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In the last few years significant theoretical progress has been made in our understanding
of the physics and quality of Gutzwiller-type variational wave functions for correlated
Fermi systems. In particular, new analytic techniques are now available that allow for exact
evaluations of expectation values. A brief review of the state-of-the-art is presented.

1. Introduction

In view of the tremendous, in general insurmountable, difficulties involved in
any exact treatment of interacting quantum mechanical many-body systems,
variational wave functions (VWF) are among the very few tools that allow for
direct, explicit investigations. Although usually they only yield approximate
results, they have the advantage of being physically intuitive and that they can be
“custom-tailored” to a particular problem. Furthermore, they can be used even
when standard perturbational methods fail or are inapplicable.

VWFs have been extensively used in the investigations of the quantum liquids
4He and 3He.! Based on the Jastrow-Feenberg approach a VWF |¥) is
constructed by letting a correlation operator C act on a suitably chosen (simple)
one-particle starting wave function | ) as

¥ = C|do) - (1)

Here C describes the microscopic interaction between the particles in some
parametrized form. This VWF is then used to calculate expectation values of
some operator O

. (¥|0|W

2
¥ @

In particular, by calculating and minimizing the ground state energy E.,, = (H),
where H is the Hamiltonian, the variational parameters contained in C (and
perhaps also in |¢g)) can be obtained. The variational principle guarantees that
E, .. provides an upper limit for the exact ground state energy.
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particular importance was the so-called “Gutzwiller approximation” for the
ground state energy,® which corresponds to a semi-classical counting method of
spin configurations.” Within this approximation one finds a transition to a
localized state at half-filling (n = 1), which occurs at a finite interaction strength
U (“Brinkman-Rice transition”®). It leads to simple, “physical” results for a
number of problems (metal-insulator transition,®° normal liquid *He,* heavy
fermions'® etc.) and allows one to make contact with well-established theories
like Fermi liquid theory (“almost localized Fermi liquid™?).

2. [Exact, Analytic Evaluations in d =1

Nevertheless, exact analytic evaluations of expectation values in terms of (5)
for arbitrary interaction strength and band filling were not possible for a long
time. Only recently did it become clear that exact evaluations are indeed tractable
by a suitable choice of the expansion parameters and the definition of special
(“é-less”) contractions, which only involve anticommuting numbers.’ Noting that
D, = Afy;, is a purely local operator such that the sum D = 3.D, involves only
different sites, expectation values (0), (2), in terms of (5b) may be written as a
sum over different lattice sites only. Thus (O) takes the form®

©) = Y Oult - ", (6)
m=0

where 1 - g><I is the expansion parameter and the coefficients @,,, which only
depend on the density #, can be calculated explicitly by standard field theoretic
techniques. These only involve the abovementioned special contractions since all
lattice sites are different. The coefficients @,, correspond to diagrams, whose
structure is identical to that of diagrams in any ¢*-theory. In this way it is
generally possible to calculate all orders of @, in dimension d = 1. In particular,
it is possible to evaluate the momentum distribution {#A,,) — and hence the
kinetic energy — as well as the interaction part (D). After minimization w.r.t. g
this yields the variational ground state energy E(n,U) of the Hubbard model, (3).°
For n=1 and large U the optimized value of g is given by g=(U In T)~ !, such
that

4\2 2 1 (7)
E=- (n) UlnU”’

where U= U/ |g;| with g as the energy of the uncorrelated particles. Hence the
exact result for the ground state energy, ~ - 2/U,'? is here found to be multiplied
by a nonanalytic factor 1/In U, which increases the energy considerably. For the
most part the origin of this add1t10nal factor appears to be due to a lack of
correlation between empty and doubly occupied sites in the Gutzwiller VWF. —
Since the energy of the Hubbard model for # =1 and large, but finite, U thus
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obtained is obviously not very good, one might be lured into thinking that the
Gutzwiller VWF, (5), was not a good wave function even in the limit U>>¢,
where the Hubbard model transforms (see below) into the antiferromagnetic
Heisenberg model

HHeis = -]2 Si'sj ] (8)
)
with J=4t%/U.'"' However, as will be discussed below, such a suspicion is
unwarranted. In fact, for g = 0 the Gutzwiller wave function is an excellent wave
function for the Heisenberg model in d = 1./%13
The analytic approach described above can equally be used to calculate
correlation functions

1 A - - -~
C(n,g) = ZZ“‘ L) — (XD )

for the Hubbard model in terms of |¥g), (5), for arbitrary n and U.'* Here X,
¥, are any one of the four local operators describing the spin (S7 = 7 - Ay,), the
density (N; = fiy; + #;,), an empty site (H; = (1 - A)(1 - #;,)), or a doubly occupied
site (D,) at site i (local Cooper pairs with S=0 can also be considered), and
X=L"'S, X; with L as the number of lattice sites. Again exact analytic
evaluations are possible in d = 1. In particular, the spin-spin correlation function
C*(n,g), j=|il, for n=1 and U= oo is found as'’

Si(mj)
nj

(10a)

on = 1,9 = 0) = (= 1Y

Nl (100)

where Si(x) is the sine-integral. The asymptotic behavior implies a logarithmic
divergence of C5%(g), the Fourier transform of C%, at half the reciprocal lattice
vector, i.e., is of antiferromagnetic origin. Comparison with the exact results for
the spin correlation function for the Heisenberg model in the case'® of j= 1, 2 and
for large j, where CS5~( - 1Y)~ '(Inj)'/%,'® show that for ¢ =0 (i.e., U=co) the
Gutzwiller wave function |W¥), (5), yields excellent results in d = 1.!3 The same
is true for hole-hole correlations in the limit n<1 and U= oo. Subsequently
Haldane, and independently Shastry, recognized that (10a) is, in fact, the exact
result for the continuurm bose gas in d = 1.!6 Thus they proved that | W) is the
exact ground state of a spin 1/2 antiferromagnetic Heisenberg model with an
exchange interaction falling off as 1/7%.

We may now understand why the Gutzwiller VWF, (5), which does not lead
to a good ground state for the half-filled, one-dimensional Hubbard model in the
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limit of large, but finite U can nevertheless be an excellent wave function for the
Heisenberg model. The Heisenberg model involves strictly localized spins;
therefore its ground state energy is solely determined by the quality of spin
correlations. On the other hand, in the Hubbard model for U<co there is always
a finite amount of hopping, leading to a finite density of doubly occupied sites.
Therefore its ground state energy is also determined by density correlations. The
exact ground state |'¥,,) of the latter model to order /U is given by first order
degenerate perturbation theory as

|Wex) = |Wheis) + 2 Hign | Whieis) » (11a)
U

where | W) 1S the exact ground state of the Heisenberg model, « is a numerical
constant and H,;, is given by (4a). Clearly, |¥,, has precisely one doubly
occupied site, with one empty site next to it. On the other hand, for U — oo, 1.€.
g — 0, the Gutzwiller VWF has the form

| Welg) = | Pc(0)) + go| PV (11b)

where |¥") is that contribution to the wave function of the Fermi sea that
contains one doubly occupied and an empty site, and go=[{UIn U]~ ! is the
optimized value of g. The spatial correlation between the doubly occupied and
the empty site (described by the second term in (11a) and (11b), respectively) is
seen to be strict in the case of (11a), but is quite unspecific, i.e., weak, in the case
of (11b). But it is precisely this second term in (11b), i.e. the density correlation,
which determines the ground state energy E g, of the Hubbard model at large U.
Hence it is the deficiency of density correlations in |‘1’(1)) that is responsible for
the logarithmic correction in (7). This deficiency does not enter in |¥;(0)), since
the latter does not contain doubly occupied and empty sites anyway.

An assessment of the quality of [ ¥ (0)) relative to | Wi.;s) cannot be obtained
from the ground state energy Ey, of the Hubbard model, since both yield
Eyu = 0. The quality is only determined by the spin correlations and is known

to be excellent'®!3, This fact may be used to construct a new VWF from the
Gutzwiller wave function |W¥0)!’

IlIJ( l)) - e/lI-'Ikan

Ye(0)) , (12a)

with 0=A<=oo as a variational parameter. For small A one has

|W@A) = |¥e(0) + AHn | FAO) + O(A2) , (12b)

which has the same form as (11a) and yields a very good approximation for Ey,,
to order t%/U. Unfortunately it has not been possible so far to calculate with (12a)
for arbitrary A.
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3. Exact, Analytic Evaluations in d = 0

Most recently it has been shown by Metzner and Vollhardt!'® that the concept
of high spatial dimensions — which in the case of classical as well as localized
guantum mechanical spin systems is closely related to the respective mean field
theories — is a very helpful approach also for itinerant lattice fermions, Provided
that the kinetic energy is scaled properly (¢t — t*/ﬁ?l, with * fixed), so that it
stays finite in the limit & — co, the Hubbard model and the correlations described
by it remain non-trivial even in d = co. For this type of scaling the density of
states for a hypercubic lattice in the limit d = o becomes

2
e—(l/Z)(E/l ) . (13)

NE) =
\/’ 2me*
At the same time diagrammatic treatments become very much simpler than in
finite dimensions. This property makes analytic calculations tractable in d = co,
which are prohibitively difficult in lower dimensions. Within a very short time
this concept has turned out to be extremely useful in a number of dlfferent
problems both in variational calculations and Green’s function investigations. '’
In the case of generalized, “Gutzwiller-correlated” VWFs of the form

¥ = Py, (14)

where | ®,) is now an arbltrary, normalized one-particle product wave funcuon
diagrammatic evaluations of expectation values are greatly simplified in d = o0."

The reason for this is easily understood. In analogy to the standard diagrammatic
techniques for many-particle systems, the diagrams involved in the evaluauon
may convemently be expressed by the self-energy S, in position space. While
vertices in a diagram correspond to a factor (g% - 1), the lines in a diagram
correspond to the one-particle density matrix for the non-interacting system

P2y= (D | & & | g In the limit d— oo the latter has the property

P2,ﬁ~@[(7‘3)“'”] , (15)

where |i-j| =22 i;-J;|. This implies a collapse of those diagrams in which
two vertices i and j are joined by more than two different paths (see Fig. 1). This
is the case in particular for the proper self energy S¥;;, which is the sum over all
one-particle irreducible self-energy diagrams. Therefore S7;; is seen to become
site-diagonal in d = oo (see Ref. 18),

Skii = S dy - (16)

It should be stressed that these simplifications do not only arise in calculations
involving Gutzwiller-correlated VWFs but occur also in any general Green's
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Junction approach, where lines correspond to the usual propagators. Defining
dressed lines P, =P+ P°S_P2, where P? and S, are considered as matrices in
position space, one can introduce skeleton diagrams, which, after collapse, have
a very simple “flower structure”, that can be summed exactly, yielding

1
St = - 21—’a,ii

[1 - \/1 + 41 = gHPsP o] - (17)

When supplemented by the Dyson equation this expression determines S* and S,
for given |[®,) and g¢.

Fig. 1. Collapse in d= oo of a typical diagram contributing to the proper self-energy Sk

The expectation values of the kinetic and the interaction part of the Hubbard
Hamiltonian, (3), i.e. of the ground state energy itself, are completely determined
by S,. Hence, given the starting wave function |®,) in (14) the evaluation of the
ground state energy can be performed explicitly in d= cc. In particular, when
| Do) is given by the Fermi sea | FS), (14) corresponds to the original Gutzwiller
VWEF, (5). Since the | FS) is translationally invariant, S* ;; does not depend on i,
1.e., 1s simply a global function of g and »n, which can be obtained, for example,
from particle conservation (L~ 'Z,n,, = n). Thereby one obtains

{4 - [42 - 4(1 - g1 - nn_,1"*
S5 = 2(1 - ny) ’

(18)

where A, =1-(1 - ¢*)(n,- n_,). By Dyson’s equation the Fourier transform of
the self-energy, S, (k), is then given by S, = S*/ (1 - S*) for k<k, and S,=S*for
k>kp,. The momentum distribution (A,,) is therefore a step function with a
discontinuity

S* 7 )
s = 1 - 1 - R
B (1 + g)2< 1-5% (19
and the expectation value of the interaction part is given by

g’n, S%
1 -g*1 - S%

D) =L (20)
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with (Dy/L=d. Thus the ground state energy F is found as
E=LQ s+ . @1
a

These are precisely the results of the Guizwiller approximation. This semi-
classical approximation, which evaluates matrix elements by calculating the
classical statistical weights of different spin configurations in the non-interacting
wave function, and which thereby neglects spatial correlations, is hence seen to
yield the exact result for the ground state energy in terms of the Gutzwiller VWF
in d=00.'® As will be described below the above formalism allows for exact
evaluations of the Hubbard Hamiltonian and related Hamiltonians in terms of
increasingly refined VWF in d = co.

The diagrammatic method can, of course, also be used to calculate other
quantities, such as correlation functions, in terms of Gutzwiller-correlated
VWFs, (14). In the case of correlation functions only those diagrams having a
bubble-structure of dressed lines remain, i.e., the exact evaluation in d = oo leads
to an overall RPA-type structure.”® For example, the Fourier transform C5° (k;
n, g) of the spin-spin correlation function C5%(n, g), (9), evaluated in terms of the
Gutzwiller VWF vyields

C5S(k;n,1)
1 - V,C%k;n,1)

C¥(k,n,g) = (22)

where n/2=ny =n;, Vi=(n- 2dy)~'-(n-2d)~' is a renormalized coupling
constant, and d,=(n/2)>. The transformation into position space is quite
intricate; for nearest neighbor positions j = +&; (and only in this case!) one finds
that Cfs is proportional to its value in the non-interacting case (U=0, i.e. g=1).

C‘E = gsscsxsé,l U-0 - (23)

Here gqdn, g) =[(n-2d)/(n-2dy))? is a renormalization factor (1 <ggg=4)
describing an enhancement of the spin correlations relative to the non-interacting
case. This result had been obtained earlier by Zhang et al.?' via semi-classical
counting of spin configurations, i.e., by a Gutzwiller-type approximation.
. However, this enhancement is merely a relative effect, since the absolute value of
nearest neighbor spin correlation is determined by (Csfé,,) | v~ o Which is of order
of the inverse dimension small, i.e., vanishes altogether for d = c0.2° Hence the
Gutzwiller VWF, which for U= was found to be excellent in d=1, is
inadequate in high dimensions. This is true at least in the case of large U, where
the Néel-state, having pronounced nearest neighbor correlation, i5 known to
become the exact ground state.?> This is also borne out by numerical calculations
of the spontaneous magnetization of the Heisenberg model in d = 2 which appears
to be finite, while (5) yields a vanishing magnetization.>> Hence in dimensions
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d>1 and for large U more refined starting wave functions have to be used in (14)
to describe the ground state of the Hubbard model (see below). It should be
pointed out, however, that Gutzwiller-type approximations are no longer
applicable in this case since, in general, they are not systematic.?*

The exact evaluations of C$° in terms of (5) in d = 1 and d = co also shed light
on the conditions for the existence of the “Brinkman-Rice transition™.® This
transition, where particles become localized at a finite value of U is obtained
within the Gutzwiller approximation for the ground state energy, (21).* Employ-
ing rather general scaling arguments for the asymptotic behavior of Cﬁfs for
j— oo, one finds that the transition is absent in any finite dimension.?°

4. Application of the Limit d = co to Other Gutzwiller-Correlated Wave Functions

The evaluation in terms of VWFs in 4= co described so far is exact and
complete and may in principle be used for an arbitrary starting wave function
| @) in (14). We mention three examples:

(i) | oarne) = | | liadity + ovidio10) 24)
k.o
where Q is half a reciprocal lattice vector and |0) is the vacuum; (24) is the
usual antiferromagnetic Hartree-Fock (AFHF) wave function for the Hubbard
model where 1, and v, have to be determined variationally.

(ii) |Dopawy = | [ [1 + Ak,0)fus duol | FS) (25)
ko

is used in the case of the periodic Anderson model (PAM),'%?> and contains
a hybridization between felectrons (f.,) and conduction electrons (d,,),
described by A(k,0);

(iii) | ®oscs) = | | [ + viditdtall0) (26)
k

is the BCS wave function — which when inserted into (14) with the limit
(Dy— 0 taken — is a particular representation of the “resonating valence
bond” (RVB) wavefunction proposed by Anderson for high 7, super-
conductivity?®.

In all cases have exact evaluations of the ground state energy of the respective
Hamiltonians been shown to be tractable in d = o0.'%1%2427:28 [ particular, in
the case of | Py spug), (24), the results of the slave-boson saddle-point approxi-
mation to a functional integral representation of the Hubbard model?® are
recovered'®2427 (for the phase diagram obtained thereby, see Refs. 18, 27, 30).
In this way it has been possible to construct the explicit wave function, for which
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this result is exact (in d = o0). Concerning |®g payy) the results obtained earlier
within a Gutzwiller-type approximation'®3' are recovered.?*?%

5. The Optimal Form of Gutzwiller-Correlated Wave Functions

Although the formalism for the evaluation of expectation values described
above is exact and complete, an explicit evaluation of, say, the proper self-energy
S#i 1s still rather involved, or even untractable, when it comes to somewhat
more refined starting wave functions | ®y). This has to do with the fact that, in
spite of the considerable simplifications arising from the collapse of diagrams in
d= o0, a particular subclass of diagrams (that having a “flower-form”) still
survives in this limit. An ultimate simplification would certainly be achieved if
diagrams vanished altogether in d = co. This can only happen if lines in a diagram
vanish identically for equal site indices, i.e., if lines correspond to a one-particle
density matrix

POy = Poy - Poudy (27)

where the site-diagonal part vanishes: 2,%;= 0. Such a variant of the diagrammatic
formaliksm can indeed be formulated?*, provided the starting wave functions in
(14) is written as

I Dy = g(— Zialti.oflio + Zitfi | &)O> (28)

where ]<T>0) is again an arbitrary, normalized one-particle product wave function
and g ,, #; are explicit functions of g and the on-site densities 7,0 = ((I~)0 | 5 o | 50).
With this reinterpretation the diagrammatic calculations remain identical to the
earlier ones — only the vertices are given a new value and lines now correspond
to ?,,?ﬁ. This approach has the great advantage that all results in d= oo are
obtained without the calculation of a single graph, i.e. the VWF based on (28) has
the optimal form. In particular, for arbitrary | 5(')) (which need not be
translationally invariant) one finds a generalization of the result of the Gutzwiiler
approximation in the case of the translationally invariant VWF, (5),2*

(1 - n - nd) + d)d,
- ) - d)

g, 29)

where d, = (D;). This result, which is characteristic for a quasi-chemical approx-
imation, is hence seen to be valid even locally in d = oo. Furthermore, the ground
state energy for the Hubbard model is obtained as**

E = > Naiotio P + U @ , (30)
> 1

Gj
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where now Pa?ij = <cT>0 | Ciolior | &)O » and g;, is given by (19) under the replacement
n,— ny, . For the translationally invariant Gutzwiller VWFE, (5), |®¢) and '(T)o)
are identical up to a trivial factor and g;, = ¢_; thus (21) is rederived. The general
result (30) was first determined by Kotliar and Ruckenstein?® from a slave boson
approach to the Hubbard model. Here we find that in d=oo0 the general
Gutzwiller-correlated VWFs reproduce the full set of static saddle point
equations, thus making the first explicit contact between these two seemingly
different approaches. All results for VWFs obtained by the method of Refs. 5, 18

and 27 can easily be derived within the formalism just described.?*

6. 1/d Corrections: Extension to Finite Dimensions

It is natural to extend the above formalism, developed for d= oo, to finite
dimensions d by expanding around d = co. This can be achieved by different
methods. They all rest on the principle that in finite dimensions, the collapse of
the vertices in a diagram in d = o has to be reversed, i.e. the vertices have to be
“pulled apart” again. One way is to expand the proper self-energy S* (k) around
its value in d= o0, S¥, i.e. to write®’

M
SHK) = S% + D [SEuk) - St (31)
m=1
where S.%, is the mth-order contribution to S¥* (see (6)) and S, ,*(k) is the
mth-order contribution to the proper self-energy in d dimensions. Clearly, for
M — oo (31) approaches the exact d-dimensional result, while for M =1 one
recovers the results for the Gutzwiller approximation. By calculating the
diagrams for M =23 etc. one can easily reproduce the results obtained for the
Gutzwiller VWF, (5), by variational Monte Carlo3? in d =2, 3, e.g. for (D). Even
the exact analytic result for d = 1 (see Ref. 5) is well reproduced.

A different avenue to d<oo is that of an explicit, systematic 1/d expansion
based on using (28).%4 While in d = oo all diagrams vanish, the 1/d correction in
the case of the Gutzwiller VWF requires the calculation of a single diagram; even
for the 1/d* correction at n = 1 only three diagrams have to be included. Thereby
all numerical results (e.g. for (D) or the kinetic energy of holes) by Yokoyama and
Shiba’*?? obtained with (5) in d = 2,3, and even the analytic result in d= 1 (see
Ref. 5), are very well described by the analytic expansion up to order 1/d. — It
is interesting to note that finite orders of perturbation theory in 1/d do not
remove the Brinkman-Rice transition,® which only exists in @ = 00.2%?* Never-
theless as argued earlier,>* one finds that in =3 and for n=1 the Gutzwiller
approximation is indeed excellent if one is not too close to this transition, i.e. for
all g = 0.05, and is even better for n<1.2427

The analysis of 1/d corrections also shows® that semi-classical counting
arguments, which — as explained above — yield the exact result for the Gutzwiller
VWF in d= 0,5’ fail if |®y) in (14) has a broken symmetry (e.g. as in (24),
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(26)). In particular, simple dependences such as (23), where the correlated
quantity is given by the uncorrelated one multiplied by an overall amplification
factor, are in general incorrect for several reasons>*: (i) the correlated quantity is
usually the sum of different terms (e.g. the x and z components in the case of the
spin correlation function), each of which has its own amplification factor and, (ii)
it is not possible to obtain all 1/d corrections consistently. On the other hand,
counting arguments are still applicable in the case of single-particle quantities if
| Dy in (14) is written in the form (28). This is already evident from the fact that
the quasi-chemical approximation, which can be obtained by semi-classical
counting, is valid in this case (see (29)).

7. Discussion

Gutzwiller variational wave functions and their generalizations have received
renewed attention over the last few years, in particular in the context of liquid
Helium 3, heavy fermion systems and high 7, superconductors. Analytic
techniques permitting exact evaluations of expectation values in terms of these
wave function have been developed only recently.>'82* They allow for an
unambiguous assessment of the quality of these wave functions. In particular, the
limit of high spatial dimensions for correlated lattice fermions'®!®?*2" has
turned out to be very useful: it clarified the validity of the well-known Gutzwiller
approximation, revealed intimate connections to slave boson saddle point
approximations and, by calculating explicit 1/d corrections, is able to make direct
connections to finite dimensions, e.g. d=2,3.
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