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Ground-State Properties of Correlated Fermions: Exact Analytic Results
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The properties of the Gutzwiller variational wave function, which is frequently used to study ground-
state properties of correlated fermions with a short-range interaction, are investigated by use of a new,
analytically tractable approach. As a first application several ground-state quantities are evaluated ex-
actly in dimension d=1 for arbitrary band filling and interaction strengths. The results allow for the
first approximation-free assessment of the wave function. The method itself is applicable to arbitrary
space dimensions.
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Correlated Fermi systems play a particularly impor-
tant role in physics. However, they are also known to be
notoriously difficult to tackle. In condensed-matter phys-
ics the theoretical investigations of the unusual proper-
ties of "heavy-fermion systems" ' have further intensified
the eAorts to understand the eAects of strong interactions
among fermions. The diSculties involved are well

known from the theory of narrow-band metals and

liquid He. They are all examples of systems with a
strong, short-range repulsive interaction between the
respective spin- —, fermions. This type of correlation is

often approximated by a Hubbard-type, i.e., on-site, in-

teraction

Ht =Ug, n; in;1, .

where n; =c;~; is the number operator for fermions
with spin o. on a lattice at site i. Such a term is therefore
part of many model Hamiltonians constructed to de-
scribe the correlations between fermions. ' " ' In the
simplest case the interaction part HI may be supplement-
ed by a kinetic part

Hkin Q tt&ct~~&~=gegng~, (2)
/, J,O' k, a

where t;, =L 'g&ei, exp[ik (R; —Ri)] is a general hop-

ping matrix element, L is the number of lattice sites, and

n~ is the momentum distribution operator. In the spe-
cial case of nearest-neighbor hopping, H=Hk;„+Hq is

commonly referred to as the Hubbard model. In spite
of the exact solution of this model in d=1 dimension,
properties for d & 1 are hardly understood. While nu-

merical methods' have already yielded important in-

sight, manageable analytic methods would clearly be
particularly desirable. To this end variational methods,
which generally go beyond perturbation theory, have

found widespread application.
In particular, the variational wave function first sug-

gested by Gutzwiller,

~
into& =Q;[1 —(1 —g)D;] ~ iirp&, (3)

has been extensively used to study ground-state proper-
ties of Hamiltonians containing the interaction term (I).
Here D; =n;in;1,

~ yo& is the noninteracting, paramagnet-
ic ground state, and the correlation parameter g,
0 ~ g ~ 1, acts as a variational parameter. The purpose
of the correlation factor in

~ yo& is to reduce the weight
of spin configurations with doubly occupied sites in

~ yo&,
i.e., to suppress local charge (i.e., density) fluctuations.
As such it may be expected to be particularly suited for
the investigation of higher-dimensionality systems. In
spite of the simplicity of Eq. (3), exact analytical evalua-
tions of expectation values valid for arbitrary correlation
strength in the thermodynamic limit have not yet been
feasible. Nevertheless, investigations of finite systems,
i.e. , of one-dimensional rings, by Kaplan, Horsch, and
Fulde'' and by Horsch and Kaplan' have already pro-
vided valuable insight into the properties of the Gutzwill-
er wave function. Hashimoto' used similar findings to
obtain approximations for higher-dimensionality systems
in the thermodynamic limit. Furthermore, results for the
thermodynamic limit have been obtained by perturba-
tional calculations ' ' and by employing Gutzwiller-
type approximations. ' ' Most recently, Gros, Joynt,
and Rice' and Yokoyama and Shiba' have presented
detailed numerical calculations of several quantities in
terms of the Gutzwiller wave function.

In this Letter we outline a new approach to the calcu-
lation of expectation values of an operator 0,

&0& =
& otto

~
0

~ yo&/& into
~ ittr. &,
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which is both simple and analytically tractable. It is val-
id for arbitrary correlation strengths g, particle densities
n, and space dimensions d.

Expanding ! yG) in (3) as a sum over lattice sites f;,
the calculation of (Ht) is seen to involve the evaluation
of expectation values,

x = g' (Dr, Dr )p, m~L,
fl, . . . , f

with f;Wf~ (prime on sum) in the noninteracting ground
state. Wick's theorem transforms ( . . ' )p into [ . . jp,
the sum over all pairs of "contractions" defined by
I;~, j p = (c;~~ )p (=P;, in Refs. 7 and 8) and, in particu-
lar, [ci~;tjp= —

Pp Note t.hat in the latter case the
usual 6;~ term does not appear; hence

x = g' IDr, . . . Dr jp.

diferent from that of Gutzwiller ' since it only involves
connected diagrams. In particular it divers from the one
obtained by previous investigations ' based on the
"linked cluster method, "' where the correlation factor
in (3) is written as e ", with tl =ln(1/g) and D

In the latter approach weak correlations
(g ~ 1) are treated by use of tl, rather than 1 —g, as an
expansion parameter. In this case the diA'erent c are
mixed, which makes a general evaluation of (Ht) un-
tractable. In d=1 it is easy to show that c ~n
where n =N/L ~ 1 is the density of particles and

n! =nl =n/2 W. ith use of the n dependence of (Ht),
particle-hole symmetry, and the continuity of the first
derivative with respect to n at n =1, the prefactor can be
calculated. One obtains the general expression

( 1)m+1 m+1/( + I)

However, I . jp=0 for any f; =f~ since then two rows
in the corresponding determinant are equal. One may
therefore extend the summation over all f;, i.e.,

xm Q IDf, ' ' Df jp.

2
Un(H, ) =I.

G 2
ln +G —

1
1

G 2

In the thermodynamic limit (L ~) the expectation
value of HI is then found as

the connected diagrams contributing to x . In the case
of (Ht) we have

(Ht) =ULg' g (g' —1) 'c,
m 1

(4)

with c =x'/L(m —1)!. The expression for (Ht) is

The x can be represented diagrammatically with lines
corresponding to P f. f .. Since disconnected diagrams
cancel the norm (yG! yG), one is left with

x' = g [Dr, . Dr jp,

where G = 1
—n+ ng . Hence for a half filled band

(n =1) the correlation term is found to be nonanalytic in

g. In particular, for strong correlations (g 0)
(Ht) =LUg ln(l/g). The logarithmic correction to the
g dependence is unexpected. It is also difficult to ob-
serve in a numerical analysis where (Ht) appears quadra-
tic in g. ' The density of doubly occupied sites is given
by d =(Ht)/UL For 1 ~ n. ~ 2, d(n) =d(2 —n)+n —

1

by particle-hole symmetry.
To obtain the expectation value of the kinetic energy

one has to calculate the one-particle density matrix
G;i =(c;t~, ), whose Fourier transform is the momen-
tum distribution

1
L

(nt, ) =[1 —(1 —g) n ]nt, + [1 —(1 —g )nt, ] g (g —1) ft,1+g m 2

where n~ is the momentum distribution of the noninteracting system and fq( ) =hz( ) +c —~, with

(m) 1 1 —2nik (f2 —fl) f
~)

ce tcr, nr, Dr, . . . Drmnr, ~r jp.L jm —2)I I I 3 2' fl, . . . , f

(7)

(8)

The functions f~~ ) may be represented by connected
graphs carrying an external momentum k, with lines cor-
responding to factors ng and ng and with point ver-
tices. Their structure is identical to the usual mth order,
connected Green's function for point interactions. '

These diagrams are expressible in terms of irreducible
graphs ft, I„. The ft, have a discontinuity at ! k! =kF
because they include reducible graphs, i.e., carry single,
reducible lines, and therefore vanish for !k! & kF. By
contrast, the ftt, I„are continuous functions of the
momentum across kF with ft, =ft, ;„ for j k! & kF.
In d =1 dimension, this property, together with particle-

! hole symmetry for n =1, yields a recursion relation be-
tween the two functions. For n~ =nt =n/2, one finds
(n~ I)

fk„=( —I ) [(2m —1)!!/(2m)!!]n

and fk, ;„=fk„ /(2m —1), where kF =kp —0. In
this way (nt, ) may be calculated at k =kF~0. One
finds that (nk„) = —,

' [(1 —G)/(1+g)] and (nk„) =q
+(nt, , ), where q is the discontinuity of (nk) at the Fer-
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FIG. 1. The momentum distribution (n|,) for several values
of the correlation parameter g in the case of a half-filled band
(nt=n, =-,' ).

mi surface,

q =6 -'t(O+g)/(1+g)1'. (10)

E = —(4/tr) (t /U)(lnU)

The numerical results of Ref. 18 are found to be in ex-
cellent agreement with this approximation-free evalua-
tion. For n =1 one has q =4g/(1+g), the result of the
Gutzwiller approximation 'Equ. ation (10) implies the
existence of a Fermi surface for correlation parameters
0 & g ( 1 in the case of a half-filled band. [We have ob-
tained a similar result in d =2 dimension and expect it to
be true for arbitrary dimensions since our derivation of
(7) is quite general. ]

Equation (7) may be used to calculate (nq ) in a power
series in terms of 1

—g . To this end the quantities fit
have to be calculated. In d =1 dimension they are poly-
nomials in k and n. The use of particle-hole symmetry
and the continuity of the first two derivatives of fit
with respect to n at n =1 yields enough equations to gen-
erate the fi, l recursively.

For correlations 0 &g & 1, (nl, ) is seen to increase
slightly both for

~ k~ & kF and
~ k~ ) kF (see Fig. 1) in

contrast to what one should expect. This feature agrees
with the numerical results for small ' and large ' '
finite systems. At kF 4 0, (nl, ) is found to be nonanalyt-
ic in the limits n 1, g 0. The kinetic energy
Ek;„(g) =L '(Hk;„) may now be calculated for given Ek.
For strong correlations (g 0), one finds that

(g) =Ek;, (0) + 2g (eo —Ep;.(0)1,

where ep=L g g~g~ (t,„Et, is the average kinetic 'en-
ergy in the noninteracting system. In particular, for
n l

=n l
= —,', this yields Ek;„(g) = 2gEp. For nearest-

neighbqr hopping (Hubbard model) ek = —2t cos(2trk)
and ip= —4t/tr. After minimization with respect to g,
the ground-state energy E of the Hubbard model is ob-
tained. For n = 1 and U ~ one finds

—1.4

FIG. 2. The ground-state energy E for the one-dimensional
Hubbard model with n1=n~ = —,

' as a function of U. The re-
sults for E, as calculated with the Gutzwiller wave function
(GWF), are compared with the result of the Gutzwiller ap-
proximation (GWF+GA) (Ref. 23) and the exact result (Ref.
9).

where U=U/~ Fp~, i.e., E is nonanalytic in t/U 0.
Hence in the thermodynamic limit the wave function

~ yG) does not lead to a ( —t /U) dependence known
from the exact result. This is in contrast to earlier
conclusions based on the extrapolation of the results for
finite systems, where the logarithmic correction in Eq.
(11) cannot be identified and hence is interpreted as a
(small) prefactor to a ( —t /U) dependence. '' Kaplan,
Horsch, and Fulde " therefore discussed an improvement
of (3) which yielded a much better numerical agreement
with the ground-state energy of the exact result. With
use of Eq. (7) and the results for fl, , one may calculate
the ground-state energy E in d =1 dimension. For n =1,
the result is shown in Fig. 2, in comparison with the ex-
act result and the Gutzwiller approximation. '

The above results for the discontinuity q imply the ex-
istence of a Fermi surface for the interacting fermions of
the Hubbard model in d=1 dimension at any finite U
and for n ( l. (Hence a Mott transition does not take
place at any finite U. ) While the exact (nl, ) for n =1 is
not expected to show a discontinuity for U & 0, a Fer-
mi surface may well exist for n & 1, and the results for
(nl, ) obtained with the Gutzwiller wave function indeed
show such a feature. In higher dimensions and for lat-
tices without perfect nesting, even the exact solution for
n =1 is expected to exhibit a Fermi surface at small U,
in which case a Brinkman-Rice-type transition, where
the discontinuity q vanishes at a finite U, has to occur.

In view of the above results obtained with
~ yG) for the

Hubbard model, one might conclude that, at least in
d =1 dimension, the Gutzwiller wave function was not a
good variational Ansatz, particularly for U ~. How-
ever, this conclusion is unwarranted. In fact, our ap-
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proach also yields analytic results for the correlation
functions, e.g. , the spin- and density-correlation func-
tion, for arbitrary g and n. For infinitely strong interac-
tion and n = 1 the former exhibits antiferromagnetic
correlations in excellent agreement with exact results.
This was already observed in numerical studies. "' ' '

In conclusion, we have presented an analytical ap-
proach to the calculation of ground-state properties of
correlated fermions with the Gutzwiller wave function.
It allows one to perform the exact evaluation of several
expectation values in d =1 dimension. As such, it allows
for the first unambiguous assessment of the Gutzwiller
wave function. The method may also be applied to
higher space dimensions. In particular, we have found
strong indications that the Gutzwiller approximation'
becomes exact in the limit d

We are grateful to F. Gebhard for valuable discus-
sions.
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