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Summary: The basic concepts involved in the physics of localization in disordered systems are
discussed on an elementary level. In the case of weak disorder localization effects may be
understood as a coherent wave phenomenon. Initially developed to describe electronic trans-
port in disordered metals, localization theory has now found wide application in other areas
related to disordered systems. The article is intended to explain how and why localization has
recently experienced such an explosive growth. We discuss localization effects in the propaga-
tion of various wave-like quantities, quantum oscillations in different geometries (hollow
cylinders, networks, rings), the developments concerning mesoscopic systems, as well as the
effects of universal fluctuations in such systems. An extensive list of references is given.

1 Introduction

The concept of “localization™ due to disorder originates from the work of Ander-
son in 1958 [1]. He investigated the motion of a quantum mechanical particle on
a three-dimensional lattice with randomly varying site-energies. The “disorder” in
the problem was thus given by the magnitude of the energy fluctuations from site to
site on the lattice. Assuming a particle on a site j at time t = 0 he calculated the
return probability P for the particle in the limit t = oo, Below a critical value of the
disorder he found P =0, i.e. the particle had diffused away and had disappeared in
the system. The particle is thus described by an extended state. For larger disorder
one finds P > 0, indicating that the particle did not disappear but remained within a
certain region around the site j. This corresponds to a localized state with a certain
spatial extent (localization length). There is then a critical strength of the disorder
where a sharp transition (“Anderson-transition™) distinguishes an extended and a
localized regime. In other words: if the energy E of the particle lies below a certain
critical energy E. it is localized, while for E > E, the energy fluctuations of the
system will not be able to dominate the particle such that it is described by an ex-
tended state. In the first case one deals with an insulator, in the second one with a
metal.

We note that the localization is caused by fluctuations imposed on the wave func-
tion and does not mean some kind of trapping or local binding to a particular site.
Hence it is the coherence of the wave function which is important in this problem.

The disorder discussed above is due to the randomness of the on-site energies of
the lattice. Alternatively and equivalently the disorder may enter via a random
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spatial distribution of scattering centers, off which a quantum mechanical particle
(with constant energy E) is scattered elastically [2]. The latter approach (“Edwards
model”) is particularly suited for a perturbation-theoretical approach studying
weak disorder.

Then, in the end of the seventies, the investigation of localization in two-dimen-
sional systems, i.e. of the question whether very thin films may have a metallic
conductivity at zero temperature or not, led to an explosive development in this
field of condensed matter physics [3]. New approaches to the problem of Ander-
son localization and the metal-insulator transition were devised [4], which — together
with perturbational methods — clarified the situation and demonstrated the absence
of true metallic conductivity (or of a minimal metallic conductivity [5], for that
matter) in two dimensions. In particular, the perturbational treatment of the ef-
fects of weak disorder by diagrammatic means [6 ... 8] (“maximally crossed dia-
grams” [9]) and the subsequent interpretation of the underlying physics [10...12]
in the beginning of the eighties led to a significantly new understanding of transport
in disordered systems. It was soon realized that the localization effects known from
weakly disordered electronic systems (“weak localization™) were not peculiar to
quantum mechanical particles as such but rather were due to the wave-nature of
quantum mechanical particles and were thus a general phenomenon common to
any wave-propagation. The basic physics of weak localization, namely the coherent
backscattering of electrons, is therefore shared by all wave-like transport and is not
connected to quantum mechanics or particle statistics. This notion will be dis-
cussed in Sect. 2 in the context of the diffusion of electrons in a weakly disordered
metal. Consequently, localization effects are in principle also observable in the
propagation of light (i.e. electromagnetic radiation) and any kind of sound (phon-
ons). This is indeed the case and will be discussed in Sects. 3 and 4, respectively.
Yet different systems and geometries discussed in the context of localization will
be mentioned in Sect. 5.

The magnetic field dependence of weak localization led to the prediction of macro-
scopic quantum oscillations in multiply connected, normal-conducting geometries
with a periodicity of half the flux quantum known from the Aharonov-Bohm ef-
fect. This will be discussed in Sect. 6.

The subsequent experimental investigation of these effects involved the study of
metallic networks, composed of a macroscopic number of small loops, where
quantum oscillations could be well observed (Sect. 7).

On the other hand, the investigation of single rings, i.e. mesoscopic systems, led to
the discovery of quantum oscillations of the flux both with period %9 and 2—:,
which involve very different physics (Sect. 8).

In the course of the investigation of such mesoscopic systems unexpected universal
fluctuations were discovered, which will be addressed in Sect. 9.
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2 Localization in Disordered Electronic Systems

We will first give a rather detailed discussion of the physics of “‘weak localization”*
in disordered electronic systems. (An introduction to this topic in the general
context of the metal-insulator transition in disordered systems can be found in
[13].) The basic ideas [14] may then easily be applied to comprehend localization-
effects involving other wave-like quantities.

Weak Disorder and Weak Localization

Concentrating on the case of weak disorder, we consider (i) non-interacting, quan-
tum mechanical particles, which (ii) are scattered by point-like randomly distributed
scattering centers of equal strength. The scattering in turn leads to a diffusive
motion of the particles. We are then interested in the conductivity o or the dif-
fusion coefficient D of such a disordered system. The disorder is measured by a
dimensionless parameter ¥ with ¥ ~ n; V2, i.e. v is essentially given by the impurity
concentration n; and the scattering strength V2 of the scatterers. The case of very
weak disorder corresponds to y < 1. The starting point is the metallic regime, which
is characterized by a finite dc-conductivity

e’n
0o =7 7> (1

where e and m are the charge and the mass of the particles (e.g. non-interacting
electrons), respectively, n is the density and 7 is an average collision time between
successive scatterings; 7 is related to the mean free path £ by & = vg 7 (vg = hkg/m
is the Fermi velocity). The quantity go is often called “Boltzmann-conductivity”,
because Eq. (1) is a simple result of the Boltzmann transport theory.

In the following we want to understand how a small concentration of impurities
affects the metallic behavior.

Weak disorder means that the mean free path £ is much greater than the average
particle distance a = k;.‘ ,i.e. kg2 > 1. We will therefore choose

1
7-7TkFQ (2)

as our (small) perturbation parameter. Starting from the metallic regime we intend
to consider the precursor effects of localization, i.e. the correction 80 to the metal-
lic conductivity

0=09t80, l60l<o,. 3)

These perturbational effects are commonly called “weak localization”. The cor-
rection 60 depends on external parameters like the system’s size L, the frequency
w, the temperature T, or the magnetic field H. '

* The discussion follows the presentation of Altshuler, Aronov, Khmelnitskii, and Larkin
[10}; see also [11].
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The preceding discussion was limited to the so-called “normal” scattering, i.e.
scattering by non-magnetic impurities. Therefore the spin of the particles was un-
important. However, in the case that the impurities carry a magnetic moment, spin
scattering will occur, causing the spin of the particles to flip. Therefore the particles
experience something similar to a fluctuating magnetic field. Time reversal in-
variance is then destroyed, and the weak-localization picture is no longer valid.
Field theoretical investigations {18, 19] have shown that even in this new situation
the conductivity acquires a logarithmic correction in d =2. However, now the
prefactor goes like v? instead of 7, i.e. the correction is even smaller than in the
case of normal scattering. It has not yet been possible to understand this result by
means of the simple probability arguments used before in the case of nommal
scattering.

Impurities with a heavy nucleus lead to yet another type of scattering, namely
to spin-orbit scattering of the particles. Theoretical investigations [19, 20] have
again predicted a logarithmic correction for ¢ — but this time with a positive sign.
The conductivity therefore increases with decreasing temperature. A simple quan-
tum mechanical explanation of this effect in terms of multiple scattering (time re-
versal invariance holds in this case) and experimental results fully supporting these
findings have been given by Bergmann [12].

Beyond weak localization

The intuitive picture of constructive interference of waves, propagating on time
reversed paths, only allows for an estimation of the lowest order correction to the
conductivity or the diffusion coefficient of the metallic regime. Higher order
corrections or the Anderson transition itself cannot be studied in this way. For this
purpose more powerful theoretical methods have to be employed.

It was Wegner [18, 21] who first realized that Anderson localization shared many
properties with the problem of critical phenomena and who accomplished a map-
ping to a suitable field theoretical model. This approach [18, 22, 23] as well as
other field theoretical methods [19, 24], allowed for conclusions about localization
and the Anderson transition in various physical situations unrivaled by any other
approach. This is particularly true for the case of localization in the presence of
spin-flip scattering or magnetic fields, where localization in d =2 was also pre-
dicted to occur as in the case of normal impurity scattering, although the under-
lying physics is necessarily quite different (see the discussion above).

A different approach to Anderson localization is due to Abrahams, Anderson,
Licciardello, and Ramakrishnan [6]. They constructed a one-parameter scaling
theory for the conductance g of a d-dimensional system in connection with the
first diagrammatic, perturbative calculation of 80 in Eq. (3). Assuming g to be
the only relevant parameter these authors constructed a flow diagram which led
to the conclusion that for d <2 all states of a disordered system are localized,
irrespective of the strength of disorder, while for d > 2 an Anderson transition
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occurs at a finite critical disorder v.. For ¥ <1, the system is metallic, for v > v,
it is insulating.

Yet another approach to the Anderson transition is based on a self-consistent
calculation of the diffusion coefficient D (w) or conductivity ¢ (w). Within this
concept, which was first introduced by Gotze [25, 26}, one attempts to express
o(w) or D(w) by means of a non-trivial, generally approximate relation which
itself involves this quantity. So one wants to find an equation of the form

D(w) = #[D(w)]. (10)

whose “self-consistent” solution then yields D(w) for all w and all disorder-
parameters . For this to be successful it is necessary to start from known limiting
cases (e.g. the perturbation theory for v < 1) such that the theory can be an-
chored to an exact result [27, 28]. The self-consistency is then used to go beyond
perturbation theory, i.e. to the transition itself (and even further). It is therefore
used as a substitute for an (untractable) perturbation theory to infinite order.

Since D(w) vanishes at the transition, its inverse Dy/D(w) correspondingly di-
verges at that point.” Within a diagrammatic perturbation theory Vollhardt and
Wolfle {27, 28] showed that a self-consistent calculation of the latter quantity can
be performed by summing up the largest (i.e. most divergent) contributions of
perturbation theory [29]. In this way a self-consistent equation is derived. It has
the simple structure

Do 1 J dK 1
=1+ ,
D(w) mNg J (27)? - iw + D(w)k?

(1

where Do/D (w) is given by the integral over a diffusion pole involving the dif-
fusion coefficient D (w) rather than the diffusion constant Dy. (Eq. (11) actually
involves the particle-particle diffusion pole obtained from the “maximally crossed
diagrams™ [6...8], which, in the case of time reversal invariance, can be related
to the diffusion coefficient D (w) of particle-hole diffusion.) This relation can also
be derived by other methods [30...32]. Its solution can easily be obtained: One
finds that for d <2 the dc-conductivity o(0) is always zero, irrespective of how
small the disorder is (insulating behavior). However, in dimension d = 2 the locali-
zation length & is exponentially large for y < 1[27, 28]: £ ~exp(1/27). Ford > 2
there exists a critical value of the disorder below which ¢(0) is finite (metallic
regime), while for larger values it vanishes (insulating regime). Since the limit
w —> 0 can be explicitly performed within this theory, one obtains results which
go beyond the range of applicability of the scaling theory described above. Besides
that one obtains complete agreement [33] with the results of scaling theory.

A field theoretical analysis of the problem by Hikami [24], which involves the
solution of the Callan-Simanzyk equation, yields exactly the same relation for
D(w) as in Eq. (11). Hence, if perturbation theory is valid at all, Eq. (11) is an
exact relation at least close to two dimensions.
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Most recently a full renormalization-group treatment of the density-density cor-
relation function by Abrahams and Lee [34] yielded the scaling behavior of the dif-
fusion coefficient D (w,q). For vg|ql < w the result is again identical to the self-
consistent equation (11).

3 Weak Localization of Light (Photons)

By 1983 the interpretation of weak localization in disordered electronic systems
as an interference phenomenon of waves had been widely recognized. On the other
hand, a very similar effect had already been discussed much earlier by Watson [35]
and de Wolf [36] with respect to scattering of electromagnetic waves from fluctua-
tions in a plasma and general turbulent media, respectively. These investigations
were related to questions concerning radar scattering from ionized or neutral gases,
which, for example, arise in the remote probing of the atmosphere. Since they
originated in a subject very different from condensed matter physics, these findings
went unnoticed by the disorder community. In fact, in 1984 Kuga and Ishimaru
[37] and Tsang and Ishimaru [38] presented experimental and theoretical results,
respectively, for the scattering of electromagnetic waves from a random distribution
of discrete scatters, which clearly showed an enhancement in backscattering. The
authors [38] used second-order multiple scattering theory to explain their results.
Therefore their interpretation was based on the same physical idea, i.e. constructive
interference in the backward direction due to multiple scattering, which had already
been identified as the cause for weak localization in disordered systems. A con-
nection with electron localization was not made. The same interference effects
involving light where simultaneously discussed by Golubentsev [39].

It was Anderson [15] who discussed the phenomenon of localization from a general
point of view and who explicitly addressed the question of classical wave localiza-
tion.

Inspired by the weak localization effects known from disordered electronic system
van Albada and Lagendijk [40] and Wolf and Maret [41] convincingly showed that
coherent backscattering equally applies to the propagation of light in a disordered
medium. Shining light into a highly concentrated aqueous suspension of sub-micron
size polystyrene spheres, (also used in [37]) these two groups measured the scatter-
ed intensity and found a striking enhancement in the backscattering direction
within a narrow cone. This enhancement comes from the constructive interference
of light-waves travelling on closed, time-reversed paths just as explained in the case
of weak localization. Note that the explicit condition of static disorder necessary
for weak localization is fulfilled even in these experiments, since the thermal mo-
tion in the liquid is much slower than the propagation of the light wave along any
relevant closed path in the medium. Ideally, i.e. assuming isotropic scattering and
scalar waves, the backscattered intensity should be enhanced by the factor of 2
in Eq. (6) relative to the incoherent background. This would require that the
starting and endpoint of the loops really coincide (A =B in Fig. 2). Otherwise
interference cannot be complete, resulting in a reduced enhancement. This effect
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In the case of light the backscattered intensity is polarization dependent [37, 40,
41], i.e. it depends on the relative orientation between incident and reflected
polarization (parallel or perpendicular). Depending on the instrumental profil of
the apparatus an enhancement in the former case of up to 1.96 + 0.02 [44] has
been observed. For perpendicular orientation only smaller enhancements (= 1.3)
have been found. In [43] a maximal enhancement of 2 and = 1.5, respectively,
has been calculated for the two different cases. A detailed theoretical investigation
of the polarization dependence of the backscattering was given by Stephen [45]
and Stephen and Cwilich [46].

Localization effects in light scattering from a disordered solid have also been ob-
served [47, 48). In contrast to a liquid, a rigid disordered medium leads to large-
amplitude fluctuations in the scattered intensity which has to be subtracted (by
ensemble averaging) to reveal the backscattering peak. (In the liquid this is auto-
matically done by the thermal motion of the atoms.) Localization effects caused
by the reflection of light from random gratings [49] or random layered systems
[50] have also been considered. The critical behavior of electromagnetic absorp-
tion, i.e. the “photon mobility edge” was studied within a renormalization group
theory by John [S1].

4 Localization of Acoustic Waves (Phonons) and other Sound

The wave nature of acoustic phenomena may in principle lead to similar localiza-
tion effects in a disordered medium as discussed in the case of electronic transport
or light propagation. On the other hand, as pointed out by Anderson [15], there
will be fewer systems available than in the case of light where localization effects
can actually be expected to be seen. (This is due to the problem of having an
inhomogeneous mixture of two propagating media, where different waves will
be excited within the system; see, however, Sect. 5.) He suggested to use expanded
silica gel filled with a denser liquid to study acoustic localization. Most recently
the observability of acoustical and optical localization was analyzed by Condat and
Kirkpatrick [52]. Using the self-consistent equation (11) of Vollthardt and Wélfle
[27, 28] to investigate the transition to the localized state, they conclude that in
d = 3 acoustic localization will not be observed unless the scatterers are more ef-
ficient than hard spheres. On the other hand the optical localization transition is
found to be not far from the conditions used in the weak localization experi-
ments [37, 40, 41, 47].

A different kind of *“‘acoustic” localization experiment in a one-dimensional system
(where weak localization can never really be observed because there is no true
extended wave behavior) has been reported by He and Maynard [53]. Disorder
was introduced in a wire by either varying the size of periodically positioned
small masses along a wire (alloy-type disorder) or their position itself (liquid-type
disorder). The frequency response of the system, i.¢. of a transverse wave generated
in the wire, was then measured, where an additional electron-phonon interaction
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was simulated by means of a longitudinal strain in the wire. Studying the eigen-
frequencies of the wire extended and localized states were clearly observed.
Concerning theoretical work the study of phonon localization was the first to
follow the respective investigations of electronic systems [54, 55]. Using a field-
theoretical formulation John, Sompolinsky, and Stephen [55] showed that a
“phonon mobility edge” should occur above d = 2. A diagrammatic theory, based
on a weak-localization, i.e. perturbational, approach to the localization of phonons,
was presented by Akkermans and Maynard [56]. Although in spirit and technique
very similar to the corresponding diagrammatic theory of the localization of elec-
trons, there are important differences due to the absence of Fermi-Dirac statistics
and because of the strong frequency dependence of characteristic quantities.

Localization of acoustic (sound) waves in a random array of hard scatterers in
d=1([57] and in d = 2, 3 [58], has also been investigated within the self-consistent
theory, Eq. (11). Agreement with the field-theoretical results [S5] (which were
derived for d = 2 + ¢€) are obtained even in d = 3 where € = 1.

Localization of sound modes different from the conventional acoustical sound
(“first” sound), namely, of “third” sound (i.e. surface modes in a superfluid such
as *He) was also studied [59...61] using the self-consistent theory. It appears
that in such a system the localization length can be continuously varied from
practically infinity to a few millimeters. This would allow for investigations of
localization in d = 2, unfeasible in electronic systems.

5 Other Localizing Media and Waves

Studying localization one usually considers the random scatterer to be uncor-
related. The more complicated situation where wave propagation and localization
takes place in a random potential having a long range correlation has been in-
vestigated by John and Stephen [62]. Using an appropriate field-theoretical model
they again find that for d < 2 all states are localized and that the mobility edge in
d=2+ ¢ is characterized by the same critical exponents as for spatially uncor-
related disorder.

Localization of waves in a fluctuating plasma was studied by Escande and Souil-
lard [63]. They find that, in the absence of dissipation, density fluctuations in a
plasma may lead to exponential localization of electron plasma waves. The cor-
responding localization transition is expected to be easily observable since the
strength of the disorder can be readily varied.

Localization caused by surface roughness has been discussed in the context of
electrons in thin films [64]. A conceptually similar but nonetheless different
effect, namely, localization of surface plasmon polaritons (SPP) and its role in
surface enhanced optical phenomena, was addressed by Arya, Su, and Birman
[65]. After having been excited by a photon the SPP can propagate parallel to
the metal surface but will be scattered elastically by spatial fluctuations in the
dielectric function near the otherwise smooth metal-vacuum interface. Using the
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self-consistent theory of Vollhardt and Wolfle {27, 28] an equation for the re-
normalized diffusion coefficient is derived, showing that localization effects occur
over a certain frequency range, in particular, if radiation losses are small.

The same approach has been employed to study scalar wave localization in a two-
component composite [66] (see the remarks made in the context of acoustic ef-
fects). Localization is predicted if the impedance contrast of the medium (i.e. the
ratio of the respective indices of refraction) exceeds a certain minimum value.

6 Localization and Magnetic Fields

In the case of normal impurity scattering weak localization is due to the construc-
tive interference of waves on time-reversed paths. Therefore this effect is very
sensitive to any kind of disturbance of time reversal invariance of the momentum
states K and —K. Such a perturbation is, for example, caused by a magnetic field.
In its presence a state is no longer characterized by a momentum k, but rather by
the electromagnetic momentum K — 2eA. Here, A is the vector potential and the
factor 2e (instead of simply e) is due to the correlation of two particles just as in
superconductivity. If we now let k go into -k, the momentum states, i.e. the
paths 1 and 2 in Fig. 2, are no longer equivalent. Mathematically speaking this is a
consequence of the fact that now the amplitudes A; and A, carry field dependent
phase factors [10, 11], determined by the magnetic flux & =¢dl-A, such that
AL~ Ae® A, > Ae ¥ where

¢ =2n hefe - (14)
The magnetic flux is given by ® = H-S, where H is the magnetic field and S is the
area of the closed path in Fig. 2 (¢ = velocity of light). Since the motion of the par-
ticles is diffusive, S is given by S =Dgt. The return probability Wy of a particle
to its starting point in the presence of a magnetic field is again given by Eq. (5).
One therefore obtains

2CHDOt] (15)

= 2 +
Wy = 21A] [1 cos =

The conductivity correction in the presence of a magnetic field, 6 (H), is deter-
mined by the retumn probability Wy . The total change of the conductivity due to a
magnetic field, Ag(H)=80(H)-80(0), therefore depends on the probability
difference W =Wy — Wy - o, such that

vp ARt 2eHDot 1}

Ao(H) = J'dt(D )d/2 cos ——

(16)
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closely related to similar investigations of superconducting networks [76], where
fascinating physics is known to occur (frustration, fractional number of flux quanta
per unit cell of the network, fractal fine structure of the upper critical field line
due to interference effects between adjacent loops, etc.). In contrast, static proper-
ties of normal-conducting networks do not show such a fine structure because of
an inherent regularization of the otherwise complicated spectrum [74, 75].

8 hc/e Versus hc/2e Oscillations

Both from an experimental and theoretical point of view a single ring should be
about the simplest geometry to observe the above-mentioned oscillations in the
magnetoresistance. Experimentally, the opposite was true since, at first, the ®,-
oscillations could not be found. Later, both 2¢&, = hc/e and ®4 = he/2e-oscillations
were detected in individual, micron size, normal metal rings [77]. The different
temperature and field dependence clearly distinguishes between the two effects
and their physical origin. At low fields the localization induced hc/2c-effect is seen,
while at higher fields, when localization is suppressed, the hc/e-effect is visible.
Most recently both types of oscillations were also measured in samples made up of
N such rings in series [78]. It was found that, on averaging, the amplitude of the
he/e oscillations showed a 1/5/N decrease, while the hc/2e-effect was independent
of N. This has also been verified theoretically [79]. It clarifies the role of ensemble
averaging in calculating corrections to the conductivity. This kind of averaging is
canonically employed in the framework of weak localization (yielding hc/2e-
oscillations) but not in the calculation of the transmission coefficient [80] in
metal rings, where only the hc/e-effect is found. So, to obtain the hc/2e-effect,
ensemble averaging is necessary.

9 Mesoscopic Systems and Universal Fluctuations

As an unexpected byproduct, the investigations of quantum oscillations in (sub-)
micron structures (“mesoscopic” systems) led to the discovery of anomalously
large, universal fluctuations [81...83]. These fluctuations, known from experi-
ment [84] and numerical simulations [85], are not due to time dependent noise
or finite-size effects. They are a consequence of quantum interference, are re-
producible and occur if the temperature is low enough such that the inelastic
diffusion length L;, exceeds the sample dimension. In this case the conductance
of a small sample shows fluctuations as a function of magnetic field, chemical
potential, or impurity configuration whose r.m.. value is approximately e?/h,
independent of sample size, i.e. is universal. The effect depends only weakly on
dimensionality and the strength of (weak) disorder and is, of course, much larger
than expected classically. It has clearly been observed in the experiment [86].
As discussed by Lee and Stone [82] this behavior is compatible with one-parameter
scaling of Anderson localization [6] where in the scaling regime the conductance
is essentially length independent and of order e?/h such that its fluctuations must
also be large and scale independent. The quantum interference of randomly dif-
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fusing electrons, which leads to the large fluctuations, implies an extraordinarily
large sensitivity of the conductance on the impurity configuration. Indeed, the
displacement of a single impurity by only Ag (de Broglie wave length) affects es-
sentially all quantum mechanical paths and hence changes the conductance by a
universal, i.e. sample size independent amount [87, 88)]. There are many other
unusual phenomena (e.g. asymmetries [89] in the magnetoconductance {90],
ability to rectify alternating currents [89]). A comprehensive discussion of the ef-
fects of finite temperatures, interactions, and magnetic fields on the universal
conductance fluctuations, as well as of the physical assumptions underlying the
ergodic hypothesis has been presented by Lee, Stone, and Fukuyama [91], who
also relate theory to experiment.
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