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Fermionic lattice models with internally competing symmetries:
Nontrivial algebraic corrections in the Hartree-Fock ground-state energy
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We show that even for homogeneous ground states the Hartree-Fock (HF) energy of fermionic lattice
models may contain nontrivial algebraic corrections in the interaction. Hence the standard HF result for
the energy, i.e., the linear dependence on the interaction, is found to be nongeneric. Algebraic correc-
tions will appear in the HF energy whenever the k-space symmetry of the interaction is different from
that of the kinetic energy, this being the generic case. The ensuing symmetry conflict leads to a distor-
tion of the noninteracting Fermi surface. The energy corrections are explicitly evaluated for a general-
ized, two-dimensional Hubbard model with nearest-neighbor hopping and interaction along the diago-
nal. Algebraic corrections in the HF ground-state energy due to spontaneously broken symmetries may
only occur if ek, the dispersion of free particles, has a special form.

I. INTRODUCTION

Fermionic lattice models, such as the Hubbard model
and its generalizations, are investigated to gain qualita-
tive insight into the fundamental interaction and correla-
tion effects in realistic condensed-matter systems. In
view of the well-known technical problems involved in
such investigations the application of approximations be-
comes inevitable. A standard approximation scheme for
interacting electronic systems is the Hartree-Fock (HF)
theory. ' In this self-consistent one-particle theory true
correlations (i.e. two-particle effects) are neglected.
Hence HF becomes exact only in the limit of small parti-
cle density and/or weak interaction. HF theory has been
extensively used in the investigation of continuum mod-
els. It also serves as a natural first step in the study of
fermionic lattice models (e.g. , the Hubbard model ) which
have recently received particular attention in the context
of high-T, superconductivity.

In contrast to the case of continuum models the ex-
istence of an underlying periodicity in lattice systems nat-
urally opens the possibility for long-range positional or-
der of particles, e.g., spin- or charge-density waves. This
kind of ordering can already be described, although rath-
er crudely, on the HF level. Using HF wave functions
with a broken symmetry, i.e., containing one or more or-
der parameters, correlation effects can thus be "mirn-
icked" even within HF theory. This theory is therefore
often used to obtain at least a rough description of the
possible type of ordering in interacting systems.

In the following we will consider Hubbard-type fer-
mionic lattice models:
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with A'k;„and Dt as the kinetic and interaction energy
operators, respectively:

ij ap
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with the complex number

E= g g V;;~[(c,pc;tj)(c;+c; )
ij ajg

—(cjpe, )(c,+c;p) j . (2b)

The angular brackets stand for the ground-state expecta-
tion value at T =0.

Equation (2) stands for a self-consistency problem:
finding the ground state 4H„of8 =8k;„+St,where
Pt" itself depends also on 4HF. This self-consistency
problem is, in general, arbitrarily complicated because in
the lattice problem under investigation the lattice transla-
tional symmetry of the ground state may be spontaneous-
ly broken in some sophisticated way. In this situation the
state @H„andthe HF potential will depend on a (in prin-
ciple macroscopically large) number of order parameters.
Hence, even though it is a single-particle problem there
does not exist a systematic procedure to find the ground
state of the HF Hamiltonian 8 ".

In the rest of the paper we shall use the term transla-
tional symmetry referring to the discrete translational

Here i and j refer to lattice sites, while k is the wave vec-
tor with c; (c;+ ) and 8k (&k ) as the corresponding an-
nihilation (creation) operators and jt; =c;+c;,it k
=8k 8k . The indices a,p describe internal degrees of
freedom, such as spin and/or band quantum numbers.
The interaction is assumed to be translationally invariant,
with V;f = V~ = V ~( ~i

—j ~
). It may have a purely local

part, in which case it is a Hubbard interaction, as well as
nearest-neighbor and next-nearest-neighbor contribu-
tions, etc. The parameter A, in (lc) is a small coupling pa-
rameter which will help us to keep track of the order of
perturbation theory in 8t. In HF theory the interaction
term is linearized (mean-field approximation), 8t ~Pt ",
where
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symmetry of the lattice. In this sense "homogeneous"
means discrete translationally invariant if we refer to lat-
tice models. Assuming such a homogeneous solution and
particle conservation for each electron species a the self-
consistency problem (2) is simplified considerably. It is
still not trivial for general interactions as we will demon-
strate in Sec. II. The HF Hamiltonian can be suitably ex-
pressed in k space

(3a)

where

(3b)

This momentum distribution is given by

nz =8 ei, +—v&[[nz ]] EF— (4b)

where E~ is the Fermi energy. The factor —,
' accounts for

E as explained in Ref. 7. The self-consistency problem is
now the following: One searches for a set [nz ] which
fulfills (4b) self-consistently. This determines the Fermi
surface.

On a diagrammatic level the HF approximation sums a
certain class of diagrams which include diagrams of all
orders in the interaction. One may therefore ask wheth-
er or not the weak-coupling expansion of the HF
ground-state energy in terms of the interaction leads to
arbitrary powers in this interaction. On the other hand,
it is common knowledge that for a homogeneous ground
state the HF ground-state energy of continuum models,
and even the Hubbard model, only acquires a linear shift
by the interaction, while the existence of long-range order
in the ground state (e.g., a spin-density wave in the case
of the Hubbard model) only produces a nonanalytically
small lowering of the energy on top of the linear shift.
In fact, the term "HF energy" is often used synonymous-
ly for an energy with a linear shift due to the interaction.
(Here we only address the ground state; at finite tempera-
tures algebraic corrections can be expected to enter any-
way). The question is then whether this is the only possi-
ble outcome even for more general models than the Hub-
bard model. In other words: is it possible that the HF
ground-state energy ever contains algebraic corrections in
the interaction parameters ( —V,a ) 1, where V is a typ-
ical interaction constant)? Such corrections are usually
associated with genuine (two-particle) correlation effects
in which case they appear in standard perturbation
theory.

%e will show below that the answer to the latter ques-
tion is yes: even for homogeneous solutions the ground-
state energy may contain algebraic corrections in the in-

is the HF potential with V&~ as the Fourier transform of
V;&~. Note that for the Hubbard model, where the ex-
change term [second term on the right-hand side of (3b)]
is absent, HF theory reduces to the Hartree approxima-
tion. The HF potential vz depends on the amplitudes

(4a)

teraction parameters, provided that the symmetry in k
space of different parts of the Hamiltonian is different.
This competition of internal symmetries expresses itself
in a distortion of the Fermi surface, which then leads to
the above algebraic corrections even within HF. Of
course the Fermi surface mill always be distorted by
genuine (two-particle) correlation effects [see, for exam-

ple, Fig. 1(a) for a typical second-order correlation contri-
bution to the self-energy]. ' ' Within perturbation
theory these correlations give k states a finite lifetime; so
the term "Fermi surface" refers to quasiparticles in this
case.

Algebraic corrections in the HF ground state may even
appear in the case of ground states with spontaneously
broken symmetries (which generally only leads to
nonanalytically small correction). However, this is only
possible for very special dispersion relations e&. In Sec. II
we will discuss the situation for a homogeneous ground
state, and in Sec. III the case of spontaneously broken
symmetries. In Sec. IV a discussion will end the presen-
tation.

II. HOMOGENEOUS GROUND STATE

Most fermionic lattice models used to study correlation
effects have a rather simple structure. For example, the
kinetic energy usually involves only nearest neighbors
and the interaction is reduced to on-site and/or nearest-
neighbor coupling. Indeed the models have to be simple
to allow for investigations at all, since even the simplest
of these models defines a highly complicated quantum-
mechanical many-body problem, which typically cannot
be solved even in d =1 dimension. Their simplicity usu-

ally makes them highly symmetric, i.e., the Fermi surface
corresponding to ei, +(A, /2) Vi, in (4b) has the same shape
as that of the noninteracting case. (This is, for example,
the case of the Hubbard model; see below). In this situa-
tion the noninteracting ground state 40, reQecting the E'],

relation, is a self-consistent solution of the HF equations,
too. Consequently, the HF ground-state energy is found
to depend only /inearly on the coupling constant A.,

E„„=E,+X(e,ilia, &,

where Eo is the energy of the free system. It is this well-
known, rather uninteresting result which is found by
strictly applying a T =0 perturbation formalism. ' Such
a formalism is captured in the symmetry class defined by
the free case and the corresponding ground state. This
shortcoming of the general T=O formalism was first

/
I

I \

FIG. 1. Diagrammatic second-order contributions to the
self-energy: (a) genuine two-particle correlation; {b) pure ex-
change contribution within Hartree Fock (anomalous diagram).
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pointed out by Kohn and Luttinger' and Luttinger and
Ward. ' They showed that the problem can be solved by
using a finite-T formalism in the limit T~O. ' In this
way the so-called "anomalous" diagrams, which do not
contribute in the T =0 formalism, ' ' are properly in-
cluded. The scheme can also be applied to the HF dia-
grams only [see, for example, Fig. 1(b) for a typical Pock
contribution to second order in the interaction]. One can
easily convince oneself that all HF diagrams beyond jirst
order are anoma1ous. In e6'ect this amounts to the result
expressed by Eq. (5).

Nevertheless, even when the anomalous diagrams are
properly taken care of by the above-mentioned scheme, it
turns out that they give zero contribution unless the in-
teraction term in the Hamiltonian has a diferent symme
try than that of the kinetic energy. As already stated this
means that the Fermi surface corresponding to
ez+ (A, /2)v P in (4b) must have a difFerent shape than that
corresponding to ek.

To elucidate this point and its implications for the
ground-state energy one may take the Hubbard model as
an example (in this case a —= cr = 1 or 1, A, = U,

V;; =5;&5, t,~
= t f—or—nearest-neighbor hopping

only). The Fock term in (3) vanishes then and
A, Uk =Un is a constant. Hence, the Fermi surfaces
corresponding to e& and e„+—,

' Un, respectively, have
the same shape. This also shows that pure Hartree con-
tributions cannot change the Fermi surface and that, if at
all, it will be the exchange contributions, i.e., the Fock
term in (3), that leads to a distortion. Nevertheless, a
generalization of the interaction to a nearest-neighbor in-
teraction, giving rise to an exchange term, will still not
distort the Fermi surface because its Fourier transform is
proportional to e&. If the kinetic energy connects only
nearest neighbors this shows that a Fermi-surface distor-
tion requires interaction beyond nearest neighbors, e.g. ,
along a diagonal on a hypercubic lattice.

A. Second-order contributions to the Hartree-Pock
ground-state energy

To obtain quantitative insight into the distortion of the
Fermi surface within HF theory and hence of the change
in the HF ground energy, we now calculate the second-
order contribution to the HF ground-state energy, EHF.
Expanding the self-consistency equation (4b) to second
order in A, one obtains, omitting the factor A. ,

—t g c, c, + U g lt;t h;t
(ij),o i

+g Vgh; h'; +UD+h; hj ~

[i ]

(8)

which includes interactions between nearest neighbors
(summation index (ij) ) and next-nearest neighbors, i.e.,
along the diagonal (summation index [ij]), respectively.
As argued above only the latter interaction, proportional
to UD, contributes to EH„'. The result is shown in Fig. 2
as a function of the particle density n. For small n one
has

1 I
1/2

E(2)—
27

n' 1 — n+8(n ) UD ~

where the hopping element t has been set to unity and the
energy is given per site. On the other hand, near half-
filling, logarithmic terms appear and the curve asymptoti-
cally acquires a parabolic shape. Parametrizing n and

EHF by the chemical potential p yields

EHF
(2)—

3
v'2

)Lt (Inlpl+1 —41n2) UD

+higher terms,

n = 1+ ~
( In l p l

—1 —4 ln2 ) +higher terms .
7r2

(10a)

(lob)

B. Higher-order corrections

Next we will investigate the implications of a Uanishing
EH„'. To this end we state, and then prove, the following
theorem.

Theorem: If Egz defined in (6) vanishes, the ground

0.00

The fact that EH2F vanishes at half filling (n = 1) is not ac-
cidental. For n =1 the diamond-shaped Fermi surface
implies that the HF potential Uk has the perfect-nesting-
like property U k + U z+& =const for all k, where
g=(m, n). This fact in turn implies that for n =1 vf is
constant at the diamond-shaped Fermi surface. Hence,
according to (6), no quadratic corrections will appear.

E~ ' = —~LN(Eo)(v~ —„~)z (6)

where I. is the number of lattice sites, EF is the Fermi en-
ergy for A. =0, N (E) is the density of states, and a bar in-
dicates the average over the noninteracting Fermi surface
at =0,

vz=[LN(EF)] '+5(ep EF)vg lg=p—
k, a

Note, that (6) can also be obtained using the approach of
Kohn and Luttinger' ' (see, Ref. 13) for HF diagrams.
EH„' is proportional to the fluctuation of the HF potential
at the Fermi surface. We wi11 now apply the above re-
sults to a two-dimensional, generalized Hubbard model
on a square lattice

~ —0.04-

—0.08
0.0

I

0.5
density n

1.0

FIG. 2. Second-order Hartree-Fock ground-state energy
correction E'HF, Eq. (6}, in units of UDlt per site, vs particle
density n.
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state of the noninteracting system is the self-consistent,
homogeneous solution of the HF problem within a cer-
tain interval [A, , A, + ] of the coupling constant A, .

Here a "homogeneous" solution is one without a bro-
ken symmetry. If the precondition (homogeneous solu-
tion and A,e[A, , A.+]) are met, one is thus led back to (5)
for the ground-state energy, i.e., there is only a linear
dependence on A,. If they are not fu16lled higher correc-
tions in A, will typically occur. For the proof of the
theorem we consider the linearized Hamiltonian

a ~ a
Shorn g ek+ Vk ~ku

2

where uk is the HF potential defined in (3b).
The ground-state energy of 8h, has to be minimized.

This amounts up to occupying the lowest N k states with
respect to the effective dispersion ek+(A, I2)v .kThe re-
sulting Fermi body can be, but need not be, identical to
the free one since the precondition requires v & to be con-
stant at the Fermi surface, i.e. the noninteracting Fermi
surface is an equipotential surface for the HF potential,
too. Let p+ be the value of v& at the Fermi surface. The
noninteracting Fermi body contains the lowest-lying
states for the effective dispersion if A, lies in the interval
[A, , A, +] where

P E'g

A, +=mf 2 (Iu —ek)(uk —}u+)&O, kFBZ
Vg P+

(12a)

P E'g

=sup 2 (p —ek)(uf —p+)&O, kEBZ
Vk p+

(12b)

p 6k
2 & A+ & A, sgn(p, —ek)

P+

BZ stands for the Brillouin zone.
This results from the following argument. The new

chemical potential in the interacting case is p+(A, l2)p+.
If (p —ek )( u f —p+ ) & 0, then

cases conceivable where the interval [A, , A, +] only en-
closes zero.

III. GROUND STATES
WITH SPONTANEOUSLY BROKEN SYMMETRY

In the last section a quadratic interaction term was
shown to appear in the HF ground-state energy if the
Fock potential had a different k space symmetry than the
kinetic energy. This symmetry conflict is therefore a
necessary consequence of the built-in symmetries of
different parts of the Hamiltonian. In particular, it is not
a dynamic effect such as the occurrence of a spontaneous-
ly broken symmetry of the ground state.

We will now discuss ground states with spontaneously
broken symmetries and how, within HF theory, breaking
of a symmetry may lower the ground-state energy with
respect to the homogeneous solution. We focus in the
following on the difference between homogeneous and
nonhomogeneous solutions. Let us take a Hamiltonian of
the form (11),

4=k, +bk, + (15)

Since we are only interested in the weak-cou ling behav-
ior we neglect higher orders in b and set

&
constant.

The additional term A,b@', in the Hamiltonian produces
some correction to the ground state,

(14)

where 4[4,4] is a one-particle operator which has been
obtained by linearizing a two-particle operator using the
state 4. More generally, using different bra and ket
states 4, and 42, one may de6ne an operator-valued
function &[4,,4z] which depends antilinearly on 4,
and 42.

Suppose we had found a homogeneous self-consistent
solution @o of (14) which defines ko. =@'[4u,4u].
may depend on A, if an internal symmetry competition re-
quires this (see Sec. II). Thus the corresponding energy
and ko may also be A, dependent. Now we want to inves-
tigate the dependence of a symmetry-breaking order pa-
rameter b(A, ) on A, for A, ~O, which parametrizes the de-
viation from 8'0,

=sgn p+ —p+ — e&+—v & (13a) 4=40+ A (Ab )@i+ (16)

If (p, —ek }(vk —p+ ) &0, then

P E')

2 & A, & A, ~sgn(p —ek)
P+

=sgn p+ p+ &g+ (13b)

Again we neglect higher-order terms, setting 4, constant.
Due to norm conservation of 4 and the free choice of
phase we may assume

(17)

This concludes the derivation. Of course A, =O will al-
ways be an element of the interval [A, ,A, +]. It may hap-
pen that one of the limits is zero, e.g., if the gradient of
the free dispersion relation is zero on the Fermi surface
while the gradient of the HF potential remains Snite.
This indicates that the free ground state is instable
against a perturbation of the form of v&. There are even

A(x) is a real-valued function which expresses how
strongly the system will respond to the perturbation.
Normally ordinary perturbation theory tells us that
A(x}=x, i.e., the response of the system will be of the
same order as the perturbation. Deviation from this be-
havior will be discussed a little later in some detail. So
far, 4, is determined by @',. As the HF procedure is
self-consistent the converse is also true:
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k= w[e, e]
= lV[4O, 40]+ A (Ab )( W[@o,@,]+&[4,, &o])

+ 0 ~ ~

This implies @",=( k[4o,4, ]+&[4„4z]) and hence

b(A. )= A [Ab(A, )] . (19)

This is the essential equation. Before we enter in its dis-
cussion we add the expansion of the HF ground-state en-
ergy,

E=
& ~18„,„+~@~+ &

=E + A(&4, ~8k;„+A,W~4, &+h. c. )+
E=E,(~)—Xb(&@,lkol@0&+h. c. )

+b'X(&~ ilail~»&+h. c. )+

(20a)

(20b)

where we made use of (19) and of the fact that 40 is an
eigenstate of 8k;„. In addition, the first term in (20b)
usually vanishes, e.g., when 40 is a product of momen-
tum eigenstates and Wo is diagonal in k space. Equations
(20) tell us how the energy lowering due to spontaneous
symmetry breaking depends on the behavior of the order
parameter b.

The simplest consequence of (19) is the following: If in
(19) A (x) is proportional to x for small arguments as in
ordinary perturbation theory, no spontaneous symmetry
breaking is possible at A, =O. Of course, the symmetry
might break spontaneously at finite A, . This question can-
not be answered within the present framework. It is
sufficient that

~
A (x)

~

& cx for some c & 0 to exclude spon-
taneous symmetry breaking at A, =O. Thus A (x) has to
vanish slower than linearly to enable spontaneous sym-
metry breaking. To make this point clear we pass to the
derivative A '(x) which can be viewed as a measure of the
susceptibility of the free system toward the perturbation
ki. For A (x) to have a sublinear behavior A'(x) has to
diverge for x ~0. This is the physically well-known fact
that the susceptibility diverges at a phase transition.

Assume, for example, a logarithmic divergence of
A'(x). Then A(x) behaves as —x ln(x). Inserting this
into (19) we find

power-law dependence greater than linear [see (20b)].
The question arises, however, as to which divergence of
the susceptibility is physically likely to appear. The fol-
lowing qualitative argument shows that the logarithmic
divergence of the susceptibility is the most common.

To calculate the susceptibility, first-order perturbation
theory is used where simple energy denominators are in-
volved. The susceptibility diverges only if the perturba-
tion of a certain number of states displays vanishing ener-
gy denominators. These states have to be near the Fermi
surface, otherwise their change shows no effect. At best,
a finite part of the Fermi surface is concerned. If the Fer-
mi body is d dimensional, this part is (d —1) dimensional
and will contribute to the susceptibility as

A'(x)- f -lnxdk
IkF kl x EF Ek

(23)

E,l-lk k—,l, 1&—a,
as shown in Fig. 3, the susceptibility will diverge like

(24)

k —kl — k
(25)

Note that (1—a)/a & —1. This situation produces alge-
braic corrections to the ground state and the ground-state

if the energy denominators vanish linearly on approach-
ing the Fermi surface. Using the order of magnitude of
the applied perturbation as cutoff in (23) we obtain the
logarithmic divergent susceptibility A (x). Hence the or-
der parameter —and thus the additional energy lowering
[see (20)]—will be nonalgebraically small at X=O as
shown in (21). As an example one may take the one- or
three-dimensional Hubbard model with perfect nesting.
The two-dimensional Hubbard model with perfect nest-
ing displays an additional feature due to the singular
corners of the diamond-shaped Fermi surface. Its suscep-
tibility diverges like [ln(x)] (see, for example, Ref. 17).

We think that the above argument describes the actual
physical situation. Yet it is not possible to exclude
stronger divergences completely. If, for example, the en-
ergy dispersion relation is such that

b(A, ) =( I/A, )exp( —I /k), (21)

i.e., the order parameter emerges nonalgebraically, i.e.,
very slowly.

Assuming a power law divergence A'(x)-1/(x~), 1

&y &0 leads to A(x)-(x" ~')/(1 —y) and to

b(k)-k" (22)

It can be seen from the last equation that in principle b
can have any power-law behavior. If A'(x) diverges
more strongly than 1/x there is no A(x) with A(0)=0.
This is not physically reasonable since it would mean that
the assumed free ground state is not stable, even without
any interaction.

Since b(A, ) can have any power-law dependence we are
led to the result that in principle the energy correction
due to spontaneous symmetry breaking can have any

0
N

Q
C4
N

—1.0
I

—05
I

0.0 0.5
wave vector k/vr

FIG. 3. Example of an energy dispersion of noninteracting
particles for which algebraic corrections in the Hartree-Pock
ground-state energy may appear due to a spontaneously broken
symmetry of the ground state.
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energy which are due to the spontaneous symmetry
breaking. But the behavior of the dispersion relation at
the Fermi energy necessary for that is somehow artificial.

Note that the susceptibility often does not diverge even
though the energy denominators vanish, because the
measure of the respective points at the Fermi surface is
zero. This is the generic case for the Hubbard model in
any but two dimensions without perfect nesting, see also
Ref. 17.

IV. DISCUSSION

In this paper we investigated the interaction depen-
dence of the HF ground-state energy for fermionic lattice
models in the weak coupling limit. For homogeneous
ground states, i.e., those without a broken symmetry, we
found that the standard HF result, namely the linear
dependence of the HF energy on the interaction, is actu-
ally not the generic case. We show that a purely linear
shift is only obtained if the interaction, i.e., the HF po-
tential, does not change the shape of the Fermi surface of
the noninteracting particles. In this situation the nonin-
teracting ground state is also the lowest-energy solution
of the HF problem. Indeed, for the majority of fermionic
lattice models, where the kinetic energy only involves
nearest-neighbor hopping and the interaction acts only
on-site and/or between nearest neighbors, this is the case.
However, the compatibility of the interaction with the
noninteracting Fermi surface in models is only acciden-
tal, being a consequence of the self-chosen simplicity of
the model which tnakes it highly symmetric. For any
somewhat more structured interaction, e.g., along a diag-
onal on a hypercubic lattice, the k-space symmetry of the
Fock contribution will compete with that of e&, causing a
distortion of the noninteracting Fermi surface. This dis-

tortion in turn will lead to additional algebraic interac-
tion terms in the HF ground-state energy which are usu-
ally expected to enter only through pure two-particle
correlation efFects. This is the generic case. We explicitly
calculated the second-order contribution to the HF ener-

gy for a generalized two-dimensional Hubbard model
with interaction along the diagonal.

It should be noted that the above algebraic corrections
are only nontrivial if in the model under consideration
the particle number in a given band or for a given spin
direction is a conserved quantity. If the particle numbers
are not constant, as for example in the two-band periodic
Anderson model where conduction and f electrons hybri-
dize, such terms automatically appear irrespective of the
type of the interaction.

In the case of ground states with spontaneously broken
symmetry, we find that corrections to the HF energy of a
homogeneous ground state generically are nonanalytical-
ly small. Our argument holds also if the homogeneous
solution is already A, dependent. Algebraic corrections
due to spontaneously broken symmetry may only arise if
the dispersion of free electrons has rather special
features.
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