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Correlation functions for interacting fermions in the Gutzwiller ansatz
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We make use of a recently developed diagrammatic theory to calculate correlation functions for
interacting fermions of Hubbard-type models in terms of the Gutzwiller wave function. Of the
eleven nontrivial correlation functions involving the spin, density, empty and doubly occupied sites,
and local Cooper pairs, four are shown to be independent. They are expressed as a power series in a
suitably chosen correlation parameter, whose terms are represented diagrammatically. In one di-
mension these terms may be evaluated to arbitrary order by employing symmetry relations. This al-
lows for an analytic, approximation-free calculation of the correlation functions for arbitrary
momentum, particle density, and interaction strength. In the atomic limit the momentum-
dependent spin-correlation function shows an antiferromagnetic divergence at half filling in all di-
mensions. In one dimension the behavior is in very good agreement with all exact analytic and nu-
merical results for the antiferromagnetic Heisenberg chain. Hole-hole correlations also compare
very well with exact results. However, correlations between holes and doubly occupied sites appear
insufficient. Superconducting correlations involving on-site, singlet Cooper pairs are suppressed.
The results allow for an analytic evaluation of the ground-state energy of a large class of extended
Hubbard models in terms of the Gutzwiller wave function. Thus they provide exact upper bounds
for their ground-state energies.

I. INTRODUCTION

Investigations of strongly correlated Fermi systems in
recent years have been a particularly vital field of
research in condensed-matter physics. However, the in-
tense interest is in striking contrast to what is actually re-
liably known about these systems. This has become very
clear again in the case of the well-known Hubbard mod-
el, ' whose two-dimensional version is hoped to provide
insight into the pairing mechanism of high-T, supercon-
ductivity. Although this is about the simplest model for
interacting fermions on a lattice, details about the corre-
lations between the particles are not yet well understood.
Even in one dimension (d = 1) where Lieb and Wu have
obtained the ground-state energy by the Bethe ansatz,
correlation functions are essentially unknown except for
limiting cases, i.e., the nearest- and next-nearest-
neighbor spin-correlation function at infinite interaction
and half-filled band. In higher than one dimension not
even this is known. Here numerical Monte Carlo
methods have proved to be very valuable and, indeed,
have yielded important insight into the ground-state and
thermodynamic properties of Hubbard-type models in
d =1,2, 3. ' On the other hand, their applicability is
naturally limited to rather small systems, i.e., particle
numbers. In this situation variational methods, which
work with explicit wave functions, are among the very
few analytic tools available for the study of correlated
fermions in the thermodynamic limit.

The simplest variational wave function for Hubbard-
type models is the Gutzwiller wave function (GWF). ' In
spite of its simplicity an exact evaluation of expectation
values in terms of the GWF was not possible until recent-

ly. Instead, the results of an approximate calculation of
the ground-state energy, also due to Gutzwiller, " were
used. The Gutzwiller approximation" (GA) yields very
simple results in a number of cases [metal-insulator tran-
sition (Refs. 12 and 13), normal liquid He (Refs. 14—16),
heavy fermions (Refs. 17—20)], which allow contact to be
made with well-established theories like Fermi-liquid
theory, and which are therefore generally acknowledged
as very "physical. " To establish the reasonableness of the
GWF itself, one has to calculate expectation values
without making further approximation. Such evaluations
of the ground-state energy and correlation functions were
first performed by Kaplan, Horsch, and Fulde ' and Ka-
plan and Horsch for finite rings using numerical tech-
niques. Hashimoto combined analytic and numerical
methods to derive results for the thermodynamic limit
and Horsch, Baeriswyl and Maki, and Baeriswyl, Car-
melo, and Maki calculated the ground-state energy of
the Hubbard model analytically for small interaction
strengths. Significant progress was then made by Gros,
Joynt, and Rice ' who obtained detailed numerical results
for spin-spin and hole-hole correlations in terms of the
GWF for d =1 and infinite repulsion, and independently
by Yokoyama and Shiba who calculated the spin-spin
correlations, density-density correlations and the momen-
tum distribution in d =1, as well as the ground-state en-

ergy in d =1,2, 3 for general interaction strengths.
Most recently, Metzner and Vollhardt ' developed

an analytic approach which, for the first time, allowed for
an exact evaluation of expectation values in terms of the
GWF for arbitrary particle density and interaction
strength, at least in d =1 and d = oo. (In the latter case
the results of the GA obtained for the GWF are found to
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be exact. The evaluations are made tractable by (i) a
suitable choice of expansion parameter and (ii) the intro-
duction of special ("5-less") contractions, which only in-

volve anticommuting numbers. In this way the variation-
al ground-state energy of the Hubbard model and the
momentum distribution in d =1 were obtained without
approximation.

The method is equally applicable to the evaluation of
correlation functions in terms of the GWF for arbitrary
band filling and interaction strength in d =1. ' In this
paper we give a detailed description of how this is
achieved. In particular, we show how to make use of
symmetries to relate different correlation functions (Sec.
III). In Sec. IV the diagrammatic analysis is explained
and in Sec. V the polynomial structure of correlation
functions in one dimension is identified. In Secs. VI —IX
the cooperation of symmetry and structure is shown to
allow for the exact evaluation in one dimension. In Sec.
X the extended Hubbard model is addressed and in Sec.
XI higher dimensions are discussed.
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is custom-tailored to treat the e6'ect of the on-site interac-
tion in (1) and is thus the simplest correlated wave func-
tion. Here 0&g &1 is a variational parameter and +o)
is the noninteracting ground state (Slater determinant).
The correlation factor in (2) reduces local density fluctua-
tions in a global fashion. In the Hubbard model (1) a lat-
tice may be empty, singly occupied by either 1 or 1, or
doubly occupied. The correlations between these entities
is described by the general correlation function (CF)

C "=—+&X;Y;, ) —&X) & Y), (3)

where L is the number of lattice sites and

&+, IoIe, &

Here the operators X;, Y, [with X=( I/l. )g;X;, etc.] are
any one of the following local operators

II. DEFINITIONS

We consider the Hubbard model'

8= g t; c; c +UQR;tR;)', (1)
i,j,o j

where c, creates a 0 spin on site i, etc. and 8'; =c; c; .
The on-site interaction in (1) may also be written as
Ug;8, = UD, where 8; =R, t &, &

is the number operator
for double occupancy at site i. More complicated in-
teractions (e.g. , nearest neighbor) have been neglected in
(1); they are discussed in Sec. X. The Gutzwiller wave
function'" (GWF)

D;—:R; t R';) (doubly occupied site),

H, —:(1—&,.t)(1 —R, &) (empty site or "hole" ) .

(Sc)

(5d)

Furthermore, to study the role of superconducting Auc-
tuations in

I %o ) we investigate the correlation function

j X& itciL 1+j 1 i+j) &

L

which probes local Cooper pairs with spin s =0.
In the following we consider a nonmagnetic ground

state with fixed particle number X =n L

n 1
n~ ——n~ ———(—,

2
—2'

d= &8)—,L

(7a)

(7b)

where d is the density of doubly occupied sites (not the
dimension).

I
%o ) is not an eigenfunction of D; hence d

represents the most probable value of doubly occupied
sites in

I %o). Subtracting &X)& 0) in (3) implies that
the CF's vanish for j~ 00 unless a symmetry is broken.

For n t n) the defi——nition (3) with (5a) —(5d) yields ten
CF's, which, however, are not independent. For exam-
ple, the following relations hold:

CDH CDD CND

CHH CNN 2CND+ CDD
J J J J

(8a)

(8b)

Altogether there are only four independent CF's. These
CF's depend explicitly on the particle density n and the
interaction of the model under consideration (e.g., U in
the Hubbard model). We note that in the present ap-
proach based on the GWF the interaction strength is
parametrized by the correlation parameter g in (2). In
the following we will therefore express the CF's as func-
tions of g. The connection of g to explicit interaction pa-
rameters is achieved by diagonalizing the respective mod-
el Hamiltonian [e.g. , the Hubbard model (1) as done in
Refs. 29 and 30] and minimizing the energy with respect
to g.

III. SYMMETRIES

where

The CF's defined above are related by special particle-
hole (p-h) symmetries. Exploiting these symmetries in-
troduces great simplifications. To this end we consider
alternating (i.e., AB type lattices) suc-h as simple cubic or
bcc lattices, which yield a connected Fermi surface for
the noninteracting ground state. We now define two p-h
transformations T] and T2.

(1) The transformation T, acts on both spins at site i

c, ~( —1)'c,
(9)

c; ~( —1)'c,

S;=R';t —R;t (spin), (Sa)
—1 if i E A lattice
1 if i EB lattice .

—1'=' (10)

8';—:R;t+n;( (density), (Sb) This implies
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S',-~ —S;, (1 la) before letting T2 act, leads to

2 —8;,
1 8—;+8,=8, ,

(1 lb)

(1 lc)
CJ'""(g,n =1)=—

—,'( —1)iC (g, n =1), (19)

(1 ld)

The transformation (9) leaves the correlation factor in the
GWF invariant (up to a trivial normalization factor},
such that

g i %0(n))~g
~

%0(n)), (12)

where n =2—n. Writing the g and n dependence of C.
explicitly, the following relations hold:

C, (g, n)=C (g, n),
CNN(g g) CNN(g n )

CDD(g n) CHH(g g )

C (g, n)= ,'[C, —(g,n)+C, (g, n) C(g, n—)],
C,'"i'(g, n) =(n —1)5 0+ C'" (g, n ) .

(13a)

(13b)

(13c)

(13d)

(13e)

(2) The transformation Ti is only defined for a half-
filled band (n =1) and only acts on one spin component
(say, on t) while leaving the other unchanged:

c;t~( —1)'c;t,

c;&~(—l)™c,t,
c;~,c;~, unchanged .

in fact, as will be shown later, for general n, C'" is com-
pletely determined by C- . Therefore we may limit our-
selves to the calculation of altogether only four CF's, i.e.,
C. , C. , C, C. . Equation (19) immediately implies
that for n = 1 and a strong, short-range repulsion U the
superconducting fluctuations for on-site Copperpairs are
just as suppressed as the density fluctuations.

The fact that for n =1, spin and density fluctuations
are closely related and change their role for g ~1/g was
already observed by Vollhardt' for the results of the GA.
There the Landau parameters Fo,FO entering the spin
and density susceptibility where found to be related by
Fo( U) =F0( —U). Since in the GA, g is given by

1 —U

1+U
(20)

IV. DIAGRAMMATIC REPRESENTATION
OF CORRELATION FUNCTIONS

where U= U/(8
i so

~
), with

~
so i

the average energy of
the uncorrelated particles, a change of U~ —U does
indeed imply g ~ 1/g.

This implies

S';~1—
;~1—S';,

(isa)

(15b)

To obtain Cf, Cf,Cf,Cf, where f is a d-
dimensional lattice vector, the expectation values of four
different operators have to be evaluated:

and hence the GWF transforms as

(15c) 0 f X~ht~f+htL „
(21a)

l
@G(g n =i)& gIG n=i

)
1

g
(16) 0 f X&ht~f+hi(2) (21b)

thereby connecting states with 0&g & 1 and 1 &g & ~.
This transformation relates the CF's as 0 f X~hl~f+h ~

(3)
L „

(21c)

CSS(g 1 ) CNN 1
(17a)

C (g, 1)=—'[C (g, 1)—C (g, 1)]+C —1 (17b)DD

(4)0 f — QDhDf+hL h

(21d)

";=,—(";i+";i),~2

pt 1
(

t t)sf

(18a)

(18b)

8'; =a;a;, etc. , (18c)

and the double occupancy at n = 1 as d (g) = —,
' —d(1/g}.

Furthermore, applying a unitary transformation

All other contributions are obtained by the inversion
symmetry C f ——C f and spin-flip symmetry.

The calculation of (0'f'), i =1, . . . , 4, will now be
exemplified in the case of (0 'f"). To make use of the
formalism developed earlier ' for the evaluation of ex-
pectation values as in (4), we first treat the numerator in
(4}. We note that all operators 0 'f' in (21) commute with
Dh. Expanding the correlation factor of the GWF in (2a)
as a sum over diferent lattice sites (prime on summation
symbol), the numerator may be written as
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&PG
I
0'f I'PG&=&o'r'&0+ X ( X X&~ht f+ht f fL

1
m ! f f

(22)

where (. . . )0 implies the expectation value in the nonin-
teracting ground state. Since 0'f" is itself a sum over lat-
tice sites we first separate out the case f=0, with
(0 0")0——n/2, and in the following assume f&0; hence
h& f+h in (22). We now want to make all site indices on
the right-hand side (rhs) of (22) different, because then the
calculation of (. . . )0 via Wick's theorem only involves
contractions without the usual 5;, terms ("5-less contrac-
tions"). ' This is an essential feature without which an
analytic evaluation would not be tractable. In (22) three
cases have to be distinguished: (a) neither h nor f+h be-
long to f;, i =1, . . . , m; (b) either h or f+h belongs to
f;; (c) h and f+h belong to f; (m ) 2 necessary). Ac-
cordingly, the second term on the rhs of (22) involves the
terms

ucts. ' For example, in the case of (23a) we have

f. (g2 1 )m
Xf ——Z m!

x
f]y ~

y f
Inf (nf +ftDf, . . . Df jQ

(24)

ICi C; j()= (CJ C; )()= —P; (25b)

The only nonvanishing contractions are given by the
one-particle density matrix and are defined as

t.,'.;.j,= &-. ,':;.),=—P... (25a)

and, in particular,

X(.)Xf ——Z, m!

x
f]y ~ p f + ]

X( ~ (g —1)

, (m —1)!

(Rf t&f f+(Df y y8f )Q

(23a)

We note that in (25b) the usual 5;, term does not appear
since i &j ("5-less contractions"). However, I. . . j 0 as
defined by (25) corresponds to a product of two deter-
minants (one for f, one for l) and hence I. . . j 0=0 if any
two site-indices are put equal. Therefore we may formal-
ly extend the sum in (24) to an unrestricted lattice sum
since this does not create even contributions. ' [Of
course, the definition of I. . . jQ is still given by (25)].
Hence the prime on the sum in (24) may be dropped

X g (~f t~f f~f ''' ~f )0
f]y ~ ~ ~ y f

(23b)

L (g2 1)m
Xf m!

z (m —2)! Inf~ tf +ft f f jQ.

x
f]y ~ ~ ~ y f ]

&Df,Df, +fDf ''' Df, &0'
(26)

(23c)

Now Wick's theorem is applied to calculate the expecta-
tion values in (23). It transforms the (. . . )0 into I. . . j 0,
i.e., the sum over all possible fully contracted prod-

The same holds true for X'f ' and X'f" in (23b) and (23c).
Note, that the objects in [. . . jQ are no longer operators
but are anticommuting numbers similar to Grassmann
variables. This becomes obvious if we write I. . . jQ in

(26) as a product of determinants (with f, = 1 and

f, +f= 1')

t,(, tD„. . . , D

~1', 1', f ~1',2, f

~1,m+1, f

~1', m +1, t

I'2

~3,m+1, &

~m+1, 1, $ ~m+], m +1, f ~m + l, m +1, $

(27)
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This shows, in particular, that for f=0 (26) vanishes.
The contractions defined above may be represented
graphically. One simply assigns a line to every Pfg
(solid line for !'; broken line for 1) which connects the
points f and g. The points f, and f+f, are chosen as
the two external lattice points of the graph, i.e., they
mark the left and right vertex of the graph, respectively
[see Fig. 1 for (27) with m =1]. The evaluation of the
graphs in the thermodynamic limit (L ~ ae ) is done most
conveniently in k space, using

(o',")=—y(e„e&„,)
h

2
n n=5f'0 2 2

(29a)

tributions to [. . . ] o, indicated by [. . . j0, and may then
ignore the (f)( f)'term.

For example, the expectation value of 0 'r", (21a) is al-
together given by

dk;k(f g) O

fg a J de nko
(2n)

(28) + g (g —1) ( Y'r" +2Y'r ' + Yr ' ), (29b)
m=0

where nk is the momentum distribution of the nonin-
teracting 0 spins. Here the lattice spacing is chosen such
that the volume of the primitive unit cell is V, =1, while
in k space the volume of the primitive unit cell is
V,'=(2n. ) . The resulting graphs are either "connected"
[Figs. 1(b)—1(f)] or disconnected [Figs. 1(a)—1(c)], with a
connected graph defined as one where it is possible to go
from any internal lattice point to f& or f+ f& on a con-
tinuous fermion line. As usual the disconnected dia-
grams of any expectation value are canceled by the norm
( +G

~
%G ) ("linked cluster theorem" ' ) in the thermo-

dynamic limit. Hence only connected diagrams in
I. . . ] o, indicated by [. . . I o, need to be taken into ac-
count.

The connected graphs may themselves be classified into
"half-connected" (HC) and "fully-connected" (FC) dia-
grams; see Figs. 1(b) and 1(f) and Figs. 1(d) and 1(e) re-
spectively. Here an FC graph is one where it is possible
to go from any internal lattice point to both f, and f+ f,
on a continuous fermion line. The HC graphs are trivial
since the summation indices may always be rearranged
such that f no longer occurs, i.e., one obtains f-
independent contributions to Cf . These are precisely
the terms which are subtracted by (X')( $') in Cr [see
(3)]. Physically this corresponds to Cxrr~0 for

~

f
~

~ ae. Hence we only have to consider the FC con-

where the second term on the right-hand side of (29b) is
due to the HC diagrams and the third term is given by

Y(1)
Lmt

FCIn, tnr +«D, , . . . , D&, ]0

m )0 (30a)

Y(3)
L (m —2)!

FCIDf Df +fDf »Df Ip

m &2 (30c)

and Y'f'o ——Y'f o
——Y'f o

——0. Similarly, the expectation
value of 0 'r ', (21a), is given by

(0, )=—g(&hth', +h, )
L „

(31a)

Y(2)
L (m —1)!

X g [Bf tDf +fDf, . . . , Df ]0
FC

1''''' m

m ) 1 (30b)

2 =5ro g (g 1) c
m=1

(b)

with

(g 1 )m(2 Y(2) + Y(31 + Y(4) )
m=0

(31b)

(c)

2

Y(4) X
' f), . . . , f

FCft f+ft f ' f IO

(32)

I

(e)

FIG. 1. Graphs corresponding to the contractions of
I n» n, & D2) 0, i.e., {27)with m =1, where 1 and 1' are the exter-
nal vertices and 2 is an internal vertex. (a),(c): disconnected dia-
grams; (b),(f): half-connected diagrams. (d),(e): fully-connected
diagrams.

d=g g (g —1) 'c
rn =1

(33)

which enter in (31a) since 0 P' is given by 8 and a contri-

The coefficients c in (31b) determine the density of dou-
bly occupied sites d, (7b), i.e., the interacting part of the
Hubbard Hamiltonian (1), by
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bution of a determinant as in (26) and (27) with f=0. In
one dimension they have already been determined as

1}m+1 m+1
Cm n(1

2 m+1
yielding

(34)

(36)

Altogether the momentum dependent CF's (13a)—(13d)
are found as

d= — — in[1 —(1—g )n] n—. (35)
1 g 1 2

2 1 —g 1 —g

The other parts of the CF's, i.e., (0 'r '},(0 'r ') in (21c)
and (21d), may also be expressed in terms of Yr, Y'r

The expectation values of the 0 (&" in (21) for
1=1,2, 3,4 have now been expressed for arbitrary lattice
points f. Therefore they may be Fourier-transformed

f(G ) is the number of closed fermion loops in the graph
G . In this way the functions Y'"(q) are calculated di-
agrammatically by

f(G )Y'"(q)=g( —1) w(G' )uq(G' ),
G

(38}

where the sum extends over all topologically distinct
graphs G' contributing to the mth order. The diagrams
to Y'"(q) are shown in Figs. 2 —5 up to m =3. Since we
limit ourselves to n& ——n&, the!' and l lines do not have
to be distinguished.

In general there are three different classes of FC dia-
grams depending on whether an external vertex is con-
nected to two or to four lines (referred to as I 2 or I 4 ver-

tex, respectively), (i) those with two I 2 vertices as the
graphs in Figs. 2 and 5, (ii) those with one I 2 and one I 4

vertex (graphs in Fig. 3), and (iii) those with two I 4 ver-
tices (graphs in Fig. 4).

C (q)=2 g (g —1} (Y"'(q)—Y' '(q) —c ),
m=0

C" (q)=2 —+ Y,"'(q)+ Yo"(q)
2

(37a)
V. POLYNOMIAL STRUCTURE OF CORRELATION

FUNCTIONS IN ONE DIMENSION

In one dimension the shape of the Fermi "surface" is
density independent; this makes an evaluation of graphs
quite simple. It is easy to show that the graphs have the
following properties (n ( 1).

(g2 1 ) [Y(1)(q)+4Y(2)(q)
m =1

+2Y' '(q)+ Y' '(q)+c ]

(1) They only depend on
~ q ~, i.e., the magnitude of

the momentum q.

(37b)

2 (x)

C~D(q) = g (g —1) [ Y' '(q)+ Y' '(q)+c ],
g —1 m=1

(37c)

m=0

C (q)=d+
2 QQ

g g ( g
2

1 )
m Y ( 3 )

( q ) (37d)
)

m=2 --CX:3()-
The functions Ym"(q), given by (30) and (32), may be
represented diagrammatically. The mth-order diagrams
are constructed by drawing all topologically different, ful-
ly connected graphs with two external vertices and m
internal vertices in the case of Y'", Y' ', m —1 internal
vertices for Y' ' and m —2 such vertices for Y' '. At
every internal vertex four fermion lines intersect. At the
external vertices a momentum q enters and leaves the
graph, respectively. At every vertex, momentum conser-
vation is obeyed. Every fermion line with momentum k
is associated with a (step-) distribution function nk and
integration is performed over all internal moments. This
yields the "value" u (G ) of a graph G . Since every
graph of order m may occur more than once, the value
uq(G ) has to be multiplied by the "weight" w(G )

which is defined as the number of times a graph appears
according to Wick's theorem, divided by m t in the case
of Y'", Y' ', by (m —1)!for Y' ' and by (m —2!) for Y' '.

f(G )
Lastly, the sign of a graph is given by ( —1),where

m=3

a 5b C

FIG. 2. Diagrams to Y"'(q), (30a), up to m =3.



38 CORRELATION FUNCTIONS FOR INTERACTING FERMIONS. . . 6917

m=0

(
m=1 m=1

m=2

(

m=3
t )

a

CO

C cI

b C

m=3

a b

I ')

b C d

Q' (Q
f g h

ri r

k l

h

FIG. 4. Diagrams to Y' '(q), (30c), up to m =3.

FIG. 3. Diagrams to Y'~'(q), (30b), up to m =3.

(2) A I z vertex limits momenta to
~ q ~

& 2k~ = en.
(3) A I 4 vertex limits momenta to

~ q ~

&4kF=2mn
(for

~ q ~
& m, i.e., —,

' & n & 1, one should use an extended
zone scheme}.

(4) Since the integration over the internal momenta of
an mth-order graph is equivalent to the calculation of the

I

u (G ) n +'P"q m ~n
2kF

(39)

where P(x) is a polynomial of degree &m+1. Hence
the Y'"(q) in (36) may be expressed as

volume of a polyeder in the (m + 1)-dimensional space of
mornenta k, , . . . , k + &, the values of all graphs have the
structure

Y( I)( q )

0;

) "())+' g y'"(r); 0&
f q [

&2k, 1=1,2, 3,4
r=O F

2kF& ~q ~
&4kF, I =1,2, 4

(40)

r=0

0; 4kF& )q ~

2—
2kF

(2%,

2kF &
~ q ~

&4kF, 1=3

I =1,2, 3,4 .

The contributions for L =1,2, 4 vanish for
~ q ~

&2kr
since the corresponding graphs contain I 2 vertices, while
Y' '(q) contains two I 4 vertices and thus contributes also
for 2kF &

~ q ~
&4k'. As can be seen from Fig. 4, for

some graphs the I & vertices degenerate to I 2 vertices due
to trivial loops. Therefore one gets two different polyno-
mials for 0 &

~ q ~

& 2kF and 2kF &
~ q ~

& 4kF, respec-
tively. Hence, by merely considering the structure of the
graphs to Y'"(q) we are able to conclude that these four
functions are determined by Pue sets of coeScients
y"'(r), . . . ,y' '(r) and z (r) as seen from (40}.

(5) All graphs are continuous in
~ q ~

and discontinui-
ties in the derivatives of Y'"(q) with respect to

~ q ~

may
only occur at

~ q ~
=2kF or 4k'.

(6) The first two derivatives of u(G ) with respect to n

are continuous, in particular at n =1.

m=0

m=1

m=2

a b C

g( l

8 b t: d

The explicit results for the graphs contributing to Y'"(q)
up to rn =2 in Figs. 2 —5 are listed in Tables I—IV, to-
gether with the respective results for Y~("(q). The latter FIG. 5. Diagrams to Y' '(q), (32), up to m =3.
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TABLE I. Results in one dimension for the graphs in Fig. 2 contributing to Y"'(q) up to m =2. The labels (a), (b), etc. refer to the
diagrams for m =2.

G. C [ Y."'(q) I f(G„) u(G ), z=l —[q [/2kF

{n/2)z
n

z
2

m=1

m =2 (a)
(b)
(c)

(d)
(e)

(n /2)'z

(n /2)'z
{n /2)'z

(n/2) (2z+ 2z 3z )

(n /2)'z'
{n /2) (z ——'z')

n

2
z

—( n /4)z(z —z+ 2)

TABLE II. Results in one dimension for the graphs in Fig. 3 contributing to Y' '(q) up to m =2. The labels (a), (b), etc. refer to
the diagrams for m =2.

G E [
Y' '(q))

m=0

f(G ) u(G ), z =1—
I q [ /2kF Y(2 }(q)

m=1 (n/2) z —(n /4)z

m =2 (a)
(b)

(c)

(d)

(n /2)'z
(n /2)'z
(n/2) z

(n/2) ( ~z+ —'z —3z')

(n /4)z(1+ —'z)

TABLE III. Results in one dimension for the graphs in Fig. 4 contributing to Y"'{q)up to m =2. The labels (a), (b), (c) refer to
the diagrams for m =2.

G E [ Y"'(q) I

m=0
f(G ) lv(G )

v(G ), z=1 —
i q i

/2kF
0&

I q I
&2kF 2kF &

I q I
&4kF

Y"'(q)
0& iq i

&2kF 2kF & iq [ &4kF

m=1

m =2 (a)
(b)

(c)

(n /2)'z
(n /2)'z

(n/2) 2 +2 2z +6 (n /2)' —'(1+z)'
(n '/16)( —,

' —3z+z' —z ) (n /2) —'(1+z)'

TABLE IV. Results in one dimension for the graphs in Fig. 5 contributing to Y' '(q) up to m =2. The labels (a), (b), (c) refer to
the diagrams for m =2.

G. e [ Y."'(q) [ f (G,„) m(G,„) u(G ), z=1 —
i q i

/2kF Y(4}(q)

(n/2) z
n

z

m =2 (a)
(b)

(c)

(n /2)'z
(n /2)'z

(n/2) (z ——'z')
—(n /4)z (1+—,'z)
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are seen to be rather complicated polynomials without
apparent building principle.

The above results imply that the CF's in (37) also have
a polynomial structure

C. = —
z I sin(ir j )lnF(n )J

(
~

)2

+sinp[Ci(p) —Ci{pF(n)) j

+cosp[Si(pF(n)) —Si(p)] ), (49)
C "(q)= g (g' —1) C (q)

m=0
(41)

VI. SPIN CORRELATIONS

As seen from (37a) and (40), the graphs to C (q) in

(41) only contribute for
~ q ~

& 2kF, such that

~', („)„
Css(q}

L

—2c, 2kF& ~q ~

&m.

«
I q I

&2kF

(42)

given by the polynomials I'"(q) in (40). To determine
the five sets of coefficients y~'(r), . . . , y' '(r), z~(r) in
(40) explicitly, we need five equations or conditions.
These are provided by the five p-h symmetry relations
(13a)—(13d) and (17a). ss ~

1 i sin(m jy)
+( )

(50)

The resulting spin CF in q space is shown in Fig. 6 for
different particle densities n and correlation parameters g.
The main feature is that for increasing repulsive interac-
tion the spin correlations strongly increase. The numeri-
cal result of Yokoyama and Shiba are seen to be excel-
lent. In particular, in the atomic limit (g =0)

Css(q;g =O, n ) =
—1n 1— o& [q /

&2kF

where p =n j/(1 —g ). Here Ci and Si are the cosine and
sine integrals, respectively. Since we consider a discrete
lattice, only integer j is allowed; in this case the first term
on the rhs of (49) drops out for j&0. In particular, for
half-filling (n = 1) a simple expression is found

where —ln(1 n), 2—kF &
~ q ~

& m . (51)

m+1
a (r)=2 y"'(r) y„"'(r—) &„0—

2 m+1 (43) At
~ q ~

=2k+ and n & 1 C always has a kink as in the
noninteracting case but does not diverge; this is in con-
trast to numerical findings of Hirsch and Scalapino. ' In
particular, for n =1 the spin CF has a logarithmic diver-
gence at

~ q ~

=2kF and in real space is given by

impliesThe symmetry relation (13a) then
a (r)(n +' " n—+' ') =0 and hence

a (r)=a (m+1)5„+i . (44)

The continuity of C (q) at
~ q ~

=en links the
coefficient a (m +1) with the known coefficient c, (34),
and yields

Css, (g =O, n =1)=( —1)' (52)

a (m+1)= ( —1)
m+1 (45)

C (q) is then explicitly obtained by inserting (44) and
(45) into (42) and summing the series in (41). Introducing
the function

(46)F(x)=1—(1—g )x,
C s(q) is found as

I„F I q I

] g m'
2n

1 lnF(n), 2kF &
~ q ~

&n.
g2

0& Iq I
&~kF

Css( ) ( —1)'
Si(n j)+2d,

7TJ

(47)

1
m.j« and mj &&1

The numerical results for j=1 (Refs. 21 and 27) and

j=2 (Ref. 22) agree very well with this approximation-
free result. The logarithmic divergence at

~ q ~

=2kF im-

plies an antiferromagnetic correlation of the spins in the
ground state. The ( —1) /j separation dependence for

j—+DO (suggested by Horsch and Kaplan } reproduces
the result for the antiferromagnetic Heisenberg chain
(AFHC); the AFHC is known to describe the Hubbard
model in the atomic limit.

In Fig. 7
~ C& (g, n =1)

~

is shown for different g. For
0 &g & 1 and for j & 1/d, with d the number of doubly oc-
cupied sites, it decreases as 1/j. On the other hand, for

j ~ 1/d, it decreases as 1/j as in the noninteracting case:

Css(2kF & ~q ~
&~)=n+, d

2(1 —g )

g
(48)

which is valid for arbitrary momentum q, density n &1,
and correlation parameter g. Note that for

~ q ~

& 2k~,
C (q) is a universal function of

~ q ~, i.e., is density in
dependent Using (35) we .see that

C (g 0)=
1

(vrj }

( —1)' —1

g
2

1
mj )) 2

and m.j ))1 .

is q independent. In real space, the spin CF is then given
by

The existence of a "correlation length" proportional to
1/d is typical for the present variational ansatz which
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CORRELATIONSVII. SUPERCONDUCTING CO

Superconducting correlations between
pairs are described b (6
to the one described in

i e y ). A treatment formally identical

terms of contractions
ri e in ec. IV allows one to rewnte (6) in

Cr"~ =(n —I+d)5r o7
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TABLE V. Comparison of the spin-correlation function C, in the atomic limit (g =0) for n = 1 obtained from the Gutzwiller
wave function (GWF), (52), with the exact and numerical results for the antiferromagnetic Heisenberg chain (AFHC). Uncertainties
of numerical results in the last digit are indicated in parentheses.

'Reference 6.
Reference 7.

SSj i GWF, g=0
Eq. (52)

—0.589490
0.225706

—0.177698
0.118742

—0.104021
0.080534

—0.073488
0.060922

Exact

—0.590863'
0.242719

I arHc
SS

Numerical (Ref. 36)

—0.59084(1)
0.24260(2)

—0.20047(8)
0.13798(8)

—0.1211(4)
0.0943(6)

—0.082(1)
0.069(1)

Numerical (Ref. 37)

—0.5908(2)
0.24265(20)

—0.2009(1)
0.1386(3)

—0.1235(3)
0.0982(4)

—0.0899(6)
0.0760(6)

CgllP 1 1
f, m

fi, . . . , f

Pl W )Ct+tt tt f+tt ft f ' f io.
1 1 1 1 2 m+1

(54b)

Because of the 5-less contractions and inversion symmetry, (54b) can be written as

C sllP 1 1
f, m

fm+i

Pl ~ )C(Cf tet yftcf +f/Cf tL/t y, yDt ]p
1 1 1 1 2 m+1

(55)

Using the transformation (18a) and (18b) yields

1 1 1
CgllP

2m! I.
f)g ~ ~ ~ g f +]

f f p (nf +f f +rp t t jO (56)

This expression is familiar from the spin-correlation func-
tion and hence (54a) yields

2

Cf 5fo n —1 —(1—g )d-
t 2

2+g (SSf (57)

VIII. DENSITY CORRKI ATIONS

The evaluation of C (q) in one dimension is more
complicated than that of C (q) since it involves F' ',

Equation (57) is valid for arbitrary lattices with inversion
symmetry. Hence, the superconducting correlations are
suppressed for increasing repulsion by the additional fac-
tor g for all n &1 and vanish altogether for g~0 (see
also Ref. 41) as should be expected. For 0 &g & 1CJ'" de-
cays algebraically as discussed in (53).

which also contributes for 2kF &
~ q ~

&4kF [see (40)].
While for n & —,

' one has 4k+ &m, such that momenta al-

ways lie in the first Brillouin zone, this is no longer true
for n & —,', where momenta rr&

~ q ~

&4kF occur which

have to be folded back into the first Brillouin zone ("Um-
klapp process",

~ q ~

~2m —
~ q ~

). For n & —,
' there are

then three nontrivial momentum regimes. For —', &n &1
they are given by (i) 0&

~ q ~

&2m —4kF, (ii) 2' 4kF—
& [ q ~

&2kF, and (iii) 2kF &
~ q ~

&m-, for —,
' &n & —,

'
the boundaries 2m —4kF and 2kF simply have to be inter-
changed. In the following we explicitly consider
—, &n &1.

According to (37b), (40), and (41) the mth order of
C (q) is given by (m & 1)

m+14„~+ted ()
0 2kF

m+1
C»(q) 4n +t g d („).=o 2kF

+z (r) 2—2m —/q f

F

o&
I q I

&2~—4k

2n4kF &
i q i

& 2- —k~

m+1
4n +'g

r=0 2kF
2m —fq / z (r)+2c, 2kF &

~ q ~

&~
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where

(r) =—y"'(r)+4y"'(r)+2y"'(r)
2

and the continuity at
~ q ~

=2nn implies z (0)=0 and
hence d (0)=0. A second relation is obtained by observ-

ing that the first two derivatives of (13b) with respect to n

are continuous at n =1. Hence

+y (r)+5„O
1)m+i

2 m+1 (59) [C (q)]„,=0 .
Bn

(62)

' m+1 —I

1— —1
7T

(60)

Comparison with (58) leads to a relation between d (r)
and z (r)

[note that Co (q)=Co (q)]. The two sets of unknown
coefficients d~(r) and z~(r) may be determined by em-

ploying the symmetry relations (13b) and (17a) and re-
stricting oneself to n =1. Using (47), (17a) yields (m ) 1)

1
( 1)m+I —I

C (q;m =1)=g m+1 —I

0, r=0, 1
(64a)

d (r)=,
1

m
1)~+i—&, 2&r &m+1

8m r —1

This leads to the relation

(m +1 r)[d —(r)+z (r)]+2(r +1)z (r +1)=0,
0&r &m (63)

which, together with (61), yields the coefficients as

0,
d (r)+z (r)=.

4r

r=0, 1

m —1

( —1) +' ", 2&r &m+1

(61)

z (r)= d (r) . (64b)

This determines the density CF completely. Inserting
(64) into (58) and performing the sums over r and m,
yields for —', & n & 1 (here Q—:

~ q ~

/m )

Q 1 —-'ln
F(n)

0&
~ q ~

&2m(1 n)—

2n(1 n) &
i q —

i
&n.nCN~( )

. 2(1 ) Ql F(n —Q) + g
1

F(n —Q)
2 F(n —Q) 1 —g2 F(n)

2(1 n)+ —ln — + &in + lnF(Q n), —nm & ( q ~

&n. 'Q F(n —Q) gz F(n —Q) 1

2 F n —1 g~ F n I-gz

(65)

In particular, for n =1, (65) reduces to

2

C (q;g n =1)= lnF (66)

as implied by (17a) and (47). In real space (66) reads as

C. = —
I sin(n j)lng +sinp[Ci(p) —Ci(p)]

(~j)
+cosp[Si(p) —Si(P )]], (67)

where p =g p =vrjg /(1 —g ).
The q dependence of C (q) is shown in Figs. 6(a) and

6(b) for n =0.7 and n =1 in comparison with that of
C (q). A.t

~ q ~

=2'(1 n) and
~ q ~

=en—, i.e., at t'he

boundaries of the three momentum regimes for n ( 1, the
third and 6rst derivatives with respect to q, respectively,
are discontinuous. For mn &

~ q ~
&n, the curve has a

downward curvature, i.e., is not constant as in the case of
C (q), owing to the Umklapp processes. The numerical
results of Yokoyama and Shiba are seen to be in excel-

C (q;g=0, n)=C (q;g =O, n), (68)

since there are no doubly occupied sites. For n &1 the
holes then act as free spinless fermions whose exact CF is
of course known, and is given by (65) with g = 1 and the
~eplace~e~t n ~n„=1—n, k~~k~ =~n„, i.e.,

lent agreement with (65). For n =1 C (q) vanishes in
the atomic limit g~0, as should be expected. This is
also apparent from Fig. 8, where the real-space behavior
is plotted for n =1. The correlations suppress density
fluctuations and smooth out the spatial distribution of the
particles. As in the case of C-, the density CF decays
algebraically and is proportional to 1/j for distances
j&1/d and to 1/j for j ~1/d.

Although there exist no exact results for C. for the
Hubbard-model that would allow us to compare our re-
sult with, we may test (65) in the atomic limit. As point-
ed out by Gros, Joynt, and Rice the hole-hole CF, (8b),
is related to the density CF in this limit by
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FIG. 9. Momentum dependence of the hole-correlation func-
tion C (q) in the atomic limit (g =0) as compared with the ex-
act result for different hole concentrations nz.

0&
/ q /

&2k/
C,„„,(q;g =O, n& }=

ni, , 2k'" &
~ q ~

&ir . (69)

A comparison of (69) with C (q;g=0, 1 nh as gi—ven
(65) is shown in Fig. 9. The agreement is remarmarkableby iss own'

and becomes increasingly better for n& ~ .
there is no sharp kink at

~ q ~

=2k+ (since the GWF is
based on free fermions, not holes) the overall feature is
very we 11 borne out. There is, however, a in at

f the free
~ q ~

=2k~ reflecting the Fermi momentum of the
Fermi gas.

C (q;g, n =1)=—,'C (q;g, n =1) .

Employing (66) yields the explicit C (q) for m ) 1 as

(70)

also contribute for 2k~ &
~ q ~

& 4k'. Therefore they
have the same analytic structure as C (q, ', h) i.e., the mt-
order expressions ~ q anC ( } nd C (q) have the same form
as (58).

~ ~ ~ ~As seen from (37c), C (q} is given by (58) multiphed
b an overall factor g /2(g —1) and d (r) replaced by a
new set of coefficients l~(r)=y~ (r)+y~
mine l (r) we employ the symmetry relation (13d) at
n=1

IX. CORRELATIONS INVOLVING
DOUBLY OCCUPIED SITES

(71)

The remaining two CF s, i.e., C,q
defined in (37c) and (37d), also involve Y' '(q and hence

where Q = q m.
~
/ Comparing with the general form in

terms of I (r)+z (r) and using (64b} leads to

r=0

1)m+1
[(1—

I y I
} + ' —l I (72)

h = /2k . Summation on m then yields the full resultfor C q . For —, &n &1,for general n with y =q z. umm

2

CND(q) g C ND(q)
2(1 —g )

(73a)

with
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Q i —-'in
F(n}

1 F(n —Q}
ln

g2 F(n}
0&

I q I
&2m(1 n—)

2m(1 —n} &
I q I

&nnC1vD( ) Q 1 F(n —Q) F(n —Q)
2 1 g~ F(n —Q) F(n)

2(1 n)—+—ln + ln + — lnF(Q —n), nm &
I q I

&m .Q F(n —Q) g F(n —Q} 1

2 F n-1 g2 F n 1 g2

(73b)

Lastly, we calculate the CF between doubly occupied sites. As seen from (37a},C (q) —d is given by (58) multiplied

by an overall factor [g /2(1 —g )],with d (r) replaced by a new set of coefficients e (r)=y~1'(r) and without the c~
in the third momentum regime. To determine e (r) we employ the continuity of the first derivative of the symmetry re-
lation (13d) with respect to n at n =1, i.e.,

8
Bn „ 1

Bn
CDD(q) CND(q)

n=1
(74)

The rhs of (74) may be explicitly determined from the second momentum regime of (73) such that

[E (q, n)+Z (2m. —
I q I, n)]

Bn

with [see (58)]
m+1

E (q, n)=4n +' g e (r) Iy I",
r=0
m+1

Z (q, n)=4n +' g z (r)(2 —y)"
r=0

n=1
=2( —1)

1—
[(1—Q)

' —I] (75)

(76a)

(76b)

=n +' g [(1-y) +' '-( —1) +' ']- [(1-y)"-(—1) ]
1

I=o m+1 —I 2m
(76c)

and m & l. Equation (76a) has the property

BE~(q, n) BE~(q, 1 )=(m+1)E (q, l) —QBn (77)

which allows us to rewrite (75) as a first-order differential equation for E~ (q, 1) in q, with the integration constant deter-
mined by the continuity of C at

I q I
=n n, i.e., E (m. , 1)=[1/(rn +1)—1/2m ]( —1) . This yields E (q, n) for gen-

eral n:

E (q, n)=4( n) +' —Iy I T ( Iy I
)— 4

2m m+1
m m+1

(m +1)(m +2)

+,T.+1( ly I
)+

2
T.+2( Iy I

}
2 2 1

m+ m+2 y
(78)

where T (x)= 1 —(1—x) . Summation on m results in the complete expression for C (q). For —', & n & 1

2
CDD( ) d+ g

2(1 —g

2

C (q) (79a)

with
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—2n +Q 1 ——,'ln
F(n —Q)

F(n)
1 F (n —Q)F (n)

ln
1 —g2 F(Q)

2 F(Q)F(n —Q)
g')'Q F(n)

( DD( )
2(1 2—n) —ln

F(n —Q)
F(n)

0&
~ q

~

&2m(1 n—)

1 F (n —Q)F (n) Ql F(n —Q) 2
1

F(Q)F(n —Q)
g~ F(n Q)F(Q) 2 F(n —Q) (1—g2)2Q F(n)

2m(1 n)—&
~ q ~

&7m

2(1 2—n)+ ln —ln +—ln
1 F(n —Q )F(Q n—) F(n —Q) Q F (n —Q )

g2 nn&~ .
q ~

&~.
(79b)

We have thereby calculated all fpur independent cprrelatipn functions Css C, C, and C in terms pf GWF fpr
arbitrary momenta q, densities n, and correlation strengths g in one dimension. Other CF s may be composed of these
four functions, e.g. , C and C are given by (8). In particular,

C (q, n =1)=C (q, n =1)

2d (1—g )+g g+ lnF(q) —(2 —g )lnF2

( 1 g2)24( 1 g2)3 g
2

2 lnF(Q)+lnF
(1—g')Q

(80a)

2

C (q, n =1)=C (q, n =1)— lnF
2(1 —g ) g

We note that C (q =0) and C (q =0) do not vanish
while C (q =0)=C (q =0)=0. This is clear since
C (q =0)=(X ) —(X') is a measure of the fiuctua-

0.4—

0.3-

(80b)

I

tions of (X ) around the average. In contrast to the total
spin (S') and the particle number (8), the total num-
ber of holes (H ) or doubly occupied sites (D ) is not
conserved.

Of particular interest is the CF between doubly occu-
pied and empty sites, C (q), which is already a rather
subtle correlation. In Fig. 10 we have plotted the proba-
bility for finding an empty site at separation j from a dou-
bly occupied site, PJ (g)=(C~ +d )Id, normalized to
its noninteracting value, i.e.,

C DH pDH(g)IpDH(g 1)

0.2-

0. 1-

0 I

4 . 6
J

10

For increasing correlation this probability strongly de-
creases as can be inferred from C = ——,'C for g~0.
On the other hand, one should expect this probability to
increase, ' since this would allow for an easy dissociation
of a doubly occupied site which carries a large energy U.
The missing correlation originates in the ansatz of GWF
itself, which controls only the number of doubly occupied
sites and holes but not their mutual correlation. As first
noted by Kaplan, Horsch, and Fulde ' an improvement
in the variational wave function which takes this particu-
lar correlation into account improves the ground-state
energy E of the Hubbard model for large U substantially.
It may therefore be possible that this missing correlation
in the GWF is specifically responsible for the logarithmic
correction to the ( t IU) term—in E found by Metzner
and Vollhardt ' in their exact diagonalization of the
Hubbard model with the GWF.

X. EXTENDED HUBBARD MODELS
FIG. 10. Probability for finding an empty site at separation j

from a doubly occupied site, normalized to the noninteracting
case, for n = 1 and different correlation parameters g.

Generalizations of the Hubbard model containing
more refined interaction terms than H in (1), e.g. ,
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outside the scope of the GWF. ' It is therefore instruc-
tive to learn that, in contrast to conventional wisdom, a
variational wave function may describe a certain class of
important correlations very well although it does not
reproduce the ground-state energy very well.

The quality of the GWF in higher dimensions is not
clear at present. Nonetheless we may conclude that the
spin correlations in the atomic limit have an antiferro-
magnetic divergence for n =1 in all dimensions. Even if
an evaluation of correlation functions is no longer analyt-
ically tractable, they may be calculated numerically by
explicit calculation of the graphs in finite orders (see Figs.
2 —5 for m & 3). This allows one to go up to order (Ult)
for arbitrary density or n for arbitrary correlation

strength, without too much effort.
Concerning superconducting fluctuations we found

that correlations involving on-site, singlet Cooper pairs
are suppressed in any dimension. More general types of
pairing are being investigated now. The results for the
correlation functions yield exact upper limits for the
ground state energy of a large class of extended Hubbard
models in one dimension, which may now all be evaluated
with the GWF,
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