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Dynamics of a hole in the t-J model with local disorder: Exact results for high dimensions
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We investigate the t-J model including local disorder for a hole in an antiferromagnetic spin back-
ground on a hypercubic lattice in d dimensions. We show that the well-known approximation of a linear
potential, caused by the Ising term of the spin-spin interaction, is correct up to order 1/d and hence be-
comes exact in d = ~. We also investigate the influence of disorder and compute exactly the Green
function and the density of states for a hole in an antiferromagnetic spin background for arbitrary disor-
der and J in the limit d ~ 00. Moreover, for finite J and disorder we determine the dynamical conduc-
tivity in high dimensions exactly. Remarkable structure both in the density of states and in the dynami-
cal conductivity is found. Finally, we systematically derive the retraceable path approximation by
Brinkman and Rice via a self-consistent 1/d expansion, which is correct up to order 1/d .

I. INTRODUCTION

The investigation of single-particle excitations in mag-
netic insulators has recently received renewed attention
due to the interest in the physical properties of high-T,
superconducting materials close to T, . This problem in-

volves strongly correlated electrons on a lattice' and a
low density of doped holes 5. In the language of the
Hubbard model with strong on-site repulsion U this cor-
responds to vacancies, i.e., "holes, " in an antiferromag-
netic background (,t Jmodel -). If, in the limit 5((1,
one neglects the correlations between holes, one arrives at
the problem of a single hole in an antiferromagnetic spin
background, whose dynamics is described by the t-J mod-
el. In many instances the materials under investigation
are also disordered to a certain degree. One should ex-
pect that the presence of disorder will have a strong
influence on this dynamics. It is therefore desirable to in-

clude the effect of disorder in the problem under investi-
gation. An understanding of the physics of a single hole
in such a disordered, correlated system is not only impor-
tant for high-T, superconducting materials but also for
magnetic, disordered systems, as, for example,
V, „Nb„02.

Following the work of Nagaoka, the motion of a hole
in the infinite-U Hubbard model was studied in detail by
Brinkman and Rice. ' They obtained the density of
states and the conductivity by means of the so-called re-
traceable path approximation. This approximation was

then also used for the calculation of the dynamical con-
ductivity by Rice and Zhang, " and of the electrical resis-

tivity, thermal conductivity, thermopower, and specific
heat by Oguri and Maekawa. ' Recently, Metzner,
Schmit, and Vollhardt' showed that the retraceable path
approximation becomes exact for the Neel background in

high dimensions d. Moreover, they calculated the spec-
tral function and the dynamical conductivity for antifer-
romagnetic, ferromagnetic, and random spin back-
grounds exactly in d = ~ and derived a self-consistent
approximation for these quantities in finite dimensions, in

which sum rules are always satisfied.
The influence ofPnite antiferromagnetic exchange cou-

pling J on the hole motion has been investigated by
several groups. Schmitt-Rink, Varma, and Ruckenstein'
and Kane, Lee, and Read' approximated the t-J model
at low doping by an effective Hamiltonian and calculated
the spectral function from there; a detailed numerical
analysis, including vertex corrections, was performed by
Liu and Manousakis. ' Using the concept of strings gen-
erated by the motion of the vacancy, Shraiman and Sig-
gia, ' Eder and Becker, ' and Mohan' investigated the
influence of the Ising term on the hole motion. Gros and
Johnson suggested a Green-function approach starting
from a mean-field Ising interaction. Extensive numerical
results were obtained by Dagotto et al. ,

' Szczepanski
et al. , and Inoue and Maekawa.

In the present work we investigate the dynamics of a
hole in a Neel state by the t-J model with local disorder
in the limit of high dimensions d. The density of states
and the dynamical conductivity are calculated exactly.
These results may be used as a mean-field approximation
scheme for results in Pnite dimensions. By including
1/d corrections our theory can be systematically im-
proved.

The paper is structured as follows. In Sec. II, we intro-
duce the Hamiltonian. We determine the contributions
to the hole motion in high dimensions and clarify the
influence of spin fluctuations. In Sec. III, the validity of a
linear potential due to the Ising interaction is discussed.
Moreover, we calculate the Green function exactly in
d= ~ for arbitrary J. Our results are compared with a
continuum approximation. In Sec. IV, the Green func-
tion and the density of states and in Sec. V the dynamical
conductivity are calculated exactly for arbitrary J and
disorder. In Sec. VI, we discuss 1/d corrections to our
results for J=0 in the absence of disorder, and we derive
the retraceable path approximation of Brinkman and
Rice' by a self-consistent 1/d correction to our d= ~
result. The summary in Sec. VII concludes the presenta-
tion.
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II. THE E-J MODEL WITH LOCAL DISORDER

The t-J model is defined on the subspace of zero
double occupancy of electrons and consists of a hopping
term and a nearest-neighbor spin-spin interaction. We
extend this Hamiltonian by adding a term describing lo-
cal disorder

8=8,+8,+8,
with

limit d~~, which was recently introduced for lattice
models with itinerant degrees of freedom, substantial
technical simplifications occur, while at the same time
correlations remain nontrivial. The d = oo results may
be systematically improved by taking 1/1 corrections
into account. To obtain a nontrivial theory in the limit
d ~ ao one has to scale the relevant parameters in such a
way that the expectation values of H„HJ remain infinite,
i.e.,

(2a)
t*=const,

JQJ=, J*=const,

(sa)

(5b)

(2b)

„=gu;8'; (2c)

Here, c; (c; ) creates (annihilates) a particle with spin o.

on site i. The corresponding number operator is
=c; c; . The spin operator is S;. The index (ij)

stands for summation over the nearest-neighbor pairs.
The parameter t is the hopping integral, J,=Jj =J deter-
mines the strength of the spin-spin interaction, and v;
characterizes the local disorder and is a stochastic vari-
able. The exchange constant is given by J=4t /U when
derived from the Hubbard model for large on-site in-
teraction U. The Hamiltonian A'J describes spin-flip

processes. We refer to this model as the t-J-v; model.
The local Green function for a state ~iN ), denoting the

Neel state with a hole on site i, is defined as

G;;ill=(iN iN) . (3)

The density of states is then determined by

(4)

where I. is the number of lattice sites. For u;%0 one has
to average these quantities with respect to the disorder
distribution function.

In the case of a single hole moving in a spin back-
ground (J=O, v;=0), Nagaoka and Brinkman and
Rice' developed a path formalism to calculate 6;;. By
expanding 1/(co 8, ) in a power —series in (P, /ru)" the
local Green function can be written as

where Z =2d is the coordination number on a hypercubi-
cal lattice, i.e., the number of nearest neighbors.

In the present problem the essential simplification of
the limit d ~ ao is the suppression of certain paths which
only contribute to the Green function in finite dimen-
sions. ' This is exemplified in Fig. 1 for J'=0, v;=0.
The lowest-order contribution to the Green function due
to 8, is given by (1/cv )(iN~8, ~iN ). The corresponding
closed path, described by two hopping processes (from
site i to a nearest-neighbor site and again back to i), is
shown in Fig. 1(a); it provides a factor t —1/d, while the
number of possible embeddings of this path on the lattice
is proportional to d. Hence, the product is of order unity
and the path is seen to contribute in d = ~. The path in
Fig. 1(b) (three loops around the same plaquette) consists
of 12 hopping processes which provide a factor
t' —1/d . The number of embeddings of this path is
proportional to d . Hence, this path is proportional to
1/d and obviously vanishes for d ~~. Indeed,
Metzner, Schmit, and Vollhardt' showed that in d = ~
only those paths of a hole contribute to G;;(c0) which
consist of loops on which a hole circulates only once
("loop trees"). Loop trees may be divided into two
classes: one consisting of paths without loops ("retrace-
able paths"' ) and those containing loops. Since in a
Neel state a hole has to circulate three times around the
simplest loop [a plaquette, see Fig. 1(b)] to restore the
original configuration, loops do not contribute at all in
this case. Hence, for a Neel state in d = ao only retrace-
able paths remain, and the retraceable path approxima-
tion of Brinkman and Rice' becomes exact. '

The second simplification of high dimensions concerns
the spin-flip term BJ . We consider only such contribu-

tions of HJ which influence the hole motion directly. To
show that this term does not contribute in d = ao let us
consider the following example: The lowest contribution

Here the amplitude 3;„ is the number of distinct paths
by which a hole may start at site i and return to i after n
steps without changing the original spin configuration
("background-restoring paths"). Although this is a seem-
ingly simple problem it is not possible to determine G;;
exactly (even for J=0, v; =0) in dimensions d =2, 3.
Qnly in d =1 (Ref. 10) and in d = ~ (Ref. 13) is an exact
calculation of the physical properties possible. In the

FIG. 1. Closed paths of a hole in an antiferromagnetic spin
background: (a) two hopping processes, (b) 12 hopping process-
es.
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to the local Green function due to HJ is given by

(1/co )(iN~HJ 8, ~iN ). After the hole has hopped
w 4around a plaquette due to H, , two spins are disarranged.

By application of Hz on this state the two disarranged

spins are Hipped back and we again obtain our starting
state ~iN). The path around the plaquette consists of
four hopping processes ( —1/d ), the number of embed-
dings of the path is proportional to d, and the applica-
tion of HJ provides an additional factor 1/d. Hence,

this lowest contribution is of order 1/d. For a hole mov-
ing in an antiferromagnetic spin background in d = ~
spin-fiip processes due to PJ are hence seen to be unim-

portant, i.e.,

g S;S,~ g S,'Sj,
2d &. .

&

' ' 2d (,"&

vector on the lattice. After the hole hopped from site i to
i+5„ in n steps, it hence experiences a linear potential
given by

J'
V =n

f?

in d= ~. Note, that in this limit a path naturally does
not intersect or touch itself. We choose the energy of the
Neel state with one hole as the zero of energy.

In order to calculate the Green function exactly for the
hole in the t-J model we present a diagrammatic repre-
sentation which is in some sense similar to the locator
formalism. We define a self-energy o.; by

where S,'= —,'(&;& —n;&). The ground state of HJ in

d = 00 is the Neel state. This state is our starting point
for the calculation of the hole dynamics in the t-J-U; mod-
el.

6;;(co)= =—g [o;(co)]" .
1 1

co[1 —o.;(a))] co „
(8)

III. GREEN FUNCTION FOR THE t-J MODEL

The hole moves into the lattice by the repeated appli-
cation of 8, on ~iN ), leading to a string of overturned
spins. ' The Hamiltonian 8z, applied on a string state,

z

measures the number of overturned spins; its energy in-
creases linearly with the length of the path. Hence, the
hole feels a linear potential caused by HJ . However, this

Z

picture is only correct for a path which does not intersect
or touch itself as already pointed out by Bulaevskii,
Nagaev, and Khomskii. A self-intersection is depicted in
Fig. 2(a): the hole starts at site i, makes one loop, and
then retraces to i (this path is of order 1/d ). A path
which touches itself is shown in Fig. 2(b) (here "touch-
ing" means that j has to be at a nearest-neighbor position
to i): the correction to the linear potential is of order
1/d (1/d due to 8, and 1/d due to BJ ). Hence, the

Z

approximation of a linear potential, which is frequently
used (see, e.g. , Ref. 17) and whose validity is not a priori
clear, is actually found to be correct up to order 1/d in
high dimensions. Hence, it is indeed a reasonable ap-
proximation in d=2, 3. In particular, in d= ~ the ap-
proximation becomes exact. To determine the precise
form of this linear potential we define lattice sites i+5„,
where 5„=r, + . +r„(r„W r„,) and r„ is —a unit

The self-energy is given by a sum over paths which start
and end at ~iN ) without passing ~iN ) on the way (a simi-
lar self-energy was introduced by Brinkman and Rice'
and by Metzner, Schmit, and Vollhardt' ). Equation (8)
can be expressed diagrammatically. Diagrammatic ele-
ments are shown in Fig. 3(a), where g, =1/co is the bare
Green function for 8, =0. In Fig. 4(a), the diagrammatic
representation of Eq. (8) is depicted. In order to deter-
mine cr; we have to introduce additional diagrammatic
elements [see Fig. 3(b)]. Here g;+s are auxiliary Green

n

functions (with 5„defined earlier), cr;+s are auxiliary
n

self-energies, g;+s = I/(co —V„) are the bare Green func-

tions (H, =0) for the string states, and t is the hopping
amplitude. The self-energy o.; is given by a nearest-
neighbor hopping from the bare vertex g; to a dressed
vertex g;+, [see Fig. 4(b)]. The Green function g;+,

1 1

may be expressed by the self-energy cr;+, which depends
1

on additional Green functions g;+& and so on. This gen-'+ 2

eral dependence is depicted in Fig. 5 where

gi+8„= i+8„

G;,
~i+6„= i+6

0
go+6„ ~ i+6„

g. = ~ i

FIG. 2. Path which (a) intersects at site i and (b) touches at
nearest-neighbor positions i, j.

FIG. 3. Diagrammatic elements determining (a) the local
Green function 6;;(co) and (b) the self-energy o.;(~).
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2 0
gl Q gl+T)

T1

0
gi+s„

gi+s„
~i+5„

7l: 1y2y3y ~ ~ ~

(9b)

(9c)

FIG. 4. Diagrammatic representation (a) of the local Green
function G;;(u) and (b) of the self-energy cr;(co).

2 0
cr,.+s =t g, +s $ g,+s, n=1,2, 3, . . . .

n n n+1
n+1

(9d)

g06-=
11

1

(9a)

n = 1,2, 3, . . . . From this diagrammatic analysis we ob-
tain the following set of equations:

Here the summation with a prime is restricted to
r„+,A r„—d ue to the definition of the self-energies [in
d=ac this restriction is unimportant ( —1/d)]. Inser-
tion of the recursion relations into the equation for 6;;
yields the following continued fraction

G;;(co)= (10)

co — —t *2
2 *2

co —2 —t
2 J* 1

co —3 —t*
2

G-(c0)= (1—+1—4t' /co ),
2t 42 (12)

which was already derived by Metzner, Schmit, and
Vollhardt. ' It yields a semielliptic density of states with
a square-root singularity at the band edges (see Fig. 6).
Nondiagonal Green functions are equal to zero due to the
antiferromagnetic spin background and hence the spec-
tral function is k independent. This behavior is also valid
in the case of finite J~ and v;. For J'%0 the continued
fraction is equal to a fraction of Bessel functions of the
first kind

which may be written as a self-consistent equation for G;;

G;;(co)= 1

cv t* G;;(cv J—'/2)—
This equation was already obtained by Kane, Lee, and
Read' on the basis of their approximation scheme.
Here, it is derived as an exact result in high dimensions.
For J*=0 we obtain the well-known result

with v= —2co/J' and x=4t'/J'. An approximate re-
sult for d=2 with a similar form was obtained by
Mohan. ' The Green function may be written as '

00
1

G;;(co)=
Jv —i, n

1

&+Jv—
& n

(14)

where a„are the zeros of the Airy function Ai(x ). The

.3- ~ r

0 4-----. J/t 0
J/t

where j„&„are the zeros of x" '8„&(x). The poles of
6;; are determined by x kj,„=0. For large v we can
solve this equation exactly. The position of the poles
near the lower band edge are given by

2/3
JQ J

co„=—2t *— —a„t (15)
2 " 2t*

8 (x)
G;;(co)=-

,(x )

I
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FIG. 5. Diagrammatic representation (a) of the auxiliary
Green functions g;+z in terms of auxiliary self-energies o;+q

n n

and (b) o.;+& in terms of g;+zn n+1

FIG. 6. Density of states for a hole in the t-J model for zero
and finite exchange coupling J* in d = ao.
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ground-state energy is obtained for n =1 (ai = —2. 338).
The [J*/2t'] dependence was already predicted by a
continuum approximation, starting from the three-
dimensional Schrodinger equation

L

dvR dvR Y UR, . . . , UR P UR
k=1

(19)

Jg JQ—t*5%+ r P= E+2t*+
2 2

(16) In the following we will employ a binary alloy distribu-
tion

The term 2t*+J"/2 is due to the scale of the energy.
The eigenvalues for angular momentum l=0 may be
written as

P(u ) =c5(v —W/2)+(1 —c )5(u+ W/2),

a box distribution

P(v)= 1 W
W 2

(20a)

(20b)

J ilc

E = —2t*-
7l

; 2/3J—a„t*
2t

and a semielliptic distribution

P(u)= +I—4u /W
4

mW
(20c)

where a„are the zeros of the Airy function. The continu-
um approximation is seen to yield exactly the same result
as the d= ~ approximation (for small J' and near the
bottom of the spectrum). Hence, for large —tu/J' the
continuum approximation and d= co are equivalent (at
least on the one-particle level). In Fig. 6, we show the
density of states for a finite J' as obtained from (10). It is
given by a series of 5 peaks; their weight is characterized
by their height. In finite dimensions one might think that
the spin-flip processes created by 8J would completely

erase the strings and the 5 peaks, respectively. Ho~ever,
Dagotto et al. ' showed by an exact diagonalization on a
4X4 lattice that this is not the case; the same conclusion
was reached by Liu and Manousakis. '

An alternative way to calculate G;; exactly in d = ~ is
to write the Green function 6;; as

Here, 5(x ) is the 5 function and e(x ) is the step func-
tion. The parameter W determines the width of the dis-
tribution and c measures the concentration of the impuri-
ties. As in the previous chapter a self-energy is intro-
duced by

G;;(co)= 1

( co+ v; ) [1—cr;( cu ) ]
(21)

The diagrammatic representation is exactly the same as
before. However, due to the additional local potential
the bare quantities g now take the values g, = I/(au+ u; )

and g, +s =1/(cu+u;+s —V„). Equations (9a)—(9d) are
n n

also valid in the case of disorder. It remains to explain
how the averaging for 6;; is performed. If one inserts the
result for 0.; into the equation for G;;, one obtains for the
averaged Green function

G;;(co)= iN
1

iN
co T

(18} 1

2Cu+vi t g g;+~ av

where r is given by T= 1/(1 Hz/tu)H, . The op—erator
f' describes a kinetic energy with a site-dependent hop-
ping amplitude. Hence, the hopping amplitude t„be-
tween sites i+5„, and i+5„ is given by
t„=t l[1 nJ* /(2'�)].—The diagrammatic representation
of (18) is exactly the same as above with

g; =g;+& =1/co. The result is again the self-consistent
n

equation (11).

2

'r
1

av
(23)

where g;+, is independent of v;. To determine 6;; aver-
1

ages of powers of (1/2d )g, g;+, have to be calculated.

They become uncorrelated in d = ~, i.e.,

IV. GREEN FUNCTION FOR THE t-J-u; MODEL
This fact has alread~ been observed by Vlaming and
Vollhardt. Hence, G;; may be written as

The energy v; is a stochastic variable with a distribu-
tion function P(u; } (correlations between sites are
neglected). Here, i runs over all lattice sites R, . A physi-
cal quantity like the Green function 6;; depends on all v;.
The average of a quantity I'( [ u; ] } is then obtained by

G;;= dv P(v) 1

~+v —(t* l2d) gg;+,
(24)

The same averaging procedure is valid also for the other
Green functions with the result
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G;;(tu)= J
co+ v&

—t

dvi (v&)

dU2P(U2)

co+ v — —t
J*

2 2

dv3P(v3)

dv4P(u4)
co+ v3 —2 —t

(25)

Again this expression can be written as a self-consistent
equation for 6;;:

1.0—

J/t =1
W/t =1

G;;(io)=Idv P(u )
1

tu+u —t' G;;(cu —J*/2)
(26)

0
-2

, R
0

First we study this relation for J*=0. Brouers, Lederer,
and Heritier investigated the case of a binary alloy dis-
tribution and obtained a relation for G;; which is identi-
cal to our result for Z = 00. Their approximation, whose
validity could not be assessed before, is seen to become
exact in d = 00. Due to the absence of loops, the antifer-
romagnetic background forces the hole to move on paths
which are identical to paths on a Bethe lattice with a

1.5

1.0—

J /t 0.2
W/t =1

.25

.20-

.15-

J/t 1

W/t 1

c 0.5

.10—

.05-

0
-2

0
-2

II) il, l,~J, I, &„l„„,. i,

-1 0 1 2
~ ~ I

3

J /t 0.5
W/t 05

1.2

J/t 1

W/t 1

.3—

P I

-2 0
-2

FIG. 7. Density of states for a hole in the t-J-v; model in
d = ao (semielliptic disorder distribution): (a) J*/t = I,
8'/t = 1; (b) J*/t* =0.2, 8'/t* = 1; (c) J*/t* =0.5,
W/t *=0.5.

FICs. 8. Density of states for a hole in the t-J-v; model in
d= 00: (a) binary alloy disorder distribution, (b) box disorder
distribution.
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coordination number Z= oo. Indeed, for J*=O, (26) is
identical to the exact local Green function for the Ander-
son disorder problem on a Z = ~ Bethe lattice.

For finite J' we may compute the density of states nu-
merically from (26). The recursion relation converges
very rapidly. For a semielliptic distribution the original 5
peaks now acquire a finite width (see Fig. 7), and new
bands arise. The smaller the width 8'of the distribution
function, the narrower the peaks. A finite width of the
peaks is also found if a next-nearest-neighbor hopping t 2

(tz has to be scaled with 1/Z) instead of disorder is in-

cluded. Due to this additional kinetic energy the hole
moves on the lattice without destroying the antiferromag-
netic spin background. To consider this effect we investi-
gate 8, +PJ+8, on a Bethe lattice (Z = co ) and obtain,

for G;;,

G;;(co)=
co t* G;;(co—J'/2)—

2t 42
2

x 1 — 1—
4t*2

2

co t ' G—;;(a) J*/2—)

1/2

(27)

This is exactly the same equation as (26) for a semielliptic
distribution and W =16t2 . Consequently, the effect of
disorder on G;; is similar to the effect of an additional ki-
netic energy that does not destroy the antiferromagnetic
spin background. We also investigated the case of a
binary alloy distribution and a box distribution (see Fig.
8). In the former case the number of new 5 peaks in-

creases rapidly (their weight is characterized by their
height). In the latter case the qualitative behavior is the
same as for the semielliptic distribution.

V. DYNAMICAL CONDUCTIVITY
FOR THE t-J-8; MODEL

The problem of a single hole in a magnetic insulator is
of direct physical relevance, since single-particle excita-
tions can actually be studied by spectroscopic methods.
In this respect the electrical conductivity provides
characteristic information about the physical properties
of the solid. Here, we calculate the frequency-dependent
conductivity of a hole in the t-J-v; model for an antiferro-
magnetic spin background exactly in d= ~. We start
from the Kubo formula

cr(ra)= —f d er'"'f dk(J (0)J (r+i7 )), (28)
V 0 0

where V is the volume, and P= I/(k&T) is the inverse
temperature. The current operator J in the direction a
(a is an arbitrary unit vector on the lattice) is given by

(29)

)=—tr(e ~ . .
)

—H

Z
(31)

e I'"—1 - -p,
Reer(co) = dc@,e 'F(co„co,+~), (33)

where

F(co, , coq) = g s )s2f (co)+ts )0+,co2+is20 )

Sl, sg =+1

with the definition

(34)

f(z„z2)= tr
1 1

Z Z
1 2

(35)

These relations are valid in every dimension. Due to the
nature of the current operator the conductivity is propor-
tional to 1/d in high dimensions, but o. /t is a finite
quantity. In order to obtain an exact result for o /t in

high dimensions we have to expand 1/(z —8) into a
power series as in the case of the Green function. Since
nondiagonal Green functions are equal to zero, only the
diagram in Fig. 9 remains, ' ' where the dashed line
represents the hopping caused by the current operator,
and the solid circles are full Green functions. In d = ~
both Green functions become uncorrelated, i.e., the
averaging procedure can be performed separately with
the result

e2t 42 2

f(z„z2)=
d g [g;+ (zz)+g; (zz)]G;;(z, ) .

2d

(36)

From Eqs. (24) and (25) it follows that

g; (co)=g;+ (co)=G;;(co—J'/2) .

Hence, the dynamical conductivity is given by

1 —e '" 2.22Reo (co ) = et*a mL
VZcod

X f den, e 'D(a), )D(co, +co—J'/2),
(37)

where the density of states was determined earlier. Since

where the trace runs over all single hole states in a Neel
background. The partition function has the form

Z=L f

defoe

~ D(co), (32)

where D(co) is the density of states calculated earlier.
Following Rice and Zhang" one can transform the real
part of the conductivity into

and
i+a

J (~)=e' 'J ea a (30)

with a as the lattice constant. The thermal average is
defined by

FIG. 9. Diagrammatic representation of the dynamical con-

ductivity in d = ao in terms of the current operator (dashed line)

and the local Green functions G;; and g;+ .
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procedure often provides unphysical properties for G;;,
e.g., negative density of states. Hence, one has to in-
clude higher orders in 1/d in such a way that the unphys-
ical behavior disappears. One way to do this is to expand
the self-energy in terms of 1/d where the Green functions
are determined self-consistently. The Green function
then includes 1/d contributions to infinite order. A self-
consistent 1/d expansion will now be constructed for
J*=O, v;=0. For a 1/d expansion, correct up to order
1/d, Eqs. (8) and (9a)—(9d) with g; =g, +s =1/co may be

used. The self-energy cr; is given by
o;= t ' /(2d co)g, g;+, . For o; a correction to order

1/d does not exist (corrections only come in 1/d ). The
self-energy that arises next is

FIG. 13. dc conductivity vs disorder strength W for a hole in
the t-J-U; model in d = ~ (semielliptic disorder distribution). o;+, =t* /(2dco)g g;+s t* /—(2dco)g; .

T2

VI. SELF-CONSISTENT 1/d CORRECTIONS

The results for d = 00 can be systematically improved
by including 1/d corrections. The value of a diagram or
a path, respectively, can be exactly determined in terms
of an expansion in 1/d. The first correction to the d = ~
result for the Green function is given by
G;; =G,"; "+1/dG; . However, this simple-minded

I

The first term is the d = Oo result and the second term is
the 1/d correction due to the restriction of the summa-
tion which excludes the return of a particle (see Sec. II).
Consequently, the auxiliary self-energies are given by

a;+s =t* /(2dco) g g;~s —t' /(2dco)g;+s
n+1

leading to a continued fraction

G;;(co)= (39)

co —t* 1—
2d

To solve (39) a new quantity G, (co) is introduced as

co t 1—
2d

'
co —t* 1—

2d

1

co —t* (1—1/2d )G, (cg)
(40)

G;;(co)= ~( I —1/d ) &co 4t ' [ I —1/(—2d )]-
2t co /d

(41)

It should be noted that (41) is identical to the result ob-

This yields a quadratic equation for G, . Hence, one final-

ly obtains
tained by Brinkman and Rice' by means of the retrace-
able path approximation in finite dimensions (with
t ' =&2d t ). Hence, we see that the retraceable path ap-
proximation is equivalent to a self-consistent 1/d correc-
tion to the d = ~ result for a hole moving in an antiferro-
magnetic spin background. Here, we derived this ap-
proximation in a systematic way. Loops enter in order
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1/d [see Fig. 1(b)]. Hence, Eq. (41) is valid up to order
1/d4.

In this paper we investigated the dynamics of a hole in
a quantum antiferromagnetic with local disorder. We
employed the limit of high dimensions d, since it enables
us to solve this problem exactly in d = oo. In particular,
the efFect of finite exchange coupling J and of the disor-
der can be treated simultaneously in this approach.
These results correspond to a mean-field theory for
finite ditnensions (d=2, 3). Sum rules for the density of
states and the dynamical conductivity are naturally
satisfied by our exact results. We showed that the ap-
proximation of a linear potential due to Ps is valid up to

z

order 1/d . Hence, it can be viewed as a reasonable ap-
proximation even in d =2, 3. In the case of large —c/oJ'
and no disorder our results for the low-lying eigenvalues
are the same as those obtained from a continuum approx-
imation. These eigenvalues obey a (J'/t ') ~ law, where
the prefactor is determined by the zeros of the Airy func-
tion. In the case of finite disorder the 5 peaks (due to the
linear potential) now acquire a finite width and the densi-
ty of states has a new structure. Numerical evaluations

were obtained for three different types of disorder distri-
bution functions.

For the dynamical conductivity an exact result has
been obtained, too, in d = 00. The frequency dependence
of cr(co) is found to have a remarkable structure. The
resistivity p(T) versus T has a minimum. Moreover, the
presence of disorder leads to a new efFect, where o (0) in-

creases for increasing disorder in a certain disorder inter-
val. Finally, we systematically included 1/d corrections
for J'=0, U;=0. The results of the retraceable path ap-
proximation in finite dimensions of Brinkman and Rice'
were thereby derived as a self-consistent 1/d correction
to the d= ao result. The calculation of 1/d corrections
for finite J', including spin fluctuations, and the conse-
quences of a next-nearest-neighbor hopping are presently
under investigation.
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