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Accurate variational results for the symmetric periodic Anderson model
in one, two, and three dimensions
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The ground-state energy, hybridization energy, momentum distributions, local magnetic moments,
and magnetic phase diagram of the symmetric periodic Anderson mode1 are calculated using a correlat-
ed wave function in d =1,2, and 3 dimensions. The wave function is obtained by applying a Gutzwiller
projector on a recently proposed single-particle product state with spin-density wave order. Evaluations
are performed with an approximate scheme that becomes exact in high dimensions. Comparison with
Monte Carlo data by Blankenbecler et al. for d =1 shows that the results are remarkably accurate for
all values of the coupling. Hence the results for d =2, 3 can be expected to be even more accurate and
may serve as benchmarks for future numerical work in d & 1.

I. INTRODUCTION

Heavy fermion systems are well-known to exhibit ex-
traordinary thermodynamic, magnetic and transport
properties, whose origin is not yet suKciently under-
stood. Microscopic investigations of these systems are
generally based on the periodic Anderson model (PAM)
Hamiltonian

H —g &g&g~ +&I g &k~ + V g (fg~cgo +ct,~fk~ )
ko. ko ko.

+Up eI,eI, ,

which describes a band of noninteracting conduction (c )
electrons with dispersion ez= —2tgd=, cosk; that are
hybridized via the matrix element V (Ref. 2) with static f
electrons of energy Ef ', the latter interact with each other
by a Hubbard interaction. In ( I ) 6'

f,
=c& ckf Wf A,=fz f„are density operators in momentum space,

while 8", =c; c;, O'I =f;+f; are local densities. In
this paper we only address the symmetric PAM, where
Ef —U /2 and the total electron density n =2.

The PAM defines a complicated quantum-mechanical
many-body problem for which an exact solution does not
even exist in d = 1, except in a restricted parameter
range. In such a situation the application of variational
methods has proved to be very valuable. In particular,
the use of variational wave functions, which may be used
even in situations when standard perturbation fails or is
not tractable, often leads to considerable insight. For
Hubbard-type models, such as the PAM, the simplest and
most well-known correlated wave function is the
Gutzwiller wave function

where D =6;t n;&, analytic evaluations are only possi-
ble within the Gutzwiller approximation, ' which is
known to yield the correct evaluation for high dimen-
sions, d~~. ' The results obtained thereby for the
ground-state energy are given by

+cUtz U 8' UR'
L ' 2 2 8@2

eo — exp

with L as the number of lattice sites and eo and 8'as the
average energy and bandwidth of the noninteracting c
electrons, respectively. This result, which is character-
ized by an exponentially small binding energy, has the
form known from the single-impurity Kondo problem. "
While it gives a very good description at small U, it fails
to reproduce the much more important large-U limit,
since it does not yield the (rather trivial) second-order
shift ~ —V /U. Indeed, in the symmetric case straight-
forward perturbation theory in V yields'

exact U 2 V2

U)) eoL 2 U

The presence of a nonanalytic, Kondo-like contribution
to the ground-state energy of the symmetric PAM has so
far not been proved rigorously. In particular, the exact
result for the asymmetric PAM in d =1, valid in a re-
stricted parameter range, does not contain such a term.

To be able to describe the large-U behavior correctly,
Strack and Vollhardt' recently proposed a non-
Gutzwiller-type variational wave function for the PAM
with antiferromagnetically ordered f electrons, which
has the form

I+, &=g I+, & . (2) ie„&=CicFS&g ifSDW& .

It is constructed from the exact wave function of the non-
interacting system, ~tllo &, by applying the Gutzwiller pro-
jector onto ~tIto& to reduce the overall number of doubly
occupied sites, (D &, at U) 0. In the case of the PAM,

It consists of a starting wave function which is a product
state of a Fermi sea of c electrons, ~c FS &, and a Hartree-
Fock spin density wave for the f electrons. The correla-
tion operator C =C2C.'& is given by
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Ci=exp g I'k(fk ck +ck fk )

where the prime indicates that the k values are restricted
to e'k~0 and Fk is a linear superposition of ck fk,fkgf k+Qg fkgck+Qa& ckgf k+Qg, alld ckgck+Qg, wit&&

Q=(m, . . . , m) as half a reciprocal lattice vector. Since
(5) is a two-particle product state, all expectation values
in terms of ~%'sv& can be calculated analytically for arbi-
trary dimension d. The variational functions u&, uk, Z&

and Vk have to be determined from the minimum of the
ground-state energy. It is quite easy to see that the
ground-state energy of the PAM obtained with (5) has
indeed the correct limiting behavior at large U [which is
the physically relevant regime for the PAM shown in (4)],
and even at small U. ' However, for intermediate U
values the energy is considerably higher than found nu-
merically. ' Subsequently, Brenig and MuHer-
Hartmann' noted that the wave function (5) can be im-
proved by adding the term ck+Q fk+Q to Pk in (7),
whereby the k dependence of c and f electrons is made
symmetric. In this way one obtains the following wave
function, which is the most general two-particle product
state permitting antiferromagnetic order

l +BMH &
= O' [ukck.fk. +zkck+Q.fk+Q.

ko

+O (UkCk+Qgf kg + tCkCkgf k+Qg

+Xkck+Q ck. +pkfk+Q fk. )]I0&, (8)

where u k, Uk, Sk, x &, yk, and zk are variational functions
which have to make the ground-state energy minimal.
The authors also pointed out' that, under the constraint

&a~a+ Ui +a+xaya =O (9)

Eq. (8) is equivalent to a single Slater determinant spin-
density wave (SDW) ground-state wave function

2

Iq'sDw& = II' ll [~k.ck. +8k.f"k.
ko n=1

C'2 =exp g Fk&k
ko

with Vk and Zk as k-dependent variational functions. In
contrast to (2) the interactions are more or less already
incorporated in the starting wave function, while the
operator C', introduces the hybridization and C2 controls
the quantum-mechanism motion of the f electrons in

~fSDW & (note that lnC2 has the form of a kinetic energy
off electrons). Due to the structure of C, the wave func-
tion (5) can be written as a product state'

~e„&=~'P„.[Z„,V„, „, „]~0&,

here, the optimal values of the variational functions au-
tomatically fulfill the constraint (9). Hence, for the sym-
metric PAM the wave functions (8) and (10) are
equivalent. The expectation value of (1) in terms of (8)
and (10) can also be expressed in closed form and the
minimization can be performed for any dimension. ' At
intermediate U values the energy is found to be consider-
ably lower than that obtained with (5). Its good overall
agreement with the quantum Monte-Carlo calculations
by Blankenbecler et al. ' is quite remarkable in view of
the fact that (10) is only a single-particle product wave
function, i.e., does not contain true two-particle correla-
tion effects at all.

At this point it is clear how to proceed to obtain an
even better variational wave function for the PAM: We
have to consider the wave function (10) as a starting wave
function itself. By applying the Gutzwiller correlator we
obtain a wave function

~'psDw& r

with g as an additional variational parameter, where
two-particle correlation effects are now explicitly includ-
ed. Analytic evaluations of expectation values in terms of
(11)can now be performed in closed form only in the lim-
it d = ~.' ' However, from our earlier experience'
we may expect that, by evaluating the analytic d = ~ re-
sult with the d-dimensional density of states, accurate re-
sults can even be obtained down to d =1, which is obvi-
ously the most unfavorable limit for the d = ~ approach.

The aim of our paper is therefore to evaluate a number
of ground-state quantities, e.g., the ground-state and hy-
bridization energy, as well as the momentum distribu-
tions and the local moments of the c and f electrons of
the symmetric PAM in terms of the improved correlated
spin-density wave function in d=l 2, and 3, using the
large-d approach.

II. EXPECTATION VALUES IN TERMS
OF THE CORRELATED SPIN-DENSITY

WAVE FUNCTION IN d = 00

Expectation values of operators in terms of
Gutzwiller-type wave functions (2), may be calculated
within a diagrammatic theory. ' In the limit d~ oo the
ensuing collapse of diagrams greatly simplifies the evalua-
tion, but it remains nontrivial because Hartree bubbles
survive. Gebhard' developed a particularly efficient di-
agrammatic formalism which, for Gutzwiller-type wave
functions (2) in d = go, allows one to obtain expectation
values exactly and in closed form. This is achieved by
writing the starting wave function

~ %0 & in (2) in the form

~qi &
—

g
Rial ia"ia

~@

~('Ykn k+Qg knf k+Qg )]I0 &

(10)

where ~40& is again an arbitrary one-particle wave func-
tion and the p; are explicit functions of g and the local
density

where ak„, /3k„, yk„, and 5k„are variational functions
and n = 1,2 labels two orthogonal combinations. It turns
out that, in the case of the symmetric PAM considered

n,.=(c,ie,.ie, & y(e, ie, & .

The projection operator in (12) corresponds to a gauge
transformation by which the local chemical potentials
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can be chosen such that all Hartree bubbles disappear in
d= (x). Consequently, in d= ~ diagrams vanish com-
pletely and results are obtained without the calculation of
a single graph. ' In particular, all expectation values can
be obtained exactly in d = ~

& f,'.f",.& =V'q,.V'q,.(f,'.f",.&,+f„(1—
q,.)nf.0,

(13a)

df
[( ' —d—f+2b, )' +( ' —d— 2b—. )' ]

Q—' —4bf

(19a)

where

ukwk+ Ukzk
b,f=—g' (f„fk+ q )0

=—g', (19b
k

(c; f &=Qq; (c; f; &0,

(c; c )=(c; c. )0,
(13b)

with

Xk =Uk +wk+uk+zk+xk+gk = 12 2 2 2 2 2—
where ( . &=&'I'I . . IiI'&/&iIiliI'& and

( . ),=(~.l

. I~.) i(~.l+.) .

The q factors are given by

Here the prime on the k sum implies the restriction
Ek ~ 0. The parameter b,f determines the amplitude of
the SDW

(6'f) )0= —,'+25f(r cos(Q.g) . (19c)
q = [Q(1—n~' +d~)(n~ —d' ~)

1
1(7

[ f 0(1 f 0)) 1 I 1CT I

Hence Af =0 refers to the nonmagnetic phase. Since the
wave function (10) is symmetric in the c and f electrons,
a SDW formation of the f electrons implies that the con-
duction electrons form a SDW, too. In analogy to (19b)
and (19c) one finds

+Qd f(n~'. d f)]'—, (14)

where n; =(R' )&» n ' =n. t +n i and d. =(8 ).
The variational parameter g is connected with the double
occupancy dfj by

(8'i )0= —,'+26, ,(r cos(Q j), (19d)
3 3 3

df( 1 nf —+d'f )

[n; t dj~] [—n; i
—d f ]

(1S) where

uk Uk +wkzk
c
=—Q (Ckack+Qo )0 L X

k
(19e)In order to be able to apply the above results to the

Gutzwiller-correlated SDW (ll), we first have to deter-
mine the new single-particle wave function l@0) in (12).
For computational reasons we prefer to calculate with
I%'0) —= I'IIBMH) [plus the constraint (9)], rather' than
I 'PsDw ) in (11). Hence we have to determine

) gXiai ia ivliIi ) (16)

The local magnetic moments ( rn;, ) = ( &;t —h';i ) of the
c and f electrons are therefore given by

(mi, ) =46, cos(Q j),
( rn;, ) =4b fcos( Q.j),

(20a)

(20b)

with a total local magnetic moment of

(m". ,') =(mi, +mfa, ) =4(b,, +b,f ) cos(Q j) .
It is easy to show that I@0) has exactly the same form as
leBMH), albeit with new variational functions uk, uk, (uk,
xk, yk, zk (the latter are functions of the old parameters
uk, etc. , as well as of g and i((; ). Also the constraint (9)

Furthermore, the momentum distributions of the c and f
electrons are obtained from (13a) and (13c)

"kzk+Ukwk+xk~k =0

is fulfilled. We take the parameters uk, etc. , as new varia-
tional functions.

The expectation value of the Hamiltonian with respect
to the Gutzwiller-correlated spin-density wave is then
given by

&a&= yek(e'„. &,

+2v&q g(f,'.ck. )0 L. + vdfL, ——

&e'k )=()ik'

(ef. & =-,'(1 —q)+q(ef. &, .

(21a)

(21b)

In terms of the new variational parameters the energy
E=&Q& is given by

2 2 2 2k+ wk —
Uk

—zE=2 g' ek
k

xk(uk —(uk )
+8V&q g' — L+ UdfL . (22—)

2

where we made use of the fact that in spite of the SDW
order, q; is independent of i, o. and d, is independent of
i. The uncorrelated quantities (.. . )0 were already cal-
culated by Brenig and Muller-Hartmann, ' whose nota-
tion we will use. The renormalization factor &q has the
form

g„'"—= 1 —X,=o,
Qk — ukzk+ uk (uk +x k =0,(2)— 2=

(23a)

(23b)

Note that in the symmetric case xk=yk. In (22) we use
d instead of g as a new variational parameter. In order
to enforce the constraints
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we introduce two Lagrange multipliers denoted by
A~k" =2k,k and Ak '=4Xk and replace (22) by

E= —2g'Qek+32V d (1—2d ) — —L+ Ud L,U

k

2E=E+ g' g A"Q"
k i=1

(24)

where d is determined by the implicit equation

(30)

This expression has to be minimized with respect to vk,
tok, uk, xk, zk, and d (see the Appendix).

The minimum of the energy is found as

U=32V (1—4d/) —g' Qe +32V d/(1 —2d/) .1
k

k
(31)

E =2 +' Xk+862/L L—+—Ud/L,

where

Moreover the hybridization energy becomes
(25)

EHyb= 64V d (1 2d ) g'Qek+32V2d (1 2d ).1

k

(26a)
(32)

2b, V (ek —Ak)+AkBk
f C2

X k
k k

and the parameters Ak, 8k, Ck, and xk are given by

2

2Ck+4A V +V (e —
A, ) +A +B

(26b)

(27a)

2 2 ~k
~k EkV+(Ek+p ~kek)

V

(kV p)+—eke, k(4b, +p V)—
Bk = —2ZV+, (27c)

2k V

Ck V +6k+p ~k~k

with

p =+V +45 ek .

Furthermore, the hybridization energy

EHyb ko.Cko +C ko. ko.
ko.

is obtained from

(27d)

165L
8 lnq /BA&

(28)

and the square of the local f-electron magnetization
m&, =(R'/)t —

h'/&& ), which is independent of j, is deter-
mined by the double occupancy as

(m, ) =1—2d/. (29)

We note that, due to L(d ,')=dE/dU, (m—,—) is a
much more sensitive measure of correlation effects than
the ground-state energy E itself. For small U, where
E=Eo + CHp U Ccorr U i with CH„, Ccorr & 0
( m, ) =

—,'+4CC„, U. Hence the slope of (m, ) is a direct
indicator of the degree to which correlation effects are in-
cluded in the calculation.

For the paramagnetic case with h&=h, =5=0, which
corresponds to the usual Gutzwiller wave function, the
energy is given by

III. RESULTS AND DISCUSSIONS

The expression for the ground-state energy E (25), the
hybridization energy EH b (28), and the square of the lo-
cal magnetization ( m, ) of the f electrons (29), derived in
the limit d= ~, will now be evaluated in dimensions
d=1 2, and 3 by using the d-dimensional density of
states. ' Technically this implies an inclusion of 1/d
corrections to infinite order. The results will be com-
pared with perturbation theory, Monte Carlo data, and
results obtained with other variational wave functions.
We will also present results for the momentum distribu-
tions ( 6 k'/ ) (2 l), and the local magnetic moments
(m j'/) (20a) and (20b), of the c and f electrons in d =1.

In Fig. 1 the U dependence of E, EH„b, and ( m, ) ob-
tained for d =1 is shown for four different values of the
hybridization strength V. To arrive at a more sensitive
plot of the U dependence of E the energy is measured rel-
ative to the f-level position —U/2, in units of its abso-
lute value at U=O, ~Eo~. The hybridization energy is
also plotted in units of its U=O value, Eo b. Both E
and EH„b tend to increase with V, while (m, ( decreases.
This holds in every dimension d (see below).

In Fig. 2 the results for d=1 and V/2t=0. 5 are com-
pared with perturbation theory at small and large U. '

We know already that for any dimension d even the un-
correlated SD%' wave function describes the small- and
large-U regime of the ground-state energy correctly —at
least asymptotically. However, it is not a priori known
what the actual size of this asymptotic regime is, or how
the size increases once correlation effects are included.
A qualitative answer is provided by Fig. 2(a), at least for
the regime of small to intermediate U values: The corre-
lations introduced by the Gutzwiller correlator lead to a
considerable lowering of E, in agreement with perturba-
tion theory for small U. This is even more clearly seen
from the slope of (m, ) in Fig. 2(c): For the SDW this
quantity, which measures the derivative of E with respect
to U, is constant below U/2t =0.8. This rellects the fact
that

~ +sDw ) is an uncorrelated wave function with

CC„,=O. In this case the square of the local magnetic
moment becomes Udependent only for U/2t ~0.8, when
a (spurious) transition to a state with antiferromagnetical-
ly ordered f spins (and c electrons) takes place. By con-
trast, the correlated SDW (11), obviously describes al-
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FIG. 1. (a) Cxround-state energy E, (b) hybridization energy
En», (c) square of the local f-electron magnetization (m, ) vs
U/2t in d=1 for various values of the hybridization V as ob-
tained with the Gutzwiller-correlated SDW (11).

FICJ. 2. The results for (a) E, (b) En,b, (c) (m, ) vs U/2t in
d =1 for V/2t =0.5 as obtained with the Cxutzwiller-correlated
SDW are compared with perturbation theory at small and large

U, as well as with the results for the uncorrelated SDW and the
paramagnetic Gutzwiller wave function.
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most the entire correlation contributions for U/2t 50.6.
For U/2t ~ 2 the correlation effects due to the Cxutzwiller
correlator become ineffective since the antiferromagnetic
correlations of the f electrons (appearance of long-range
order at U/2t = 1.4) suppress their double occupancy via
the opening of a gap. Of course the appearance of long-
range antiferromagnetic order in d=1 is an artifact of
the variational approach. Nevertheless it is a clear ex-
pression of the existence of strong short-range antiferro-
magnetic correlations between the f electrons, which-
on the level of the rather simple variational wave func-
tion (11)—is very well described by an actual long-range
order. A similar behavior is observed for EH~b in Fig.
2(b). The results in Fig. 2 also clearly show that the
paramagnetic Gutzwiller wave function does not provide
an adequate description of the physics above U/2t = l.

For large U the result for the ground-state energy ob-
tained from perturbation theory' lies above the varia-
tional result. Hence it is still not clear how close the en-
ergy obtained from the (correlated) SDW is to the exact
result. For d=1 this question is answered in Fig. 3,
where a comparison with the Monte-Carlo data of Blank-
enbecler et al. ' for V/2t =0.375 is shown. Clearly the
correlated SDW describes the numerical results very well
for all U values. For U/2t ~ 1 the correlation effects are
seen to be very important for all quantities, while for
U/2t ~ 1 excellent agreement is reached already with the
uncorrelated SDW. This shows even more clearly that
the strong short-range antiferromagnetic f-f correlations
are very well described by a long range order-ed state of f
electrons, although we know that in d = 1 this cannot be
the exact ground state. Quantitatively similar results
may be obtained from a slave-boson mean-field theory
with long-range antiferromagnetic correlations.

Even more interesting than the site-independent square
of the local magnetic moment of the f electrons ( I, ) is
the actual local magnetic moment of the c and f electrons
(m&'f), given by Eqs. (20a) and (20b). They become
manifestly site dependent above the transition to the anti-

1.0

0
0

------- Gutzwiller (paramagnetic)
o MQ---- SDW

Gutzwiller-correlated SDW

I I I I I I I I I I I l

2
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YI2t= 0.3?5

FI(s. 3. The results for (a) E, (b) EH~„, (c) (m, ) vs V/2t in
d = 1 for V /2t =0.375 as obtained with the Gutzwiller-
correlated SDW are compared with quantum Monte Carlo data
by Blankenbecler et al. (Ref. 12), as well as with the results for
the uncorrelated SDW and the paramagnetic Gutzwiller wave
function. The error bars correspond to the width of the data
points of Ref. 12.

I I I I I 1 I I I i I I I

2 4 6

U/2t

FICx. 4. Amplitudes of the local magnetic moments of c and f
electrons, 4h, f vs U/2t in d=1 for V/2t =0.375 (see text).
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ferromagnetically ordered state. In Fig. 4 we show the
interaction dependence of the amplitudes of the local
magnetic moments 4b, , f of c and f electrons for d =1
(the results for d) 1 are qualitatively similar). Below
U/2t =0.g, i.e., in the paramagnetic state, the local mag-
netic moments are identically zero. Above U/2t =0.8,
5, and 5f become nonzero. In particular, 4hf rises rap-
idly with U and, at U/2t =2—3, almost saturates at its
maximal values of 1. Hence for UI2t ~ 2 the f electrons
are ordered in a SDW with an alternating local moment
of +1. By contrast, the amplitude of the c-electron-
SDW, 4b,„is considerably smaller (always less than 20%
of 4h,f ) and reaches a shallow maximum at the U value
where 6f starts to saturate. It slowly decreases to zero
for increasing U, since U~ ~ e6'ectively corresponds to
V~O in which case the c electrons decouple from the f
electrons. In particular, the c-electron moment is always
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FICx. 5. Momentum distributions n f; of c and f electrons in
d=1 for two values of U: (a) V/2t=0. 375; (b) V/2t=0. 2.

U/2t

FIG. 6. Same plot as in Fig. 1; evaluation for d =2.
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oriented opposite to the f-electron moment. These results
are interesting in view of the question concerning the
compensation of f spins in the PAM and in its large-U
limit, the so-called Kondo lattice model (KLM). ' There
are two (partly related) issues involved: the compensa-
tion on a local and on a global scale. Ueda, Tsunetsugu,
and Sigrist proved rigorously that at half filling the
ground state of the symmetric PAM is a total singlet.
The result obviously applies also to the KLM at small an-
tiferromagnetic exchange coupling, J= —8V /U. This
compensation is a global one (formation of a "collective
singlet" ). Furthermore, for large

~
J ~, when each f spin is

screened anyway, the ground state is a superposition of
local singlets and hence is a total singlet, too. Numerical
studies clearly show that in the PAM the compensation
of the f-electron moment is due to intersite correlations,
in particular due to antiferromagnetic correlations be-
tween the f electrons themselves, ' and that the corre-
lation between c- and f-electron moments is only small
and negative. The importance of magnetic intersite
correlations between the f electrons in the PAM and of
the collective nature of the compensation eAect was also
observed in previous variational treatments.

Our results are in agreement with those found numeri-
cally: (i) the ground state is a total singlet for all U
values, the compensation being due to the (long-range)
antiferromagnetic order of the f electrons, i.e., a collec-
tive eff'ect, (ii) in the ordered phase the moments of the c
electrons are always oriented opposite to the f moments
but compensate only a fraction ( & 20%) of the latter.

In Fig. 5 the results for the momentum distributions of
the c and f electrons are shown for diff'erent U and V
values in d=1. For the U values chosen here, i.e., for
UI2t ~ 2, the correlation operator in (l) is found to have
no more eA'ect. The curves are qualitatively similar to
those obtained with the paramagnetic Gutzwiller wave
function at U= ~. ' Apparently these quantities are
not sensitive to the microscopic details of the wave func-
tion.

1.0
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Gutzwiller-correlated SDW (d= 3)
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FIG. 9. Same plot as in Fig. 2, evaluation for d =3.

FIG. 10. Magnetic phase diagram for d=2, 3 as obtained
with the uncorrelated and the Gutzwiller-correlated SDW, re-
spectively.
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Having shown that (i) our approach for the evaluation
of expectation values in terms of Gutzwiller-correlated
wave functions in d dimensions (which becomes exact in
the limit d ~ ~ ) gives quantitatively reliable results even
in the most unfavorable case, i.e., d=1, and that (ii) a
variational wave function with long-range order of the e
and f electrons gives excellent results even in d = 1 where
true long-range order is not possible at all, we may expect
that our results for d =2 and 3 will be even more accu-
rate. In Figs. 6 to 9 the quantities E, EH„b, and ( m, ) are
shown as function of U for various values of the hybridi-
zation for d =2 and d =3, respectively. Qualitatively the
same behavior as in d = 1 is found. In Figs. 7 and 9 these
results are compared with perturbation theory' at small
and large U as well as with the results obtained with the
uncorrelated SDW and the paramagnetic Gutzwiller
wave function. So far, numerically exact results are not
available for d=2 and 3. Hence our variational results
may serve as benchmarks for future numerical work.

In Fig. 10 the magnetic phase diagram of the PAM for
d =2 and 3 as a function of interaction versus hybridiza-
tion strength is shown. The lines separate the phase with

antiferromagnetic ordering of f spins and c electrons
(above the line), from the paramagnetic phase (below the
line). A transition is found for all values of the hybridiza-
tion; however, only in d & 1 can such a phase transition
occur at all. The inclusion of two-particle correlation
effects is found to have a considerable effect on the pre-
cise position of the phase transition line: for given V the
lines are shifted to higher U values. It will be very in-
teresting to compare the above results with quantum
Monte-Carlo calculations in d & 1 which, hopefully, be-
come possible in the near future.
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APPENDIX: MINIMIZATION OF THE ENERGY

We wish to determine the minimum of the ground-state energy E (24). Differentiating with respect to the k-
dependent variational parameters yields the following linear equation

MkXk =0,
where

(Al)

Xk (Vk~MgiXg|Qg&Zg) (A2a)

—(e„+A,„)

2V

(e„—A, k)

—2V 2(Xk —
Al, )

—2A 0
—(ok+A, j, )

(A2b)

aIld

(A3a)

(A3b)

Nontrivial solutions can be obtained only if Det(M& ) =0, leading to the following equation

(Xl,—Ak)[(eq+Xq —
Al, )(el, +4V +Xq —Ak)+85, (Xl, —Ak

—el, )+16K (b, + V2)]=0 . (A4)

The k-dependent parameters are given by

8Z V +Xq(X|,—A,k)[ek —A, l, +XI+4(V +b, )]
Qk-

2A VXk
Xk

2V (el, —Al, +Xl, )+(Xl,—Al, )[4b, +Xk —(el, —Al, ) ]
Vk Xk

VXk

(A5a)

(A5b)
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Zlc

—8b, V —(Xk —Ak)[4b, (ek+Ak) —(ek —Ak)(ek —Ak+X~k+4V )]
26 VNg

(A5c)

2V (Ek ~k+~k)+24(~k ~k)ek
Mg= Xk

VNg

where

Nk=ek+A. k
—Xk —4b —2@k(A,k

—Xk) .

The minimization with respect to d yields one more equation

—t)&q t) q
Bdf

From Eq. (23b) and Eq. (A4) the Lagrange multipliers are found as

A,k=O,
1 /2

2V +46. +@k+2+V +46 ek

(A5d)

(A6)

(A7)

(A8a)

(A8b)

This corresponds to the minimum of the energy. The minimal energy is given by (25).
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