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A new analytic approach to the evaluation of ground-state properties of Hubbard-type models in
terms of the Gutzwiller variational wave function is presented. It is based on the observation that
expectation values in terms of this wave function may be expressed by sums over different lattice
sites. This makes the application of %'ick s theorem and the resulting contractions extremely sim-

ple, since the latter involve only anticommuting numbers as in a Grassmann algebra. Expressions
for the momentum distribution nl, and the Hubbard interaction in terms of a power series in a par-
ticular correlation parameter are derived which are valid for all dimensions. An explicit diagram-
matic evaluation of the coencients is described. In one dimension these coeacients may be deter-
mined to all orders which yields an approximation-free calculation of nl, and ground-state energy E
for arbitrary density n and interaction strength U. In the case of a half-filled band and large U,
hitherto unexpected nonanalyticities are found. The results allow for the first approximation-free
assessment of the properties of the Gutzwiller wave function. It is shown that the well-known
Gutzwiller approximation may be derived diagrammatically, too. The approximation is seen to
yield the exact results for expectation values in terms of this wave function in the limit of infinite
dimensionality.

I. INTRODUCTION

Interactions in Fermi systems lead to a particularly
complex quantum-mechanical many-body problem. Even
in the noninteracting case, the Pauli principle implies
spatial correlations between fermions. Interactions, espe-
cially those of short range, further enhance these compli-
cations since they introduce additional subtle phase rela-
tions among the fermions in real space. In condensed-
matter physics these diaculties are well known from the
investigations of narrow-band metals' or liquid2 and solid
He. The theoretical developments in new areas such as

heavy-fermion systems, disordered electronic systems
close to the metal-insulator transition, and, most re-
cently, high-temperature superconductivity ' have once
again drawn attention to these problems and have further
challenged our understanding of strongly correlated fer-
mions.

Theoretical studies of systems with short-range, repul-
sive interactions face the problem of how to incorporate
an interaction that is simple only in real space into a
noninteracting Fermi system that is simple (if at all) in k
space. In this situation variational-type methods {as, for
example, those developed for microscopic investigations
of liquid helium ) are especially useful. Starting with an
appropriate many-body trial wave function, the energy
expectation value is calculated, which then has to be min-
imized with respect to some variational function. The
simplest such wave function 18 an antlsymmetnzed pIod-
uct of one-particle functions; the next step of refinement
involves two-particle functions, etc.

In the case of electrons with a strongly screened
Coulomb interaction a similar problem arises —but it
now involves a lattice. Since electrons are pointlike, this
interaction may be approximated by an on-site interac-

tion between particles of opposite spin. Combined with a
kinetic energy this lattice model becomes the "Hubbard

d l."'
In spite of the existence of an analytic solution in d = 1

dimension' and an impressive research activity in the
past, the properties of this seemingly simple model are far
from being understood. In fact, even d=l correlation
functions are only known in very special limits. ' In this
situation numerical (Monte Carlo) methods have been
particularly valuable and have yielded important insight
into the properties of this model in difFerent dimen-
sions. ' ' On the other hand, this approach is necessarily
con6ned to the study of finite samples.

For an analytic investigation of the model, Gutzwill-
er' ' ' has proposed a very simple variational wave
function [the "Gutzwiller wave function" (GWF)], simi-
lar to the general type described above: it introduces
correlations into the noninteracting wave function via a
local correlation factor in real space. He then introduced
a further approximation [the "Gutzwiller approxima-
tion" (GA)] to calculate the ground-state energy. ' In the
GA, spatial correlations are neglected. It has been shown
to be equivalent to an evaluation of matrix elements
which calculates the classical statistical ~eights of
difFerent spin configurations in the noninteracting wave
function. ' ' Brinkman and Rice ' observed that in the
case of a half-filled band the results of the GA describe a
transition —at a finite interaction strength U, —to a lo-
calized state where lattice sites are singly occupied
(IIletal-1Ilslllator tlaIlsltloI1). Although the tl aIlsttloll It-
self is a consequence of the GA at half-filling, at least in
one dimension, the results for the not yet localized regime
( U 5 U, ) have been shown to describe static properties of
normal liquid He (Ref. 22) ("almost localized" Fermi
liquid ). In this case the short-range interaction is be-
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tween spherical hard cores and may be thought to take
place within a lattice cell rather than on a lattice site I. n

fact, as recently discussed by Vollhardt, %o16e, and An-
derson in the context of a generalized lattice model,
these properties are also obtained without the actual
transition. As shown by Kotliar and Ruckenstein the
results of the GA may be derived by a saddle-point ap-
proximation to a suitably chosen functional-integral rep-
resentation of the Hubbard model, i.e., without using a
variational wave function.

The result for the Hubbard model obtained by
Gutzwiller' is a consequence of' two independent approx-
imations: (i) the choice of the GWF and (ii) the GA it-
self. So it is not clear to what extent this result depends
on either one of the approximations. To decide on this
point, one has to calculate expectation values in terms of
the GWF by going beyond the GA. This was first done
by Kaplan, Horsch, and Fulde and Horsch and Ka-
plan, who used numerical techniques to calculate the
ground-state energy and spin correlations for finite, one-
dimensional rings. They found that spin correlations in
the atomic limit were in very good agreement with exact
results'~' while in this hmit the ground-state energy de-
viated considerably from the Lieb-Wu result. ' Similarly,
usiIlg a combination of analytic and Iiutnerlcal methods,
Hashimoto obtained improved approximations for one-
and higher-dimensional systems in the thermodynamic
limit. On the other hand, employing a perturbational ap-
proach Horsch and Baeriswyl and Makil and Baer-
iswyl, Carmelo, and Maki ' analytically calculated the
ground-state energy E in terms of the GWF for a small
interaction strength U. The momentum distribution nk
was thereby obtained to second order in U. ' More re-
cently, Gros, Joynt, and Rice 2 presented detailed numer-
ical results, e.g., for spin-spin and hole-hole correlations,
energies and excited states in terms of the G%F in d=1
in the infinite-U limit. Independently, Yokoyama and
Shibais computed the q-dependent spin-spin and density-
density correlation functions, the momentum distribu-
tion, and also the ground-state energy foi general U, the
latter even in d=2 and 3 dimensions.

In spite of the above results and the simplicity of the
G%'F, an exact analytic evaluation of expectation values
in terms of the GWF for arbitrary interaction strengths
did not exist so far —noi even in d=1 dimension, where
complications due to lattice structures do not enter.
Most recently, however, the present authors showed that
an analytic diagonalization is indeed possible, at least in
d =1. This calculation is made feasible by the observa-
tion that in the case of the G%F lattice summations may
be written so as to involve only diferent sites. Thereby
the application of %'ick's theorem for the evaluation of
expectation values is greatly simpli6ed. In this way one is
able to calculate expectation values in d=1 without ap-
proximation. The approach was then used by Gebhard
and Vollhardt to evaluate correlation functions for
Hubbard-type models and to obtain the exact results for
the Cy%'F in d= l.

Since our approach consists of a sequence of steps
which seexn to deserve a rather detailed discussion, this
paper is supposed to provide an explicit presentation of

the method. Although it may be applied in all space di-
mensions d, we will mainly discuss d = 1 where
approximation™free results have already been obtained, as
well as the case d = Do which may be shown to yield the
results of the GA.

This paper is structured as follows. In Sec. II we intro-
duce the variational approach itself, while in Secs. III and
IV general expressions for the expectation values of the
Hubbard interaction and of the momentum distribution
are derived which are evaluated analytically in one di-
mension. The resulting ground-state energy of the Hub-
bard model in d= 1 is discussed in Sec. V. Based on the
formalism described in Secs. III and IV, a diagrammatic
derivation of the Gutzwiller approximation is given in
Sec. VI. A summary in Sec. VII closes the presentation.

II. LOCAL VARIATIONAL APPROACH
FOR HUBBARD-TYPE MODELS

%e will discuss a variational approach to a model of
fermions with spin up or down on a lattice, whose Hamil-
tonian is composed of a kinetic energy 8k;„and an in-
teraction Pt ..

kin ~ f~j C;tJCj

ye, ,e

Here c; and 8 ~& are creation operators of a fermion at
site i and of momentum k, respectively, with

& k~
L' pc;——exp(ik R;),

6; =c; c, and tt I,
——a & 8~ are the corresponding

number operators, t; is a general hopping matrix element
between sites R; and R, and

e(k)=L 'gt; exp[ —ik. (R, —R )]

is the corresponding dispersion. The "Hubbard interac-
tion" Pt only takes place on the same lattice site. For
nearest-neighbor hopping,

(3)

is the Hubbard model. More complicated interactions of
the form

Bv=g+V,, tI; n,

which are determined by correlation functions, may in
principle also be included, since our approach is applic-
able in this situation, also. However, in this paper they
mill not be addressed for the sake of brevity.

%e consider a 6xed number N&, X& of up and down
spin particles; hence %=X&+X& and S, =X& —X& are
also fixed; L is the number of lattice sites and n =N /L,
n =nl+n&. The interaction Bi counts the number of
doubly occupied sites D =8'-l8 &, i.e.,
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where'= y, 8, .
To diagonalize (3) we introduce a local variational

wave function' '

[1-(1-g)o ] I ))('o&

where 0& is a local number operator at lattice site f, g is
a variational parameter, and

~ $0) is a suitable starting
wave function onto which the correlation factor in (6)
acts. By "local" we imply that 0f only acts on site f;
more complicated forms, which include neighboring lat-
tice sites, e.g., density-density-like correlations, have been
addressed by $tollhoff and Fulde and Kaplan et al.
In the lattice model under consideration, the only
relevant local correlation operator of this type is
0 f )2 fr )2 f 2

—8 f Thus we are led to the wave function
proposed by Gutzwiller, '8

IP &= II[1-(I-g» ]If &

where we take ~!()0) to be the normalized wave function
of the noninteracting, paramagnetic ground state and
0 &g & 1. The correlation factor reduces the amplitude of
spin configurations in

~ $0) with too many doubly occu-
pied sites, i.e., interactions, and thus controls local densi-

ty fiuctuations. We note that since 8f only has eigenval-
ues 0 and 1, (7) may equally be written as

I fo&=g I fo& . (g)

The GWF (7) will be used to calculate the expectation
value of some operator 2 as

w-=(w &-= (9)

Furthermore, we introduce

(10)

In the following we will diagonalize the Hamiltonian 8 in
(3).

III. KVAI UATION QF THE HUBBARD INTERACTION

%e now calculate the expectation value of the Hub-
bard interaction term, i.e., (8 ) = (Pi) /U in (5) in arbi-
trary dimensions d. %e first consider the numerator
( fo ~

5
~ go ) in (9). Inserting (7) yields

()!(l
~

&
~

(t & = y g [1—(1—g)8„]'8, , (11)
f h 0

where [1—(1—g)8f] =1+(g —1)Bf, since 8 f —Bf.
The product may be transformed into a sum over lattice
sites by using the identity

I. (g2 1 )m

ff [1+(g —1)Bh ]= 1+
h mI

X y' Df 8f
fl, . . . , f

(13)

In the thermodynamic limit (I.~ ca ) this is a power
senes sn g —1.

To evaluate (13) we define the mth-order coefficient

I. m —1!f
(14)

which is calculated as usual by Wick's theorem, i yield-
ing the sum over all contracted terms. There are only
two nonvanishing contractions: (c f cf )0 and

l J
( c f c f )(), where the former is the one-particle density

J
matrix29 30

Pf f 0 =(C f crCf cr )0

2crc'—)c(f, —f ) 0dke ' 'n), (16)

with n& the momentum-distribution of o spins in the
noninteracting system. Because of the summation re-
striction in (14) ( f;+f ) the second contraction yields

(Cf 0C f cr)0 ~f f, cr (17)
J l J'

i.e., the usual 5 term does not enter. Here and in the fol-
lowing, the lattice spacing is chosen such that the volume
of the primitive unit cell is V, =1. In k space the scale is
set so as to yield the volume V, of a primitive unit cell in
reciprocal space also as V,'=1; hence, in the thermo-
dynamic limit, L ' g), ~ Jdk

We now define the sum over all possible contracted
terms in (14) by a curly bracket. Wick's theorem then
reads

&&r ' '&f & =IDr '''Dr 1o

where

tC f, crcf. cr )O=~f.,.f ,cr.
ref crC f, cr ]0= ~f, f .cr

(19a)

(19b)

Equation (19) is a definition of "5-less contractions, "
which is supposed to apply for 0/I f;,f, i.e., even for
f; = f although in this case the usual 5& & term does notJ l J
occur in the de6nition. This may be done for the follow-
ing reason.

The expression IDf Df ]0 can be written as a
/rt

product of two determinants,

where the prime on the sum means f;&f for i &j .In
the sum over f in (11) one has to distinguish whether
f&f; for all i or f= f; for one of the i .In the first case
we may set f= f +I and shift the summation; in the
second we have w &

——w &
. Combination of the two partsA2

yields

L (g2 1)m —)

&Po I& I
fo&=g' g
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IDf1 Dt 10 Inf)t nf 1 IOInf1$ nf $10 ~

(20)

1w(6)=
,
co,

where cG is the number of contracted terms with graph
G. Furthermore, the "value" U (6) of a graph is defined

tnt, . nr. Io= (21) U(6)= — g (graph 6) .1

I. f ly ~ ~ ~ y f

and f; =i, etc., as originally used by Gutzwiller. ' ' We
note that for f,.= f two columns (or rows) are equal and
the determinant vanishes. Hence the summation restric-
tion f;~f» may be dropped without creating new contri-
butions. Therefore V, (14), is equal to

1 1

L (rn —1)! t
I&t, ''Dt„IO (22)

A. INagrammatfic, representation

The contributions to V in g2) may be represented di-
agrammatically. To this end one draws m points (corre-
sponding to sites fi, . . . , f ) and connects these points
by hnes according to the Pt t expressions obtained
when the determinants (21}are multiplied out. Up-spin
and down-spin lines may be distinguished by drawing full
and broken lines, respectively. For example, for m=2
one has

I+f1Df2 lo Pl 1, 1 Pll, 1P22, 1P22, 1 +P12, 1P21,1P12,LP21, 1

~11,$ ~12, 1' ~21, f ~22, $

—I'», yI'i2, &~2~, &I'22, &
(23)

where f,—= 1, etc. Equation (23) has to be summed over
according to (22). The corresponding graphical represen-
tation of V2 is shown in Fig. 1. In general, diferent con-
tracted terms may lead to the same graph. %'e thus
define the "weight" w (6) of a graph 6:

]Q II)P + ~ — 1 ~ i — Q(' )Q
1 2 1 2 1 2

FIG. 1. Diagrammatic representation of the contna, ctioas of

where [
.

Io is still given in terms of the 5 less con-trac

tions in (19), although now the f; may also be equal.
We should like to stress that the last few steps imply

significant difFerences between our approach and earlier
ones ' ' although it employs the same techniques. In
particular, the unrestricted sum in (22) can only be ob-
tained if I I does not contain 5t t terms. Further-0

l Jmore, the objects in ( Io are no longer operators. In
fact, the creation and annihilation operators now become
anticommuting numbers and may be looked upon as
Grassmann variables.

1 1

L (m —1)! t
IDt, ' ' 'Dt. Io (26)

where [
. .

Io is now given by all contractions corre-
sponding to connected diagrams. Hence we obtain the
expectation value of 5, including the norm, as

(5}=Lg2 g (g —1) 'c
m=1

(27)

The diagrammatic evaluation of the c is summarized by
the following Feynman rules.

(i) Draw all topologicaBy different, connected graphs
with m point vertices, m up-hnes, and m down-lines such
that every vertex is crossed by one up line and one down
line.

(ii) Associate a momentum with every line, observing
momentum conservation at each vertex (there are m + 1

internal momenta).
(iii) Every o spin line with momentum k is associated

with a factor n 1, .
(iv) Integrate over all moments to obtain the value

u (6), (24b), according to

1 ~ Jdk, . dk
fl, . . . , f

(v) Determine the number of loops f(6), and associate

The evaluation of u (6) is most conveniently done in k
space by associating n& with every line and demanding
momentum conservation at every vertex. Last, every
graph carries a prefactor ( —1) 'a', where f (G) is the to-
tal number of loops of up-spin and down-spin Hnes in
graph G.

We now turn to the norm (!l»o
~ go) in (9}, which is

similarly obtained as

00 (g2 1 )tel

&4o lfo&=1+ X g IDr, '''Dr. Io
m=1 fl, . . . , f

(25)

As usual3 the disconnected graphs of the numerator
~ go I

2
I fo }cancel the norm.

In the context of a variational approach this "linked
cluster theorem" has been generally proved by Horsch
and Fulde. For the theorem to work, the lattice sum-
mation has to be unrestricted as in (22) and this is only
achieved after the 5-less contractions have been intro-
duced via Wick"s theorem. Indicating the contribution of
the connected graphs to c by omitting the tilde, i.e., c
we define
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a prefactor ( —1)f' ' with the graph.
(vi) Determine the weight w(G), (24a), of every graph

6 by %'ick's theorem or by combinatorics.

TABLE I. The graphs C (see Fig. 2} contributing to the
coeScients c in the Hubbard interaction, 4,'28}, are listed for
m & 3. The value U (6) is that for the one-dimensional case.

This yields

c = g( —1)f' ~w(G)u(G) .

In Fig. 2 we show all graphs contributing to c up to or-
der m =4; they are denoted by C;. In Table I we list the
corresponding values of f (G) and w(G) for m &3. The
entry for u(G) in this table is the result for the one-
dimensional chain (d=1) with n}—ni n/2,—n &1. In
this case the scaling in k space discussed below (17) im-

plies that the first Brillouin zone (BZ) is in the interval

[——,', —,'] and the Fermi momentum is kF n/—4. The
momentum distribution of the noninteracting system is
given by nk =8(kF —

~

k
~

), i.e., a step function. We see
that in d = 1 and for n t n i

——n /——2 & —,',
u(C, ) ~( n/2) +' as is easily understood from the di-

agrammatic rules defined above (see also Appendix A).
Hence, in this case,

1 pf

2 2

2 Pl

3 2

3

'4

Cm (X: ll (29}

We note that this result is different from those obtained
by earlier investigations, " ' although the correspond-

C3,

4

CpDC'' Q( )Q
a b

p~
a b c d a f

C3,

C3f

ing diagrams are identical. The difFerence originates sole-
ly from our definition of "5-less contractions" used to
evaluate the graphs. This has the great advantage that in
d= 1 we have a simple relation (29), i.e., for a given m
diferent orders in n are not mixed as in the previous
work. ' ' The difFerent definition of the contractions is
accompanied by a different expansion for (8), (27).
While me use a power series in g —1, in Refs. 29, 30, and
33 the quantity y =ln(1/g) is used, whereby different or-
ders of n are mixed.

8. Particle-hole symmetry

To determine the prefactor in (29} we employ particle-
hole {ph) symmetry. To this end we introduce a canoni-
cal transformation (see Ref. 13) valid for AB lattices:

c'r ——( —1) c r, c r ——( —1) cr (30):d—0
FIG. 2. The diagrams C; contributing to e in (26) up to or-

der m=4.

with ( —1} = + 1 or —1 for f on A or 8, respectively.
The Hamiltonian (3) and hence the exact ground-state en-
ergy E,„(n &, n i ) is thereby left unchanged up to a con-
stant
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E,„(1 n—&, 1 —n& )=E,„(ni,n
&
)+(1 —n

&
—n i )LU .

The exact expectation value of double occupancy
d,„(n t, n i )= (8 ),„/L ls cliailged accordlilg to

d,„(1 nt—, 1 n—t )=d,„(n&,n &)+1—nt n—i .

(32)

In the case of an approximate evaluation of the ground-
state energy by a variational ansatz (7), the relation (32)
nevertheless still holds, as can be verified by explicit cal-
culatlofl. We lllsert (27) into (32) aild, by eqllatlllg the
(g —1) coefficients, find

0.10

c~(nt, ni )+c~+i(n t, nt )=c~(1—nt, 1 —ni ) 0.05

+c~+i(1—n t ~ 1 —n i )

(33)

for all m & 1 and arbitrary n t, n ~.

which leads to the recursion formula

a +, ———[(m +1)/(m +2)]a

With a, =—,
' this leads to the general expression

~m+1

2 m+1 (35)

for all m &1.
The power series in (27) for (8 ), i.e., the expectation

value of the Hubbard-interaction term (2), Eq. (3), can
thus be summed explicitly and yields (n & 1)

(y )
ULn g

62 (36)

where 6 =1—(1—g )n; for n ) 1, (33) apphes. The dou-
ble occupancy d(g)=(A' t)/UL as a function of g is
shown in Fig. 3 for three densities and is compared with
the corresponding results obtained within the GutzwiHer

C. Exact c;ale.elation of e in 4=1 dimension

In the one-dimensional case we found e =a n +' for
n t n t

——n /2, n——& 1. To make use of (33) for determin-
ing the prefactor a we need to know the analytic behav-
ior of c for 1 & n &2. For this we have to reinvestigate
the k summations entering in the evaluation of the corre-
sponding graphs. For n~ 1, k sums go beyond the Srst
BZ which makes Umklapp-processes necessary. This is
done in Appendix A, where it is shown that the first two
derivatives of c with respect to the density n are con-
tinuous. Setting n& nt n/2 ——i—n—(33) we may then
differentiate by n. At n = 1 we find

(34)

0.2 0.6 0.8

g
FIG. 3. The density of doubly occupied sites„d, vs the corre-

lation parameter g for three densities in one dimension. The
approximation-free results (G%F} are compared arith those of
the Gutzwiller approximation (GA}.

approximation. ' For strong interactions (g~0) we find

(Pt ) to be nonanalytic in g and n:

g ln(1/g), n =1,
(8t) =UL

—,'g2ln, n g1 .
(37)

The approximation-free result in (37) valid for small g in
the thermodynamic limit is in contrast to the numerical
findingsi ' ~ obtained earlier on the basis ofPnite systems,
where a g dependence for n=1 was concluded.

(38)

in real space. In the noninteracting case Pzz' ——P h,
(16a). We first consider the numerator

Psh, =(fa I
c ch I Wa) . (39)

Assuming g&h,
~ fa) as given in (7) is inserted. Then

(12) is used to convert the products into sums, where g, h
are excluded from the f; sums:

IU. KVAI.UATION
OF THE MOMENTUM MSTRISUTION

As in the case of (8t ) the expectation value of R'i, is
expanded in a power series in g —1, where lattice sums
are written so as to involve only difkrent sites, then
Wick s theorem is applied leading to 5-less contractions
and, finally, the linked cluster theorem is used.

Instead of 8i, we investigate the one-particle density
matrix
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T

(g' —1)
~gh, cr c gcrcho Qg e—Qh —cr 1+

N, . (40)

Q =1—(1 g—N (41)

Since all sites in the lattice sum in (40) are diff'erent we may apply Wick's theorem to replace ( . )o in (40) by (
. .

j o,
the sum of all contracted terms with 5-less contractions. Aftenoards we can again drop all restrictions on the sums in
(40) since [ jo=0 for f, = f or f, =g, h as is seen from writing one of the four contributions explicitly as

IcltnllcZtn2$D3 Dm jo

PI2, t

P32, t

Pm2, t Pm3, t

P)

P3
(42)

where f; =i, etc-.
In the case g =h, the factor in front of the parentheses in (40) reduces to 8'g +(g —1)8g. Again Wick s theorem is

applied, transforming ( )o into I jo where the quantities Sg, Qg, etc. , are no longer operators. We note that

I fng +(g' 1}D—g] ' ' ' jo= I [ngoQg Qg- +(1—g) ng ] ' ' ' jo (43)

where the last term has to be added since Qg Qg leads to a term ng n which vanishes inside the contraction
because of the anticommuting character of the ng [see Eq. (21)]. Hence for g=h, (43) replaces ( )o in (40). For
general g, h, (39) then takes the form

Pgh
—— cg ch [1—(1 g)(n —+nh )+(1—g) n (nh +5 h)]+ 1+ g g D& . D&

The contributions to (44) in different orders of m may again be represented diagrammatically. Straightforward applica-
tion of the linked cluster theorem ' shows that the norm (gG ~ fG ) again cancels the disconnected diagrams. Hence
the momentum distribution in k space, i.e., the Fourier transform of io h, is given by

n„.=—y e' '"'g-"'[Eq. (44)];,
g, h

(45)

where only the connected diagrams ( I jo~ I jo) contribute. To simplify (45) we introduce the functions f (k),
m&2

1 1 2mi|f, ( f )
—f2]f (k)=—,g e I(cr nr c n +5r D )D D

fi, . . . , f
(46)

Making use of the identities

g, f, , . . . , f

g, h, fl, . . . , f

D D j=— g ID D j
f]y ~ ~ y f

'jcg ch Dr Dr jo——Lm! nh f (k), m )2,

e' '"'g "'Icg ch ng Dr . . D, jo= Lm!no f +—, (k}, m &1,

(47a)

(47b)

(47c)

all terms in nh, (45), may be expressed in terms off (k), leading to

nh nh —(1—g} n——nh + g (g2 —1) [1—(1 g)nh ]f— (k) .
I+g '.=2

So n& has been expressed as a power series in g —1 which converges rapidly for g & 1. For weak correlations or small
densities the series gives accurate results even if terminated at some 6nite order.
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A. Diagrammtie representation

The evaluation of nl, involves the functions f (k}, which may be represented diagrammatically. To this end we

note that the second term in (46) contributing to f (k}is simply given by the coefficient c, deffned in (26); hence we

define

1 1 2mik( f)—f2)
h (k)—:—,g e ' ' Icf nf cf nf Df Df

1' ''' m

(49)

f (k) =h (k)+c„

This way of writing is convenient since the resulting graphs are identical to the ones for the two-point functions of a ({)

theory (without external lines). This we illustrate in the case m=2, fJ= t:

2eik( f )
—f~)f21(k} I g e Icf tnf lcf tnf 1 Io+Cl (5 la)

2nik( fl —f~)
[ F121pj2$F211+F121pll t F22t ~+c1

fl, f2

(5 lb}

= —F2, t (k)+F2b 1 (k)+F2,t, (51c)

where the graphs F2;t(k), i =a, b, c, are shown in Fig. 4.
Full (broken) lines again correspond to 1' (1) lines. The
arrows indicate where the external momentum k enters;
clearlyF2, ,1

——C, is k independent. For general m & 2
the diagrams to f (k} are constructed by the following
Feynman rules as in the case of the c: (i) draw all topo-
loy'cally different connected graphs 6 with m vertices,
m —1 fJ lines and m ( —tr ) hnes; (ii) every line is given a
momentum q with momentum conservation at the ver-
tices and is associated with a factor ns; (iii) integrate
over internal momenta; this yields the value u(6) for
each graph 6; (iv) determine the weight to (6),

shown in Fig. 5; for o = 1 full and broken lines have to be
interchanged.

Next we introduce the concept of one particle -irreduc-
ible (or proper) graphs which do not contain single
lines; otherwise they are called reducible (or improper).
In Fig. 5, F2bt(k) and F2&,J&(k) are ~educible, the others
are irreducible. Reducible diagrams are given by their ir-
reducible components times a factor nz . For

~
k

~
pk„

reducible graphs therefore do not contribute.
Introducing f' fk), the sum of all irreducible graphs

to f (k},we have

1w(6)=, cz ',

(v) determine the prefactor ( —1)f'a', where f(6) is the
number of loops.

This yields
} f )

a b C

f (k)= g ( —1)f'a'te(6)u(G) . (52)

For m = 1 me de5ne

(53)

The graphs F,.t(k) contributing to f t(k) for m & 3 are

FIG. 4. Diagrammatic representation off,l (k)
FIG. 5. The diagrams F;~(t) contributing to the coeScients

f 1(k) in (46) up to order m =3.
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f" (k), ski )kF . (54)

Finally, we calculate fz (k) in the one-dimensional case for n t n&
—n /——2, n & 1. There are three graphs as shown in

Fig. 5. The graphs F2&~ and F2, are trivial, i.e., U(F2&~}=(n/2) ni~, U(Fz«)=(n/2), for all k; in both cases

f (G)=2 and w (G)=1. To evaluate F2, , four different regimes in k and n have to be distinguished as shown in Fig. 6:

(I) )k ) &kF———, (11) kF& )k (
&1 3k',—(III) [k [»kp, (I&) (k [»—3kF,'

this applies to other graphs F; as well. Since k E [——,', —,
' ], k & 1 —3kF is only possible for n p —', and k ~ 3kF only for

n & —', . With f (G)= 1 and w (G)=1 for this graph we find

f2 (k)= —U(+2, )+U(+» )+U(+2, )

—,', n 2+k {I),
n

2

(III),
2

n

2

3n

3n 1
1 —ik i—

4 2

(56)

We see that for general n the coeScients f {k)become
rather comphcated in detail even in d= 1 and for small
orders m. This is due to the role of Umklapp processes
(UP) which enter for ) k

~
p 1 —3k~. On the other hand,

their structure in d= 1 is still simple, being given by a po-
lynomial in

~
k

~

and n The exis. tence of UP makes the
behavior of f (k} in k and n nontrivial; it therefore
needs to be investigated in detail to make an exact evalua-
tion in d = 1 possible; this is done in Appendix A.

The k integral over f (k) is easily seen to be related
with the coeScients c, i.e., the double occupancy itself.
This is clear from their diagrammatic structure: integra-
tion closes the external vertices of the E; (lr. ) in Fig. 5,
thus leading to the closed graphs C; in Fig. 2. Indeed,
integrating (48) over k & k~ leads to

n~ = dkn&
l& I &kF

=n —(1 g) n n—

The density of particles outside the Fermi surface is
n ~ =n —n ~. The above connection was already ob-
tained by Hashimoto.

8. Particle-hole symmetry

As in the case of the coeScients c ph symmetry may
be used to obtain exact relations among the coeScients
f (n, k), where we now write the n dependence explicit-
ly (n t n i n/2). ——Usin——g the canonical transformations

/

/ E
k

/

g(g —1) c
(1+g)

(57)

=n — (do —d),Q' 1+ 0 (58}
2 /3 1 0/3

where do ——n n . Hence the density of particles inside
the Fermi surface is related to the density of doubly occu-
pied sites d, i.e., to the expectation value (A'I } itself.

FIG. 6. Different regions in momentum k vs n due to Um-
klapp processes.
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for AB lattices in (30), the momentum distribution is

found to obey

n& „(2—n)+nz (n)=1 „

where ko is a vector in k space with ko(f; —f )=half-
integer if f;, f,. are on difFerent sublattices. Using (48)

this translates into

f (n, k)+f +, (n, k)= f —+, (2 —n, ko—k), (60)

valid for all n and k with n z l.——

C. Exact calculation of f„(k)in 8=1dimension

Equation (60) will now be used to derive an exact re-
cursion relation for the f (k) in d= 1 and

I

n t =n 1 =«2& I » t»s case, ko =—,
' and the spin index

may be omitted. I.et 5=1 n—be small and k & kz. Ac-
cording to the results in Appendix A, (n, k) lies in region
(I) in Fig. 6 where f (n, k) is given by a polynomial R
of order &m:

f (n, k)=n P (K)+c (61)

=n R (K),

where K =kin. Since the ffrst two derivatives off by n

at n= 1 are continuous we may express f +,(n, —,
' —k),

n =2 n—by the expression it takes in region (IV), plus
corrections of order 0 (5 ), i.e.,

m+1

2(m +1 +Qm+i
—,'+En —m + 1 +0 ( 51 )

Inserting (62) and (63) into (60) yields an equation which, according to Appendix A, may be differentiated twice with
respect to n Hen. ce (60) and its two derivatives taken at n =1 yield the three equations

m+1

2 m+1
1)m+1

mRm(k)+(m +1)Rm+i(k)=
2

+(m +1)X"+',(k) —X."+',(k),

(64a)

(64b)

m(m —l)R (k)+(m+1)mR +1(k)=——( —1) +' —m(m+1)X' +', (k)+2mX"+'&(k) —X' +', (k), (64c)

where we de6ne

X'"(k)=(—,
' —2k)'Q'"( —,

' —2k)+( —,'+2k)'Q'"( —,'+2k)

(65)

and Q'"(yo) is the 1th-derivative of Q (y) by y at y =ye.
The unknown polynomials R and Q are functions of k
and may be written as Taylor series around k =—,

' and
k = —,', respectively:

m g '&' &

Rm(k)= g . ,
(k ——,')~, (66a)Nl

Q(j) 1

Q (k)= g . ,
(k ——,'}'. (66b)Nl

As is shown in Appendix 8 the coefficients R'J'( —,') and
Q'~'( —,

' ) may be calculated exactly (although not in closed
form) via a recursion relation. This allows one to deter-
mine the functions f (n, k} for arbitrary m. For the ex-
pllcl't evalilatioll of the momentum d1strlbut1on nk (01' of
the kinetic energy) it is usually sufficient to know f for
m & 100 to determine all relevant quantities to an excel-
lent accuracy. The computation is easily done on a home
computer. In Fig. 7 the calculated k dependence of
f (k) is shown for several values of m.

D. The discontinuity of ns at the Fermi surface in 2=1

The values of the momentum distribution at
k =kg =k++0, as well as the slope of nk at kF, may now
be expressed by elementary expressions. Using (61) to-
gether with (66} and the results in Appendix 8 one finds
(n &1)

(67)

0.1
m= 50

0.8

k/k~

FIG. 7. Coefficients f (k}vs k/kz for different orders of m.



and f (kz+)=f (kz )/(2m —1). The sum in (48) is

easily performed and yields

2n(l —g)
kp 263

n(l —g)
kF+ 26'

(72a)

(72b)

1 6+g
6 1+g

for n &1, 0&g&1. For infinitely strong correlation
(g=O}one finds

lim nk+ ——1 n /—2 v'1—n-,
g~o F

(70)

For a half-filled band, (69) reads

(68a)
'2

1 1 —6
(68b}k+ 2 1+g

where 62=1—(1 n—)g .The discontinuity q =nk
—n + of nk at the Fermi surface is thus obtained as

kF+

At n = 1 the slopes are equal: n g =(1—g) /2g; for g ~0
kF

it diverges. We observe that for any n and g+0, 1 the
slope is always positive T. his is not what is expected to
occur in an interacting Fermi system (see Ref. 39 for cal-
culations of ns in three-dimensional systems, where a
monotonic decrease with increasing

~
lt

~
is found).

The fuH k dependence of ni, in d= 1 is obtained from
(48) by employing the recursion relations derived above
to determine f (k) in (62). In Fig. 9, nk is shown for
densities n=0.8 and n= 1, respectively. For n=0 8[F. ig.
9(a)] and

~
k

~
& kz we see that ni, is essentially constant

for arbitrary correlation strength. This behavior also
holds for

~
k

~
& k~ and weak correlations (g 5 1), while

for strong correlations an increase for increasing
~
k

~

is
found. In the half-filled band case (n= 1), showing Fig.
9(b), nk is hardly k dependent at all, except close to kF as
discussed above. At

~
k

~
=kz, nk is nonanalytic in the

limits n-+I and g~O, i.e., these hmits are not inter-
changeable. For n= 1 the limits k~kF and g=O also
may not be interchanged. This is seen from (48): for
k &ki and smallg one finds

gg
(1+g)'

(71) nk —
—,'+g+g g (g —1) f~(k)+0(g } . (73}

We have found this result to hold in arbitrory dimensions
for lattices with hypercubic Fermi surfaces. It is surpris-
ing to see that this approximation-free result for the
Gutzwiller wave function was already obtained within
the Gutzwiller approximation. 's In Fig. 8 the discon-
tinuity q is shown as a function of 1 —g for several densi-
ties n in comparison with the results obtained by the GA.

The slope of nk at k~20 is found by taking the deriva-
tive off (k), (62). Since

f' (k~ )=(—1) (2m 3)Bn —'/2(2m —4)!!

g - 1

g = 0.6

g = 0.3

g =0.1
g=0

n = 0.8

f' (k~+)=( —1) (2m 5)!!n —'/2(2m —4)!!,
one obtains

0

g=t

0.8-

0.6-
) n=0. I

0.5

9 =

9 =

0.6
0.3
0.1

0

!'n =0.9

0 A=1
0 0.2 O.I 0.6 0.8

0.5

FIG. 8. The discontinuity q at the Fermi surface vs l —g for
difFerent densities n.

FIG. 9. The momentum distribution nk vs k for dilerent
correlation parameters I: {a)n=0.8, {b}n= l.
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A straightforward estimation of the sum in (73) shows
that for

~

k
~

strictly smaller than k„ the sum goes as
ln(1/g). Hence nk ———,+g in this limit; similarly

&q =—,
' —g for

~
k

~
& kF. This was already noted in Ref.

10. On the other hand, for k =k~+0, (68} yields
nk+= ~ 52g.

n & 1 where no Brinkman-Rice transition occurs:

E (GA)
m

1 /2 0

1 —n &o

(1 n—/2)

which is valid for

(78)

V. THE GROUND-STATE ENKRIGY
OF THE HUBBARD MODEL IN d= 1

(74)

by minimizing with respect to the variational correlation
parameter g. Since nk(g} is not given by an elementary
function this has to be done numerically in general.
However, for a strong correlation it may also be per-
formed analytically. For g -+0 the kinetic energy in (74}
is found as

The ground-state energy E of the Hubbard xnodel with
general kinetic energy e(k) in terms of the GWF is ob-
tained from the expectation value E(g}of8 in (3),

F(g)=L x fdk s(k)n~ {g)+ ULd(g),

U »1/&1 —n 1 ——
2

For n g 1 both the result of the GA and the
approximation-free one derived here have a ( t /—U)
dependence at large U. Furthermore, for small densities
n the two results are seen to coincide; i.e., in this limit the
results of the GA approach the correct results for the
GWF, (77a).

For next-neighbor hopping, where

e,o= (4t /—n )sin(nn /2),
both (77) and (78) may be compared with the exact re-
sult13, 40

E„;„(g)=E„+2g(eo E„),— (75)
E '„'"'=——sinmn,

2t
where E„=E(U=—a&)/L =E(g =0)/L and eo—2fdk e(k)nko is the average eilergy of the uncorrelated
fermions. For general n, E„has to be determined nu-

merically using (48) and (lb) (see below). For small n,
E„=( 2n+n—i)t, while for n=l, E„=O [see (73) and
below] and hence E~„(g)=2gFO as was already observed
earlier. ' The potential energy in this hmit is given by
(37}. Hencefo, r g-+0,

E(g)
I.

2

E„+2g(K —0 E„)+U ln, n g 1,
(76a)

(76b)2geo+Ug ln —, n =1.1

The minimum is found at

g =2(1 E„/ec)/U ln—[1/(1 —n)]

and gin(1/g)=1/U for n g 1 and n=l, respectively;
here U —= U/

~
Ko

~
. For U ~~ the ground-state energy

is thus given by

at—iE„ i
—,n (1,

t 1 n=1
U lnU

(77a)

~h~~~ ~=2[(eo—E„)/t]'/in[i/(1 —n)] and P=(e, /r)'
For less than half-6lling the correction to E goes as

r /U Ho—wever, . the prefactor a has a logarithmic n
dependence and goes to zero for n —+1. This indicates a
crossover from an n dependent to a U-dependent loga-
rithmic correction to the ( t /U) behavior in the lim—it
of an exactly half-filled band. The result (77a} should be
contrasted with that obtained by the GA (Ref. 18) for

sill( 27ril )

2&n

For small densities, a,„~n while a o~~n; this shows
that for large U the GWF never approaches the exact re-
sult. In the half-Slled-band case and next-neighbor hop-
ping the ground-state energy (77b) obtained with the
GWF is nonanalytical in U:

'2
E 4 t' 1

UlnU
' (80)

owing to the logarithmic correction to the ( ti/U) be-—
havior of the exact result. "3 In numerical calcula-
tions, ' ' where only jfnite systems are considered, the
potential energy comes out proportional to g, since a
logarithmic correction can hardly be discerned (particu-
larly, if it is not expected}. Thus, they suggest a (r /U)
dependence of E with a seemingly much too small numer-
ical prefactor when compared with the exact result. '

Apparently, systems considerably larger than the one
studied so far (2=90 in Ref. 33) have to be used to iden-
tify the logarithmic correction found here. A Brinkman-
Rice transition ' does not occur for any Snite U.

The fact that for n =1 and large U the ground-state en-
ergy obtained with the 6%F is considerably higher than
the exact result was already observed by Kaplan et al.
in their investigation of finite rings. This they attributed
to the missing spatial correlation between empty sites and
doubly occupied sites in the 6%'F. Indeed, for strong in-
teractions the probability for finding a hole and a (ener-
getically costly) doubly occupied site close to each other
should be enhanced over that in the noninteracting case
since this would allow the latter to decay more easily.
This is, indeed, not the case in the G%F as recently
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shown analytically by Gebhard and Volihardt using the
present approach. Including such a correlation in the
variational ansatz, Kaplan et ul. found the energy to be
in much better agreement with the Lieb-%u result. ' A
similar Snding is due to Baeriswyl. %hether the
nonanalyticlty in (80) is tliereby removed or shif'ted to a
higher order in t /U is, however, not clear at present.

For general interaction strength U the minimization of
E has to be done numerically. The resulting U depen-
dence of the correlation parameter g is shown in Fig. 10
for two different densities. It is compared with the re-
sults by the GA (Ref. 18) for next-neighbor hopping,
where —in the special case of half-Slling —a localization
(Brinkman-Rice} transition (g=O, E=O) occurs at
U=8

~
eo

~

=32t/m'. The result for the ground-state en-

ergy as a function of U/t is shown in Fig. 11 for several
densities. It is compared with the exact results' and
with those of the GA. ' We observe the following
features: (i) for not too strong interactions (U/t S2)
both the GA and the approximation-free results repro-
duce the exact results very well;3' (ii) for n= 1 and large
U all three results dilfer most strongly; (iii) for small den-
sities, the results of the GA approach the correct results
for the GWF (already at n=0.3 they cannot be dis-
tinguished in Fig. 11),but both do not approach the exact
results; (iv) the GA sometimes yields energies lower than
the approximation-free result and hence does not always
obey the variational principle.

In Pig. 12 the ground. -state energy is plotted as a func-
tion of density n for different interaction U/r and is com-
pared with the exact result. This presentation illuminates
an essential difference between the two results: while in
the exact solution'3'~ the chemical potential @=BE/Bn
is discontinuous at n= 1 for all U ~0 (absence of a Mott
transition at nonzero U), the result for the GWF is con-
tinuous for all finite U and only shows a discontinuity at
U = 00 (absence of a metal-insulator transition at jfnite
U}. Mathematically this is expressed by the fact that for
n= 1 the exact result'3 is nonanalytic in U at U=O while
the result for the GWF is nonanalytic at U = &x&. Hence,
in contrast to the exact result, the GWF always leads to a
conducting state except for U = ao. This is also evident

8 10 12 14 16 18 20

-1.0

8XihC t
GMF

—.—.—GA

FIG. 11. The ground-state energy of the one-dimensional
Hubbard model as a function of U for three diferent densities.

0.5 l I I

!G'4/F

n

0.2 O.I 0.6 0.8 1 i, 1.2

exert

from the existence of a 6nite discontinuity q at the Fermi
surface for all U ~ oo even at n= 1 as shown in Fig. 13
for various densities. Clearly, in one dimension the exact
momentum distribution for n=1 is not expected to have
a discontinuity for U~ 0; for large U this has been shown
explicitly by Takahashi. 4' On the other hand, the ab-
sence of a discontinuity is an inherent feature of any per-
fect nesting lattice at n= 1. For n & 1 even the exact solu-
tion in d= 1 may well have a sharp Fermi surface as ex-
hibited by the GWF. In particular, in higher dimensions
and for lattices without perfect nesting a discontinuity
should exist for small U even at half-filling. In this case,
a Brinkman-Rice-type transition, ' where q vanishes at a
Pnite U, would have to occur.

0.4

0.2

I I l I

12 1L 16 18 20

FIG. 10. The U dependence of g for the one-dimensional
Hubbard model at two different densities.

FIG. 12. The density dependence of the ground-state energy
for diferent U as compared with the exact result 4,

'Ref. 13).
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of graphs for
~
k

~
& kF or

(
k

~
& kb are constant. Re-

stricting ourselves to n& n——
&

——n/2 for convenience we
now show that (82) lead to the results of the GA.

For n=1, (59) and (60) imply n'+'+n' '=1 and
f' '+f' +', — f—'++'„respectively. Then we find

(83a)

f(+) ( 1)tll "
i

1

0.2

I I l I

12 14 16 18 20
1)m+1 (2m —1)!!

2(2m)!!
(84)

In d = 1 the right-hand side of (83a) and (83b) were the re-
sults for f (k) only at points k =kg, respectively. Using
(57) the f'*' are related to the c yielding

FIG. 13. The U dependence of the discontinuity q for three
diferent densities.

To obtain the general n dependence of the c we define

Pm =0m +@~+ ) ' (85)

VI. DIAGRAMMATIC DERlVATION
OF THE GUTZ%XI.LER APPROXIMATION

A, =I —(z +z' ) . (81)

For example, A I(CI, ) =A I(CI, )=2, A &(Czb ) =1,
AI(Czb) 2, AI(EI, I )=1,AI(FI, I )=2, AI(Fzbt )=0, and

I(F2bl )=2. ,

%e will now show that the following assignment of
values u(G) to any graph G [i.e., C; and p'; (k)] ls
equivalent to the GA:

U (C;)=n I'n I', (82a)

U(F; (k))=n I'n I' for proper graphs, (82b)

U(F, (k))=n I'n &'nl, for improper graphs . (82c}

Clearly, in this approximation n& is given by a step
function, i.e., by two k.-independent values n' ' and n'+'
on either side of the Fermi surface (FS},since the values

The formalism described in the preceding sections may
also be used to derive the results of the Gutzuuller approx-
imation' in terms of diagrams. For this one has to make
simple approximations for the values u (G}of the graphs.
These approximations will then be argued to be correct in
the case of injfnite dimensionahty.

To this end we classify all graphs contributing to c
and f~ (k) by their "efFective" number of lines, A, , as
follows. We consider a general graph with 1 cr lines car-
rying IlloIIlellta k„.. . , ki~. The topological strllctllle of
graphs sometimes implies that difFerent lines carry the
same momentum [as do, for example, the two internal
lines in Clb, (see Fig. 2)] or, in the case of improper
graphs F; (k) as in Fig. 5, carry the external momen-
tum k [e.g., the middle line in Fz»(k}]. This corre-
sponds to a constraint k; =k, or k; =k, respectively. I.et
the number of such independent constraints be indicated
by z and z', respectively. The "eS'ective number of
lines" is then deSned as

According to (85), r is a polynomial in n C[0,2] and
since r (n)=r (2—n) [see (34a)] r is a polynomial in
n (2—n), r = g~ ar[n (2—n)P', as follows from a
theorem for symmetric functions. For any graph C
m+1&A, &+A, I&2m. Consequently ar is only diferent
from zero for p =m+ 1, and r may be written as
r =a[n (2—n)]~+'. Using (84) this yields

as was obtained by Gutzwiller. '

The discontinuity q for a step-type nz follows from (58)
and (87) as

2(n —2d)(&1 n+d +—~d )

n (2 —n)
(88)

again in accordance with the results of the GA.
We now discuss the meaning of the approximation for

the graphs as formulated in (82). To this end we consider
a typical Monte Carlo integration of a general graph 6
contributing to c . In this method internal momenta
k, k +, are generated at random (within the BZ), the
value of the graph being given by the probability that
every line carries a momentum lying inside the Fermi
surface (FS) (which is a random event). In the case that
these random events are independent, except of course for
lines I; and I with k;=k-, the total probability for the
momenta of the different lines to lie within the FS is the
product of the corresponding probabilities for the A,

effective lines. This then leads to the assignment in (82)
and hence to the GA.

%e have calculated a number of graphs for d-
dimensional lattices with hypercubic Fermi surfaces. For
high dimensions d the value U(G) of a graph G always

r =( —1) +' '
[n (2—n)] +' (86)

2(2m +2)!!
The density of doubly occupied sites (8)/l. in (27) is
thus found as

(8 } 1+n (gl —1)—[1+(2n —nl)(gz —1)]I~I
I. 2(g —1)



3I
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FIG. 14. Value of the graph C2, for diferent dimensions,
normalized by its value in one dimension.

converged to the expressions given in (82). In Fig. 14 we
show U(C2, ), the value of graph C2„as a function of
diiileilsioilallty of 'the systeln, normalized by
u(1)=—23(n/2), the value of C2, in one dimension. The
limiting value clearly agrees with the expression obtained
from (82), i.e., —', n. Thus the GA turns out to be the exact
result for the GWF in the limit d ~ co. The mathemati-
cal proof for this intuitively plausible result will be pub-
lished elsewhere. The assumption of independence in k
space formulated above is also consistent with the ap-
proximation on which the GA is based, i.e., the neglect of
spatial correlations between difFerent lattice sites. ' '

The GA is seen to involve all diagrams in all orders, i.e.,
it is not given by a particular subclass of diagrams.

We note that Hashimoto derived an expression for
the expectation value of the Hubbard interaction of the
form

where P"(g) is an even function of g. Based on his results
for ni, and the relation (58) be concluded that —for
small g —he was able to prove the absence of a
Brinkman-Rice transition in the exact solution for the
GWF in ony dimension. However, he seems to have ex-
cluded the possibility that P"(g) diverges for g~0.
Indeed, while in 8= 1 we find only a weak divergence
[7"(g)/(PG

~
PG) ~in(1/g~)], our results for d= ao

show that a Brinkman-Rice transition does occur, indi-
cating that 7"(g)/( PG ~ gG ) diverges as 1/g in this'case.
The behavior for 2 & d & ao is not yet known.

VH. SUMMARY

A new diagrammatic approach to the evaluation of
ground-state properties of correlated fermlons ill terins of
the G%F has been described. The resulting expressions
are simple enough to yield analytic, approximation-free
results in one dimension, e.g., of the momentum distribu-
tion n& and the ground-state energy E of the Hubbard
model. This allows for an unambiguous assessment of the
properties of the G%F in one dimension as discussed in
Sec. V. The G%F is seen to lead to a sharp Fermi sur-
face for all densities and finite interaction strengths. In
the special case of a half-Slled band, logarithmic correc-
tions to the usual ( ti/U) behavior —of E at large U are

found in contrast to the exact result. '

The same approach has also been apphed to the calcu-
lation of correlation functions for Hubbard-type mod-
els, ' ' i.e., spin-spin, density-density, hole-hole, hole
doubly occupied site, and superconducting correlations.
Again, analytic, approximation-free results have been ob-
tained in one dimension. Details will be reported sepa-
rately. The comparison with exact results for spin-
spin and hole-hole correlations in the half-611ed band
case and U= oo show very good agreement (see also
Refs. 25 and 26). On the other hand, for strong interac-
tions spatial correlations between empty and doubly oc-
cupied sites are not suSciently described by the 6%'F,
which only accounts for the average behavior of these en-
tities.

The case where doubly occupied sites in the ground-
state wave function are fauored, as in the case for attrac-
tive on-site interactions, is described by correlation pa-
rameters g~ 1 rather than 0&g &1 used so far in the
GWF, (7). Using canonical transformations for spins on
AB lattices as in (30), the above mentioned correlation
functions may be shown to be related under a replace-
ment of g by 1/g; this allows for a simple extension to the
case g g1.

In higher dimensions (d ~ 1) analytic evaluations to ar-
bitrary order have not yet been possible. This is due to
the fact that now the shape of the Fermi surface is no
longer scale invariant but depends on the density n. In
addition, the contribution of Umklapp-processes becomes
even more complex. Hence the general structure of the
coefficients c and f (k) is no longer given by simple po-
lynomials as in d=l but is more complicated. This
makes general evaluations much more difficult. Finite or-
ders can of course easily be calculated numerically and in
most cases already yield sufficient accuracy unless one is
interested in the limit U —+00. For very large dimen-
sionality (d -+ oo ) we find that the Gutzwiller approxima-
ticn gives the correct results for expectation values in
terms of the GWF. In this hmit the evaluation of graphs
is simple.
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APPENDIX A: POLYNOMIAL STRUCTURE
OP THE COErriCIENIS c,f (k)

AND UMKLAPP-PROCESSES
FOR d= 1 MMENSION

We discuss the structure of c and f (k} as functions
of n and n and k, respectively. This is necessary before
we may employ the derivatives of the ph symmetric rela-
tions (33) and (60} by n, to determine the polynomial
structure of c,f (k).

CoeScients c . Momentum conservation at the ver-
tices leads to combinations of Inomenta on the lines of a
graph. Since a vertex is a termination point of four lines,
three of them may carry dilerent moments k„kz, k3
while the fourth carries the momentum K =k

& +k2+ k3.
E is de6ned up to a reciprocal lattice vector, i.e., if K is
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not in the first BZ it is shifted to lie in the Srst BZ
["Umkiapp-process" (UP)]. For a UP to occur, K must
lie outside [—1+kF, 1 —kp]. Since kp=n/4, this is only
possible for n ~ 1.

For n &1 no UP occur. The value U(G) of a graph
contributing to c (which has 2m lines) is then simply the
volume of a polyhedron in the {m + 1}-dimensional space
of the free momenta k, , . . . , k +,. This polyhedron is
defined by 2m inequalities of the form

(Al)
u, —+yu, ,

'
j=1

(A2)

whose analytic structures have to be discussed separately.
At k =kF ——n/4 the h are discontinuous since reducible
graphs vanish discontinuously.

In (I) no UP's occur. The value of a graph is given by
the volume of a polyhedron in the space of free momenta
k, k, i.e., is determined by the set of linear inequali-
ties

where i =1, . . . , 2m counts the lines and u;i G (0, 1,—1I.
Since they are linear in the k the corresponding volume
is proportional to n +'. Hence c ac n +'. This implies
that for n &1 and n & 1 (by ph symmetry) all derivatives
of c are continuous. Only at n= 1, where the UP set in,
the differentiability is limited. Setting n =1+5,
0&5«1, one has kz ——(1+5)/4. The contribution of
the UP is then seen to be of order 5'. Since the UP do
not contribute for 5&0 there is a discontinmty in the
third derivative of the e by n at n=1, ; the 6rst two
derivatives are continuous.

Coefficients f (k) for nt —ni n/2———. The f (k) (we

drop the spin index) depend on k E [——,', —,
' ] and n 6 [0,2].

We only need to discuss their structure for k & 0 and
n & 1 since we have inversion symmetry (dependence on

~

k
~

) and because the behavior for n & 1 follows from ph
symmetry [see (60)]. Since f =h +c „{50},we may
restrict the discussion to the graphs contributing to h

only. These consist of two external vertices, where the
momentum k enters and exits, and 2m —1 lines; there are
m free internal moments k;6[—kF, kz], kJ;=n/4, the
others are determined by momentum conservation.

As seen in the case of the c,UP's at an internal vertex
do not occur for n & 1. Since in the present case an exter-
nal vertex involves the external momentum k and two
other (free) momenta UP's do not occur for n &1 and
k & 1 —3kF. In particular, for n & —', UP's are never possi-
ble for any k. Furthermore, for k &3k+ (which is only
possible for n & —,') the value of a graph has to vanish.

In Fig. 6 the difFerent regions of f~(k) in k and n are
shown. The lines n=l, k =3n/4, and k =1 3n/4 a—nd
the ph-symmetric counterparts are boundaries of regions

where u;, u; K[0,1, —1]. Its volume is of the form
n I' (k/n); where I' is a polynomial of order &m.
Hence, in (I), h =n P (k/n). The same is true for (II),
i.e., h =n "Q (k/n) with a different polynomial Q . In
(III) (k &3k+), h vanishes. In (IV) UP's occur at the
external vertices. While the usual k sums (i.e., those not
involving a reciprocal lattice vector} lead to n Q (k/n),
the UP's yield the same contribution with k replaced by
1 —k. Hence, in (IV) the h have the form

h =n Q —+Q

Concerning the differentiability of the h at the
boundaries, a similar analysis as for the c shows that
h (n, k) [and hence f (n, k)] has the following proper-
ties: (i) it is discontinuous at k =kz', (ii) the first two
derivatives by n at n = 1 are continuous for all k+kz, (iii)
the first derivative by k is continuous at k =3kF for
n & —,', at k =1—3kF for —', & n & —'„and at k = —2+3kF
for n & 4, .

APPENDIX 8' RECURSION RKI.ATIQNS
FOR THE COEr.l.ANCIENTS Z i», g&~~

To determine R~J' and Q~J' we take the jth derivative
of the three equations in (64) with respect to k at k =—,';
this yields

1 ye+1
+' ' "2m+1 (8 la)

(8lb)

m (m —1)~ '1'(
—,
' )+( m + 1)m& 'J'+

i ( —,
'

)= —5JO
—( —1 )

+ ' [m (m +—1) 4mj +4j (j —1—)]I'~'+
i

(8 lc)
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(82)

etc. Eliminating Q'J'+i( —,') from (81) we find (j & 1)

pg —j +—

Together arith the initial vahj. es

R (J)( i
)

(83) (
. Q"+,"(—,'), 1&j&m,

(86a)

Eqs. (Bl) allow one to calculate R"'( —,'), Q'J'( —,'), and
Q'J'( —,

'
) recursively for any j and m.

In particular, for j=0 (Bla) and (Blb) imply

0 for m +1 odd,R(m+i(( I
)+' ' —2Q( ++, "(—,') for rn +1 even, (86b)

Q (()= +(—1) ", m&1, (84b)( —1) (2m —3)!!
2m (2m)!!

where we define ( —1)'.!—:l. Furthermore

Q(J +2(( 3
) 2(m 2j)Q(j+ i( 3 )+2mR (J(( (

)

—4j(m —j+ l)[R"'(-,')+R(J'+](-,')],

1 &j & m —1 . (86c)
( —1) (2m —3)!!

Ill 4 2 (2 4)ii

( —1) (2m —5)!!
2 (2m —4)!!' (85b)

Together with (83) we have thus a simple algorithm for
the recursive calculation of R'J'( —,

' ) and Q'~'( —', ) in (66) «r
arbitrary j and m.
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