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Hubbard Model with Nearest-Neighbor and Bond-Charge Interaction: Exact Ground-State
Solution in a Wide Range of Parameters
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We present the exact ground-state wave function and energy of a general Hubbard model with kinetic
energy t and on-site, nearest-neighbor, and bond-charge interaction U, V,X, respectively, for a wide,
physically relevant range of parameters with A =t on lattices with arbitrary coordination numbers Z at
half filling.

PACS numbers: 75.10.Jm, 71.10.+x, 71.28.+d

The Hubbard model [1,2] is the generic model for in-
teracting electrons in narrow-band systems. Indeed, it is
the simplest model that is able to describe both the band
and the atomic limit. As shown by Hubbard in 1963 this
model may be obtained from the general Hamiltonian

H= T;jc&~~& + —g ij —kl c;"c& ct ck
ij,a ijkl, aa'

by approximating the interaction term. Here, c; (c; )
creates (annihilates) a particle with spin cr in a Wannier
orbital localized at site i; the corresponding number
operatol is n p ci~ i The par ametel Tij is the Fourier
transform of the band energy et„and (ij~ 1/r ~kl) is the
matrix element of the Coulomb interaction with respect
to the Wannier functions at sites i, j,k, l. For narrow-
band systems the dominant matrix elements of the in-
teraction are

U—= (ii~ 1/r ~ii),

V=(ij~ I/r~ij), (i,j) nearest neighbors,

X—= (ii~ 1/r~ij), (i,j) nearest neighbors,

where U
neigh bo

bond-charge interaction [3-8], which may be viewed as a
density-dependent nearest-neighbor hopping [9]. For 3d
electrons in transition metals Hubbard estimated these
matrix elements as U=20 eV, V=6 eV, X=0.5 eV,
where V will be reduced to 2-3 eV by metallic screening
[1]. This estimate motivated him to take into account

(I) only the on site in-teraction and neglect all other contri-
butions. One is thus led to the famous Hubbard model
[1,2]. In spite of its utmost simplicity it is thought to de-
scribe much of the essential physics of narrow-band sys-
tems. The Hubbard model has attracted immense in-
terest during the last decades, and an exact solution in
closed form was obtained for d= 1 [10]. However, it is
still not known to what extent the inclusion of the
neglected interaction terms will change the physics de-
scribed by the Hubbard model. In particular, V and X
cannot always be expected to be much smaller than the
on-site interaction U. For example, for benzene the pa-

(2a) rameters were estimated as U = 17 eV, V = 9 eV, X
= 3.3 eV [4-6]. In any case, even for V,X((U the very
presence of interactions which directly couple nearest-

(2c) neighbor sites should lead to new eA'ects.
When the nearest-neighbor (V) and the bond-charge

and V parametrize the on-site and a nearest- interaction (X) are taken into account one obtains the
r density interaction, respectively, and X is a

l
following generalized Hubbard model:

H =T+U+ V+X
= —t g (c;~; +c&~; )+Urn;trt;1+ V g n; n; +

&ij),cr i &ij),ocr'

with t, U, V, X~ 0. The kinetic energy T is due to hop-
~

ping between nearest neighbors with matrix element t.
The index (ij& stands for summation over the nearest-
neighbor pairs. For X=O the Hamiltonian reduces to the-
so-called "extended Hubbard model. " The generalized
model (3) has been considered previously by several
groups [3-8]; an exact solution for general parameters is
not known. Since t is typically of the order of 0.2-2 eV
the values of X and t are seen to be quite comparable;
most recently this was explicitly shown for a square lat-
tice of oxygen ions representing a CuOq plane [8].

In this Letter we show that for X=t the ground state
of the model (3) can be obtained exactly in two parame-
ter regimes. I n particular, we will present the exact

Xg (c; c; +cj~; )(n; +n; ),
&ij),o

(3)

ground-state wave function and energy of the model on a
three-dimensional subspace of the four-dimensional pa-
rameter space (t, U, V, X) in the half-filled band case
n= l. We investigate two diAerent regimes, correspond-
ing to two diA'erent inequalities for the parameters, where
in the first case the ground-state is obtained for an arbi-
trary lattice and in the second case for an arbitrary bi-
partite lattice. We consider lattices with a constant num-
ber of nearest neighbors Z.

The exact solution is made possible by the fact that for
X=t hopping processes interfere in such a way that the
number of doubly occupied sites is conserved, i.e. ,
[T+X,U]~t=x=0, but [T+X,V]~t=x~0. Models with
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a similar kind of effective hopping have recently been investigated in some detail [11,12]. However, we will later show
that exact results may even be obtained when the commutator does not vanish.

For X=t the Hamiltonian (3) may be written in two equivalent forms:

H = —2tZL (1 —n ) + (U —4tZ —VZ )g n; 1 n;1+ tR+ + tS+ +—V
I

1 U+4tZ "= —2tZLn+ —(VZ —U —4tZ) g n n .+-tR + tS + V,
Z (ij),~~' 2Z

(4a)

where I is the number of lattice sites and n =(I/L)
x g; n; . The operators R ~, S ~, and V are given by

R+=$Pq +P;; +, (sa)
(ij),cr

S~=g Q;~j ~Q;j +, (sb)
(ij),a

V=gW;;(W;; —1), (sc)
(ij)

A A
g

A

where P;j + =C; +C~, P) =C; —C;, Q;;
+

vaja~ and Qija, — (ia (ja with Cia =&ia(1 t'ai
—v)~

Pier eicrni —cr and +ij Za(nia+nja).
In the following we will consider two diAerent parame-

ter regimes. We will derive upper and lower bounds on

the exact ground-state energy and show that they coin-
cide. This well-known method for finding exact ground
states has also been applied recently to correlated elec-
trons in the special limit U =~ [13,14].

I regime: U —
(.4t+ V)Z ~0. Since R+, S+ are posi-

tive semidefinite operators and (V& ~ ZL(2n —n), which

follows from the Schwarz inequality, a lower bound on
the energy is given by Et = —2tZL ( I —n) + VZL (n
—n/2) for a density n To o. btain an upper bound we

consider the wave function

I+i&= He'1 H e,'il0&,
iGA jEA

where ~0& is the vacuum and A, A' are arbitrary disjoint
sets of lattice sites which together build up the total lat-
tice. This wave function corresponds to a density n=1
and consists of singly occupied sites. One can easily veri-

fy that ~+t& is an eigenfunction of H with eigenvalue
E„=VZL/2, which is thus an upper bound on the exact
ground-state energy. Since upper and lower bound coin-
cide for n =1, the exact ground-state energy of the gen-
eralized Hubbard model (3) for X=t, U —(4t + V)Z
~ 0, and @=1 on an arbitrary lattice with coordination
number Z is simply given by

E = VZL/2.
The corresponding ground state, which is 2 -fold degen-
erate, describes a paramagnetic insulafor. The set of
ground-state wave functions (6) is complete.

We should like to stress that the restriction imposed by
the inequality on the parameters is not unphysical. For
example, the exact solution applies in the case of a cubic
lattice (Z =6) with parameter values t =X=0.5 eV,
V =2 eV, U» 24 eV which is very close to the values es-
timated above [I]. For a small deviation St =t —X&0

and a bipartite lattice an antiferromagnetic configuration,
i.e., spin-density wave (SDW), is immediately favored
[151; this is what one would expect from the pure Hub-
bard model for large U and n=1.

II. regime: U+(4t —V)Z ~ 0. Since R and S are
positive semidefinite operators, too, a lower bound on the
energy is given by Et = —2tZLn+(U+4tZ)L(n —n/2)
The wave function

I+ti&= II e le 1I0&,

defined on an arbitrary bipartite lattice with A as one of
the two sublattices, is an eigenfunction of 0 with eigen-
value E„=UL/2; clearly E„ is an upper bound on the ex-
act ground-state energy. Since upper and lower bound
coincide for n =1, the exact ground-state energy of the
generalized Hubbard model (3) for X=t, U+(4t —V)Z
~ 0, and n =1 on an arbitrary bipartite lattice with coor-
dination number Z is given by

E =UL/2.

The corresponding ground state (8), which is unique
apart from a twofold degeneracy due to the two sublat-
tices, describes a nonmagnetic insulator. It corresponds
to a charge-density wave (CDW) with maximal order pa-
rameter ("chessboard phase, " see Fig. 1). For a simple
cubic lattice the above exact solution is valid, for exam-
ple, for t =A =OS eV, V=4 eV, U~ 12 eV.

In Fig. 2 the (U/t, V/t, X/t) ground-state phase dia-
gram for a hypercubic lattice is shown. For X/t=1 we
solved the model exactly in the two shaded regions. For
VZ~ U+4tZ a charge-density wave (CDW) and for

I. IG. 1. The exact ground-state configuration of the general
Hubbard model (3) for X =t, U+ (4t —V)Z ~ 0, and n =1 on a
square lat tice.
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+.+
+.+

X/i U=4dt. The analytic approach outlined above allows us
to check these results. For this we rearrange the Hamil-
tonian as

HMR = —tZL(1 —n)+ (U —2tZ)gn;1 n;1

FIG. 2. (U/t, V/t, X/t) ground-state phase diagram for the
general Hubbard model (3) on a hypercubic lattice. The exact
result for X/t =1 is shown in comparison with approximate re-
sults for X/t =0 (see text).

U~ VZ+4tZ a configuration with singly occupied (SO)
sites is found. This should be compared with results for
X/t =0 (extended Hubbard model) obtained by pertur-
bation theory in high dimensions [16] where one finds a
transition between a SDW and a CDW state at U=VZ.
Monte Carlo results for a one-dimensional system show a
qualitatively similar behavior with, however, a small devi-
ation in the transition line U=VZ [17]. Obviously the
latter results are qualitatively very similar to the above
exact results for X/t =1 (note that the SO state will im-

mediately switch to a SDW state for X/tA I).
In the conventional Hubbard model (X=O, V=O) ~~t)

is a ground-state wave function only for U=~. In the
generalized Hubbard model with L=t this ground state
is already realized at finite U with U~ 4tZ+ VZ. Simi-
larly, while in the extended Hubbard model (X=O) ~'Ptt)
is the ground-state wave function only for V=~, in the
generalized Hubbard model with L=t this ground state
is already realized at finite V with VZ ~ 4tZ+ U.
Hence, L stabilizes the two regimes down to a finite value
of U and V, respectively.

Our method can be also applied to the insulating re-

gime of the Hamiltonian recently investigated by Mon-
torsi and Rasetti [11]. This model is a (rather unrealis-
tic) generalization of (3) to spin-dependent hopping am-

plitudes t ' =L ' =t and V=0. The model can be
mapped onto a Falicov-Kimbal[-like Hamiltonian [18]

A

H MR
= tg (c;1c;1+c;1c;1)( I —n;1 —n j 1 )

(ij)

+Ug n;ln;1,

where only the up-spin electrons are mobile (t, U~ 0).
By investigating the limit Z ~, U =~, and n & 1 Janis
et ai. [19] showed that the supposedly exact solution de-
rived in [11], displaying a Mott transition, is not exact.
Nevertheless, using exact diagonalization and Monte
Carlo methods Michielsen, De Raedt, and Schneider [20]
recently showed that in dimensions d=1, 2 the model
(10) does exhibit a metal-insulator transition for n =1 at

+tP+tQ

with positive semidefinite operators P and Q which have a
similar form as that of R+,5+. For n=l and U» 2tZ
and for arbitrary lattices the exact ground state is then
found to be given by ~+t), (6), with energy E =0. Hence,
the system is indeed insulating for all U» 2tZ on an ar-
bitrary lattice. The numerical results [20] for Z =2,4 are
thus seen to agree with the exact result. Although our
method is limited to the insulating phase one may specu-
late that, by analogy, in the general Hubbard model (3)
with L=t the system exhibits a metal-insulator transition
at U —(4t + V)Z = 0 and U+ (4t —V)Z = 0, too.

Our method can be also applied to the generalized
Hubbard model (3) for negative U, V. In this case one
finds phase separation for L=t, U ~ —4tZ, and V & 0
[21].

A further extension of (3) is obtained by including the
interaction term (ii~1/r~jj) which corresponds to hopping
of doubly occupied sites [1,4]. For X=t and in the re-
gime II the Hamiltonian (4b) can be cast into a form
with an effectively attractive on-site interaction; hence we

expect a superconducting state for n & 1.
The generalized Hubbard model (3) may also be inves-

tigated for arbitrary spin degeneracy 1V . In this case the
exact ground state can be obtained for n=l, L=t, and
U —2tZN —VZ» 0 (singly occupied sites), as well as
for n =N /2, X=t/(N —I) and U —VZ+2tZN /(N
—1) ~ 0 (charge-density wave) [21]. Note that the
number of doubly occupied sites is no longer conserved
for % & 2, i.e., the commutator of the eAective-hopping
Hamiltonian T+L with U no longer vanishes in this case.

In summary, we obtained the exact ground-state solu-
tion for a general Hubbard model including nearest-
neighbor and bond-charge interaction for arbitrary coor-
dination number Z in a wide, physically relevant range of
parameters. This ground state is either a highly degen-
erate state with singly occupied sites, or corresponds to a
charge-density wave. These results may be used as a
starting point for perturbation theory in 6t =t —L&0.
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