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Ground-state energy of the d =1,2,3 dimensional Hubbard model in the weak-coupling limit
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The correlation energy of the Hubbard model on simple-cubic lattices is calculated in the weak-

coupling regime for dimensions d =1,2, 3. It is shown that, in spite of the nonanalytic dependences
known to arise and in contrast to earlier expectations, the exact second-order contribution to the
ground-state energy in d =1 can be obtained by ordinary perturbation theory. This result is argued
to hold for any finite order and, in particular, for any dimension.

I. INTRODUCTION

In spite of the apparent simplicity of the Hubbard
model' and 25 years of research only few reliable ana-
lytic results exist. In one dimension (d = 1) the exact re-
sult for the ground-state energy in the case of next-
neighbor hopping has been obtained by Lieb and Wu us-

ing the Bethe ansatz. At half-filling the energy is a non-
analytic function of the interaction strength U for U~O,
owing to antiferromagnetic correlations which exist for
all U )0. The latter are typical for AB-type lattices in
arbitrary dimensions and arise from the "perfect nesting"
property of the Fermi surface in the case of next-
neighbor hopping. Hence„ for such lattices even the
weak-coupling regime of the Hubbard model is nontrivi-
al. Nevertheless, in this paper we show that —in contrast
to results obtained earlier —the correlation energy of the
Hubbard model in d =1 in the weak-coupling limit can
be obtained exactly by standard diagrammatic perturba-
tion theory. Calculating the corresponding expression in
d =2 and d =3 we conjecture that this holds for any di-
mension and for any order. A rigorous mathematical
proof for this conjecture still does not exist.

II. THE HUBBARD MODEL

The single-band Hubbard model has the form

H Ho+H

E(-,', —,', U)= 4tI(U/—4t),

where

Jo(to)J, (co)I (z) = de
o to[1+exp(2zco)]

(4)

(5)

and Jo, J, are Bessel functions. The analytic properties
of I(z) in the complex z plane have been investigated in
detail by Takahashi. Expressing (5) as a sum over hyper-
geometric functions he proved in particular that I(z) is
an infinitely many-valued function of z. There are loga-
rithmic branch points at z =+i /m, m = 1,2, 3. . .
Hence, z =0 is the accumulation point of these branch
points. Consequently, E( ,', ,', U) cannot be —rep—resented

by a Taylor series around U =0. Using this sum over hy-
pergeometric functions Economou and Poulopoulos sub-
sequently showed that I (z) can be expanded in an asymp-
totic series

fixed number X of particles with spin cr on a lattice with
L sites, with densities given by n =N /L, n =n

&
+n t.

We always take n —,', since the case —,
' &n 1 is ob-

tained from a particle-hole transformation.
In d =1 and for next-neighbor hopping the ground-

state energy E(n&, nt, U) has been calculated exactly.
For general densities n &, n ~ it is given implicitly by an in-
tegral equation. In the special case n& =n& =

—,
' (half-

filled band) this leads to an explicit expression

Ho g tij ciecj
lJ, C7

k, o.

H, =U+n tn g

J

(2a) I(z) + y p z +0(z &+
)

4

(2b) where

(3a)
(2m —1)(2 ' —1)[(2m —3)!!] $(2m + 1)

Pm i
( m —1 ) f 7J2~ + &

(6)

U 2 k+q, t kt k' —q, i k't
k, k', q

(3b)

where Ho is the kinetic (hopping) energy, H, is the on-
site interaction ( U )0), and c; (c; ) are creation (annihi-
lation) operators for spins o. on site i on a d-dimensional
lattice, whose corresponding counterparts in k space are
given by ak (ak ~. The respective number operators are
given by n; =c; c; and nk =ak ak~. We consider a

with ( —1)!!=1 and g is the Riemann zeta function. The
existence of such an expansion is in contrast to a proposi-
tion of Takahashi who asserted that t) E( —,', —,', U)/BU
diverges in the limit U —+0 . However, this divergence is
an artifact caused by an improper interchange of the lim-
it U~O+ and the to integral. Using (4) and (5) we calcu-
lated cjE(—,', —,', U)/BU numerically and found that it
uanishes linearly in U, the slope being given by the
fourth-order coefficient in (6). Similarly, calculating
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BE/BU numerically the second-order coefficient in (6)
came out correctly, too.

We note in passing that the existence of the asymptotic
expansion (6) rules out contributions to E of the form
U (lnU)~. On the other hand, exponentially small terms
of the form U exp( t /—U) connected with the (antiferro-
magnetic) instability of the ground state cannot be de-
scribed by (6).

The asymptotic expansion in d =1, (6), was derived
from the already existing exact solution. The question is
now whether (6) can also be obtained by other means,
such as standard perturbation theory for the Hubbard
Hamiltonian. If so, the same technique could also be ap-
plied in higher dimensions where exact results for the
ground-state energy are not available.

III. LEADING ORDER CORRELATION ENERGY

The ground-state energy of the Hubbard model can be
written as

E(n &, n i, U) =Eo(n &, n i )+ Un &n i+E,(n &, n i, U), (8)

where Eo is the ground-state energy for the noninteract-
ing case (U =0), Un &n &

is the first order correction (i.e.,
Eo+ Un

&
n

&
is the naive Hartree-Fock result) and E, is

referred to as "correlation energy. "
We will now put forward, and then investigate, the fol-

lowing conjectures.
(i) For small U the energy E, (n &, n &, U) is of order U .
(ii) The coefficient of the U term is produced correctly

by employing standard Goldstone perturbation theory on
the Hubbard Hamiltonian (1).

In d =1 the first conjecture is indeed proved to be
correct: for n&=n&= —,

' an asymptotic expansion, (6),
even exists, while for n

&
=n& & —,

' we checked it numeri-
cally by calculating E, for small U from the Lieb-Wu in-
tegral equations; ' for n

& &n
& E, is analytic in U =0.

The perturbation expansion of the ground-state energy
of the interacting system is given by

QO

E =Eo+($()IH, g Hi lgo), .
J=O 0 0

Here Ho is the free Hamiltonian, ~$0) is the ground state
and Eo is the ground-state energy of the noninteracting
system; H& is the perturbation. The matrix elements can
be represented by the Goldstone diagrams. The sub-
script "c" indicates that only connected diagrams must
be included.

For the Hubbard model Ho and H& are given by (2)
and (3) respectively. The noninteracting ground state

~ $0 ) is a Fermi sea of Bloch waves

~~.&= n ' rr ' ~».
k kFl k' kF

(10)

where ~0) is the vacuum state.
The first-order contribution is immediately obtained as

Ei = (PO~H, ~PO) =LUn&n&. In second order we have to
calculate the diagram in Fig. 1. Usually there are two
second-order diagrams; however, for the Hubbard in-
teraction only one of them contributes. Using the rules
for evaluating Goldstone diagrams' we find

LU n~tnq, i(1—ni, +qt )(1 nq q—i ).
E2 =

&
dk dk'dq

(2~)'~ ~k+ ~k' ~k+q ~k' —q

The k, k', q integrations extend over the first Brillouin
zone; k+q and k' —q are defined up to reciprocal lattice
vectors, i.e., Umklapp processes must be included; nk is
the k-space occupation of the noninteracting system.

For d = 1 and next-neighbor hopping we have
ok= —2t cosk, where the lattice constant a —= 1. In this

)ik+q

FIG. 1. Second-order Cxoldstone diagram.

case E2 can be calculated analytically for n i =n
&
=

—,
' (see

the Appendix). The result is

Q2
, g(3) (12)

16m
E /L=—2

in agreement with Eqs. (4) and (6). Thus, in this case per-
turbation theory yields the exact asymptotic result, i.e.,
the second conjecture is also confirmed. This amends an
earlier result, which was obtained numerically from an
incorrect expression for the second-order perturbation
contribution E2. For n~ =n~ (—,

' we have evaluated the
integral in Eq. (11) numerically. Again the result coin-
cides with the exact asymptotic U contribution as ob-
tained by numerical integration of the Lieb-Wu equa-
tions. We note that at half-filling E2 approximates E,
very well (error (10%) even for intermediate coupling
strengths (U/t &10). In this regime the fourth-order
contribution is no more negligible and is partially com-
pensated by the remaining nonanalytical contributions.

Encouraged by these results we used Eq. (11) to calcu-
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late Ez also for higher dimensional lattices, i.e., on a
square lattice in d =2 and a simple-cubic lattice in
d =3, "where for next-neighbor hopping

d

Ek — 2t g coskj
j=1

(13)

FIG. 2. Second-order correlation energy as a function of the
density n for various lattice dimensions d.

one obtains a coefBcient for the U correction to the
ground-state energy which agrees with the exact
coefficient in (6) within numerical accuracy. ' Since
n t

= n t
=

—,
' is the most delicate case [there is a cusp in

the ground-state energy as a function of n &, n
&

in
n

&
=n i =

—,
' for any nonzero U (Ref. 4)] it is plausible to

conclude that perturbation theory yields the correct U
term for all n &, n &.

In sixth order some of the Goldstone diagrams are
divergent. Consider, for instance, the diagram shown in
Fig. 3(a) in d =1 for simplicity (a generalization of the
subsequent discussion to arbitrary d is straightforward).
The intermediate state ak+~ ak ak. ~ ak. ~Po)
occurs three times, giving rise to a factor (e& sk—+k k+q
+cI, —sk ) . The corresponding excitation energy
C Ck Ck +q

+Ck Ck q
vanishes for

q =0, k = +kF, k'=+kF

and, if kF &

= k~& =kF (i.e., n
&

=n i ), for

q ——+2k„, k =+k„k'=+k, .

(14a)

(14b)

For small deviations of (q, k, k'), with ~k~ (kF,. Ik+ql & k+., Ik' ql &kz, — from a point
(qo, ko, ko) for which s vanishes, the excitation energy s
is proportional to

This energy dispersion has the perfect-nesting property
sk gs+Q/p where Q is a reciprocal-lattice vector. This
implies that for U )0 antiferromagnetic correlations ex-
ist in any dimension, leading to nonanalytic contribu-
tions to the ground-state energy for small U. Hence as in
d = 1, a Taylor expansion around U =0 is ruled out, but
an asymptotic expansion is not affected by such exponen-
tially small terms. For d =2 and 3 the integral (11) has
been evaluated by Monte Carlo techniques. In Fig. 2 we
show Ez as a function of n (ni=ni). For d=2, 3 the
correlation energy is proportional to n for small densi-
ties. In d =1 we find Ez ~ n for small n. This is due to
the algebraic van Hove singularity in the density of states
at the minimum of c,k in one dimension.

A calculation of Ez is also possible in d = ~, where the
evaluation of the integral (11) becomes particularly sim-
ple. Note that Ez scales like d ' for large dimensions
and fixed hopping amplitude t. Hence Ez d'~ is

aconite

quantity in d = ~ ~ The result yields a very good approxi-
mation of that in d =3 and will be published elsewhere'
together with a presentation of the method of how to cal-
culate in d = ~ and other results for the Hubbard model
lnd=~.

k'-q )i k)g

k)
l(-,

—-(~ ~l( )+q,+q +q~

IV. HIGHER ORDERS

The above results suggest that perturbation theory also
yields the higher-order corrections in U. To investigate
this we calculated the fourth-order perturbation contri-
bution for n t =n i =

—,
' in d = 1 (the odd-order terms are

zero, due to particle-hole symmetry) and compared with
(6). The evaluation of the relevant Goldstone diagrams, '

altogether 15 diagrams, was carried out numerically by a
Monte Carlo technique. Summing up all the diagrams

kz+qzl~~l '-
k+gg

k

FIG. 3. Divergent sixth-order diagrams.
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5—:[(q —qo)2+(k —ko) +(k' —ko) ]'~

The integration volume of a 5 neighborhood of
(qo, ko, k o ) is proportional to 5 . Since e o: 5 the
q, k, k' integrations diverge logarithmically. Note that
the factors corresponding to the other intermediate states

ak +q ~ak ~ak+q ak+q ak q pQk Ipo

are finite and nonzero in (qo, ko, ko ). The diagram shown

in Fig. 3(b) diverges too. This divergence is due to the
same poles as in the graph in Fig. 3(a). The signs of the
diagrams (determined by the number of loops and hole
lines, see Ref. 10) are opposite. It is easy to see that the
sum of both diagrams (including the signs) gives a con-
vergent integral, i.e., the divergencies cancel each other.
Collecting all divergent diagrams in sixth order one finds

that their sum defines a conuergent integral. Generally
speaking, one obtains finite contributions in each finite
order of perturbation theory if one performs the momen-
tum integrals after having summed up all the correspond-
ing diagrams. Of course, the sum over all orders in U
may nevertheless be divergent [the series in (6) is diver-
gent for arbitrarily small U]. In view of the fact that per-
turbation theory is correct up to forth order in U and
finite in each finite order, we believe that perturbation
theory reproduces the complete asymptotic expansion of
the ground-state energy of the one-dimensional Hubbard
model.

In higher dimensions d =2, 3, . . . there is no exact re-
sult for the ground-state energy to compare with. How-
ever, as far as perturbation theory is concerned, there are
no qualitative changes in d & 1: each other yields well-
defined finite expressions. Hence, we expect that also in
this case perturbation theory produces the weak-coupling
limit of the correlation energy.

We finally remark that there are two different ways of
defining the ground-state energy of an infinitely large sys-
tem. One way is to simply take the lowest eigenvalue of
the Hamiltonian in the thermodynamic limit. Alterna-
tively, one may define the ground-state energy as the en-
ergy of an infinitely large system at temperature T, in the
limit T~O. The Goldstone formula used in this paper is
based on the first version. Kohn and Luttinger' realized
that the above definitions of the term "ground-state ener-
gy" are not generally equivalent. However, if the unper-
turbed energies of the particles and their interactions
are spatially isotropic, both definitions yield the same
energy. ' The one-dimensional Hubbard model is indeed
isotropic. In second-order perturbation theory, the
difference between both ground-state energies is'

calculation. Hence, at least up to second order in U there
is no ambiguity in the definition of the ground-state ener-
gy of the d-dimensional Hubbard model.

In actual experiments one can neither measure at zero
temperature, nor is the system infinitely large. However,
for typical applications of the Hubbard model in con-
densed matter physics the limit T~O should be taken
after performing the thermodynamic limit, since the level
spacing of the unperturbed system is usually many orders
of magnitude smaller than kz T.

V. CONCLUSION

The perturbation expansion for the ground-state ener-
gy of the Hubbard model has been investigated. We have
shown that perturbation theory yields finite contributions
in each order in the coupling constant U. Comparing
with the exact asymptotic expansion of the ground-state
energy in d = 1, we proved that perturbation theory de-
scribes the asymptotic behavior ( U contribution) of the
ground-state energy in d =1 correctly. We then calculat-
ed the correlation energy for higher dimensions in lead-
ing order of the coupling constant and conjectured that
perturbation theory even yields the exact results in higher
orders and, in particular, in higher dimensions. A
rigorous proof of this conjecture would certainly be very
interesting. Our results for the weak-coupling limit of
the Hubbard model may be of relevance for current in-
vestigations of the ground-state properties of the two-
dimensional model in the context of high-T, supercon-
ductivity. ' Besides the fact that the weak-coupling re-
gime is of interest by itself, e.g., in view of scaling ap-
proaches, ' our results allow for an explicit assessment of
the small U behavior of specific variational wave func-
tions, which are thought to describe the ground state in
the strong-coupling regime. ' ' '
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APPENDIX: CALCULATION OF E2
FOR d =1 AND n ~

=n
~
=

2

For a one-dimensional lattice chain with lattice con-
stant a = 1 the first Brillouin zone (BZ) lies in the interval
[ qr, qr ], further—more n k

=6(k~ —
~
k

~ ) where kz
=m.n =~/2 for nt =n~ =

—,'. We define

1 [~&i (Po)/~)Po]'
E2 = lim 02"(po) ——

~'&o(S o)/~no and

n (k, q) =n„(1 nk+ )—
where Qo denotes the unperturbed grand-canonical po-
tential, 0, the first-order Goldstone contribution and Qz
the second-order contribution of anomalous diagrams
(not included in Goldstone's expansion), po is the unper-
turbed chemical potential. For the Hubbard model Ez is
zero in arbitrary dimensions, as is easily seen by explicit

E(k~q) Ek+q sk

the latter being the excitation energy for an electron-hole
pair. For next-neighbor hopping with amplitude t =1
we have Ek= —2cosk and thus s(k, q)=4sin(k+q/
2)sin(q/2). Inserting this into (11) and using inversion
symmetry we find
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n &(k, q)n &(k', q)
E2/L =—, . dk dk'

(2~)3 o 2 sin(q/2) —~ sin(k +q/2)+sin(k'+q/2)

Substituting p =k +q/2, p'= k'+q/2 one obtains We finally substitute z = tan (q/4) and find

E2/L = — f dq . J(q),
(2~)3 o 2 sin q/2

where

e/2 dp dp'
0 cosp +cosp

Integration over p' and the substitution y =tan(p/
2)tan(q/4) yields

tan (q/4) dy 1+y
o y 1 —y

Using

1+y co 2j+1
ln =2

1 —y . o2j+1
we obtain the result

oo
1

E2/L =—
2n J =o (2j + 1)

g(3) U
16~
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