spinlessthe interaction in t e u ar
h lf-to la . Let us consider a a-m od o o pay.

filled band at not too small U. In thn the Hubbar mo e
1 occu ied. The particlesthe lattice sites are then sing y occup

Dthe Drude weig tare ere y eth b essentially localzzed, i.e. , th
nis es. This effect is independent of whether p'r the s ins

ntiferromagnetically ordered or no . pir not. S in ordering,are an i err
a small amounthrou h which the energy is lowered by a smt oug w ic

t /U, is here an additional effect wj rwith rather little in-
D D is already essentially zero. ByQuence on D, since is a

contrast, for spin ess ermf '
1 f rmions such a localization e ec,

and hence ZD 0 at b = 0, can only occur in t e pres-
e-order checker board structureence of long-range c arge-or er

hboron the two su a ices sibl tt j since then the nearest-neig or
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FIG. 2. Scale Drude weight ZD vs op gs do in b for spinless
er s at T = 0 for difFerent U values;fermions with 1/Z terms a

same units as in ig. 1.
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interaction is efFectively avoided. In this case, doping
would indeed improve the mobility and thus increase ZD.
In the homogeneous phase (which we consider here pre-
cisely because we wish to ignore the obvious effects of
long-range order; see the discussion at the end of Sec.
I), this localization effect is absent and hence ZD always
decreases as a function of b. At b = 0.29, there is a weak
cusp due to the van Hove singularity of the DOS in d = 3
at one-third of the bandwidth. Note that in the empty
band limit (b ~ 0.5), ZD vanishes with the same slope
for all. U since the effect of the interaction decreases with
decreasing particle density.

2.0

1.5—

5—

2.0

1.5

.5

B. T ) 0: Study of the dc conductivity 0
0 .4 1.0

At low temperatures the dc conductivity for the Hub-
bard model is found from (7), (13), and (14) as

z H bb .a(z) ~
g ~(~) f(~)) (2~)

7I ~ Ng (4J) BCd

FIG. 3. Scaled resistivity p/Z vs temperature T at
U = 4 243t'. and b = 0. (p in units of ha /e; T in units of
t'. ) Main figure: spinless fermions with 1/Z terms in d = 3.
Inset: Hubbard model in d = oc, evaluated in the noncrossing
approximation (Ref. [8]); see text.

where Np((u) = —m Im ER(u)).
In analogy, for spinless fermions with 1/Z terms one

obtains to the metal-insulator transition. This explains why A is
much larger for the Hubbard model (see Figs. 3 and 4).

The existence of a maximum in the resistivity for the
Hubbard model is in striking contrast to the monotonic
increase of p(T)/Z in the case of spinless fermions with
1/Z terms. This maximum is located almost exactly
at the temperature where the system would undergo a
phase transition to the antiferromagnetic phase if that
ordering were not suppressed. Hence the increase in the
resistivity can be attributed to the enhancement in the
scattering of electrons by local spin fluctuations. Such
an effect does not occur in the case of spinless fermions
with 1/Z terms: the interaction U/Z is by a factor 1/Z
weaker and the charge Quctuations are averaged over the

10- I I I i II I I I I I I
I

.01

.001

~01

FIG. 4. Same results as in Fig. 3 on double logarithmic
scale; same units as in Fig. 3. The T behavior at low T is
clearly seen.

Here we encounter a peculiarity due to the fact that
in the case of spinless fermions the limits Z ~ oo and
~ ~ 0 do not commute: although in the limit Z + oo,
the dynamic conductivity Zo'i""'"(~,T) O(1) for all
~ g 0, and also Z f duo'i""i"'(ur, T) O(1), the dc
conductivity behaves differently since Ng(~) O(1/Z).
Equation (22) then iinplies that Zcr&~'" "'(T) O(Z) for
Z ~ oo, i.e. , the resistivity obeys p'r'"i"'(T)/Z (1/Z),
while p

"b 'd(T)/Z O(1).
The results for p(T) /Z in the case of spinless fermions

with 1/Z terms at half filling, obtained by evaluating the
inverse of the right-hand side of (22) in d = 3 (Z = 6),
are shown in Figs. 3 and 4. They are compared with the
results of Pruschke, Cox, and Jarrell for the half-611ed
Hubbard model in d = oo, obtained in the noncrossing
approximation. In both cases U = 4.243. (We note that
for the Hubbard model this value of U is just below the
value where the Mott-Hubbard transition occurs.
The system is therefore quite close to the transition. )

At low temperatures, T O.l, both models show Fermi
liquid behavior, i.e. , p(T)/Z = AT, as is clearly seen
on a double-logarithmic plot (Fig. 4).s4 The typical T
dependence originates in the low-&equency behavior of
N~(u) = —vr ImZ~(w) =: Ng(0)(T + bw ) in (21)
and (22) where b is some constant. Since ( Df/Bw) is-
a strongly peaked function of cu at the Fermi level, with
width T, one obtains p(T)/Z = (Zog, ) oc N~(0)T,
i.e. , A oc Ng(0). For spinless fermions with 1/Z terms,
one has Ng(0) oc U2/Z for all U. For the Hubbard model
N~(0) can become much larger (this is so even at small
U, where Ng(0) oc U2 in this case), in particular close
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very large number of nearest neighbors, i.e., do not act
coherently.

At high temperatures the resistivity increases lin-
early with temperature in both models (for the Hub-
bard model that part is not shown in Figs. 3 and
4.) This is due to the fact that for T i oo the func-
tions N(m), K (u), and N~(w) become temperature in-
dependent, while ( Bf—/Bw) —+ 1/(4T), thus leading to
Z~,.~1/T, i.e. , p(T)/Z ~ T

density increases with decreasing d. In particular, in d =
2 one has n 2 ——1, in which case the Fermi body touches
the BZ at discrete points, while in d = 1 an intersection
does not occur for any filling. Hence, umklapp processes
become more efFective the higher the dimension of the
lattice is. Consequently, the d = oo mean-field theory
overestimates the efFect of umklapp processes. A finite
dc conductivity is nevertheless a natural feature of lattice
systems in sufficiently high dimensions d.

IV. DISCUSSION B. Vertex corrections

We will now discuss the conditions under which the dc
conductivity can be finite at T & 0, and to what extent
this is a generic property of correlated electron systems
ln dimensions d = 1) 2) 3.

A. Umklapp scattering

In the absence of phonons and impurities only
umklapp-scattering processes are able to degrade the to-
tal crystal momentum. Under such conditions, a finite dc
conductivity at T ) 0 can therefore only occur in a lattice
system. In the d = oo dynamic mean-field theory for the
Hubbard model and spinless fermions with 1/Z correc-
tions, the correlation problem reduces to a self-consistent
single-site problem, where the importance of the lat-
tice and the notion of reciprocal lattice vectors are no
longer directly visible. Nevertheless, it must be borne in
mind that for quantum mechanical particles the d —+ oo
limit can only be formulated on a lattice. (The lattice
constant provides a natural short-wavelength cutoff. is)
Hence the results obtained for correlated electrons in
d = oo, in particular those obtained here for the Drude
weight D and og, require the existence of a lattice.

In fact, in d = oo all scattering processes involve um-
klapp processes. This is a direct consequence of the topol-
ogy of the Fermi surface of a lattice system, which in
the limit d ~ oo is very close to a sphere from which
major parts are chopped off at the Brillouin-zone (BZ)
boundaries. In fact, the Fermi body covers the &action
n/g of the (d —1)-dimensional boundary surface of the
hypercubic BZ, where n is the particle density and g de-
notes the degeneracy of the particle state, i.e. , g = 1 and
2 for spinless fermions and the Hubbard model, respec-
tively. Since in d = oo the Fermi body intersects with the
BZ boundary for all fillings n, it is possible to have um-
klapp processes with arbitrarily small q vectors. There is
then no minimum energy L required for umklapp scat-
tering and hence no exponential suppression exp( —4/T)
of such processes at lom temperature. Thus, their contri-
bution is always important.

For each dimension d of a hypercubic lattice, one may
define a critical density n d such that for n & n the
Fermi body intersects with the BZ boundaries. While
n, = 0 (note, however, that the limits n -+ 0 and d —+
oo do not commute), one has 0 ( n, g ( 1 for any finite
dimension d with 3 & d ( oo, i.e. , in general, the critical

In the limit d = oo the dynamic conductivity o (u, T)
is strictly given by the dressed bubble diagram since
vertex corrections are suppressed. The dc conductivity
og, (T) is thus determined by the single-particle lifetime.
In general the lifetime (or rather its inverse, the scat-
tering rate) receives contributions from scatterixig pro-
cesses of quasiparticles involving umklapp scattering as
well as momentum-conserving "normal" scattering. In
d = oo essentially all scattering events involve umklapp
processes. Genuine two-particle interference eÃects are
described by vertex corrections. They enter as soon as
1/Z corrections are taken into account and lead, for ex-
ample, to the renormalization factor p = 1+ 0(&) ) 1
[(18)], in the case of spinless fermions. By including 1/Z
corrections, i.e., vertex corrections, one departs &om the
d = oo limit. Thereby the importance of the current-
degrading umklapp processes is reduced. Hence we ex-
pect 1/Z corrections to increase the conductivity.

It is still an unresolved question whether or not ver-
tex corrections are able to restore momentum conserva-
tion to such an extent that og, (T) can be infinite at
T ) 0, i e , whethe. r .o(~, T) has a contribution D(T)b(ur)
even for T & 0. If at all, this would be a property of
systems where umklapp processes are relatively unim-
portant, such as lomdimensional system away &om half
filling. Recently Castella et al. i conjectured that even
systems where the current does not commute with the
Hamiltonian have a divergent dc conductivity at T & 0
provided they are integrable. In this case, our finding of
a finite dc conductivity at T & 0 would be generic in
any dimension since most interaction models appear to
be nonintegrable.

It will be very interesting to investigate further
whether, and if so under what conditions, the dc con-
ductivity of correlated lattice electrons may diverge at
T ) 0 even in dimensions d = 2 or 3.
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