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density of the wave function is larger at the posi-
tions of the second-nearest phosphorus neighbors
than at the positions of the first-nearest neigh-
bors.

The hyperfine interaction determined here for
Pb'+ in both YPO4 and LuPO4 is the largest

ever determined for Pb" in solids, ' and indicates
that these particular orthophosphates have a
strong ionic character. By comparison with the
free atom value of 2.60 cm ', however, ' it is evi-
dent that the wave function is still distorted to a
large extent. Trivalent lead is apparently stabil-
ized in the substitutional rare-earth site by the
solid-state chemical restraints of the host lat-
tice. This situation is similar to the stabiliza-
tion of divalent rare-earth ions in the divalent
alkaline-earth halides. In the present case, how-

ever, no irradiation or electrochemical reduc-
tion w as necessary.
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A diagrammatic theory is presented for the density response function of a system of
independent particles moving in a random potential in terms of a current relaxation ker-
nel M(q, ) (essentially the inverse of the diffusion coefficient). In the presence of time-
reversal invariance, M(q, ~) is shown to have infrared divergencies in d -2 dimensions.
A self-consistent treatment of the divergent terms yields a finite static electric polari-
zability n, a dynamical conductivity a{a)~ ~ ~ (a —0), and a finite localization 1ength in
d~2 for arbitrarily weak disorder.

PACS numbers: 71.55.Jv, 72.60.+g

It is well known that a quantum-mechanical par-
ticle moving in a random potential will be local-
ized either if the potential Quctuations are strong
enough' at a given particle energy or else if the
particle energy is low enough at given disorder, '
giving rise to an Anderson transition. Very re-
cently a number of authors' ' have proposed that
the particles in d ~ 2 dimensions are always lo-
calized, although for weak disorder in d =2 local-
ization is extremely weak. '' ' In this Letter we
want to address this question from the point of
view of a standard diagrammatic analysis.

Rather than studying the localization behavior
of single-particle states, we focus on a directly
measurable physical quantity, the density re-

sponse function X(j,~) (g, wave vector; u, fre-
quency of a density fluctuation). The dynamical
conductivity o (~) and electrical polarizability
ct(~) are obtained by taking the limit

o((u) = —i(uo((u) =e'lim (—i(u/q')y(q, ~),
gmo

where m and m are the number density and the
mass of electrons.

lt is instructive to calculate X(g, ~) from a sim-
ple hydrodynamic model in order to get an idea
of what behavior to expect for small q, ~. By re-
garding the system as a Quid subject to effective
macroscopic forces by the random scatterers,
the local density n(r, t) and current density j(r, t)
obey a continuity equation B,n(r, t) + divj(r, t) =0

842 1980 The American Physical Society



PHYSICAL REVIEW LETTERSVOLUME 45, NUMBER 10
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8, j(r, t) + —V~(r, t)

—j(r, t) —(u,'J'dt'j(r, t') + —Vg'"'.

The first term on the right-hand side of (1) de-
scribes the relaxation of the current density with
a rate 1/7, due to the frictional force the fiuid
experiences while streaming past the scattering
centers. The second term accounts for the re-
storing force felt by the particles in the localized
regime (oscillator frequency ~,). The last term
represents an external chemical potential. Con-
verting the pressure gradient into a density gra-
dient by VP =[n/X (0, 0)]Un, where y (0, 0} is the
(isothermal) static compressibility, the system
of equations is closed. Taking the Fourier trans-
form one finds, for y (q, ~) =6n(q, ~)/6p, '"'(q, ~),

2 /

(u'+ (uM(q, (u) —q'n/my ~(q, 0)

'- ~, y~(q, 0), for ~«M, (2)(u+ iD(q, &u)q'

where we have introduced a complex current re-
laxation kernel M(q, ~) and a generalized diffu-
sion coefficient D(q, cu):

kernel takes the familiar form, M =i/t and v(0)
=cans/m. In the localized regime, however, M
is seen to diverge as —1/&u, leading to a finite
static polar izability a(0) = e'n/rn ~,' and a dynam-
ic conductivity Bea (~) = (e2n/m ~o4v)aP. The lo-
calization length r, may be obtained' via the q-
dependent static (isolated) susceptibility y(q, 0)
=X'(0, 0)[q"./(1 g..)] -..=[./-:X (o, o)] ~

= vz/&u, . It is quite clear that the —1/u& diver
gence of the relaxation kernel M(~) is the signa-
ture of localization in the response-function for-
malism. '

We will now derive (2) in the limit of small q
and ~ from a microscopic theory, including an
explicit expression for M(q, ~) which diverges
for co -0. We then show by using a self-consis-
tent generalization how these give rise to the be-
havior M ~ —1/~ for arbitrarily weak disorder
in d & 2 dimensions.

We consider a system of independent electrons
at zero temperature [Fermi momentum and ener-
gy pF and E~, density of states, n(E)] interacting
with randomly distributed scattering centers [den-
sity, n„' Fourier transform of scattering poten-
tial, V(q)]. y(q, co) can be expressed in terms of
impurity averages of pairs of retarded and ad-
vanced single-particle Green's function G~' "(p,
p

i .E) as10,11

2 COO . g
M(q, (u) = —— ' =i

T (d mx D(qq N)
y, (q, &u) =~ Z Rp p. (q, (u)+n(E, )+ O(~),

P~P

(4)

To be general we here allow for a q dependence
of M and y(~=0).

In the nonlocalized regime, characterized by a
vanishing restoring force (~o =0), the relaxation

where R&,z (q, &u) =(- 1/27Ti)(G~(p+, p+', E~+~)
xG (p, p ';E~)&;~p and p, =p+q/2, etc. Rp ~.(q,
~) obeys the generalized kinetic equation' (laethe-
Salpeter equation)

(~-p q/m-&;. (E, +~)+&;. (EF)}R;,;.(q, ~)=~G,[(1/2~i)6;;, -p;„U;;„(q,&)R;. ;,(q, &)], (5)

where b, G~ =G~, (E+ ~) —G~ "(E). Here G~ '"=(E -p'/2m —Z-"' (E)} ' is the averaged single-parti-
cle Green's function, Z is the self-energy and UP P. is the irreducible vertex.

Summing (6) and p and p', one finds the analog of the continuity equation (1),
(u Q R- ~ —q Q (p q/m)R-- (q (u) = -n(E, ) +O (~). (6)

Pep P~P

In deriving (6) we have made use of the Ward identity

Zp (E+~) -Qz "(E)=Q-.Uz z.(q, cu)&G~.

which may be proven for each diagram observing the property

Gj "G ' ' G„-G G G —6," G„,"AG„+G," ~ ~ ~ G 2"&G,G +

The dependence of Rp~. on ~p~ is dominated by the peak structure of AG~ at ~p( ~p„. Expanding the
angular variables keeping only l = 0 and I = 1 terms, as

p-„,R--,= —[2vin(E, )] 'sG~ E (1+d(p.q)(p".q)/pF')}Rp-p ~

P~P
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and again observing (7) one finds the "current relaxation equation"

[(u+M(q, u))] Z (p.q/m)Rp p (q, cu) —q(2E/md) Zap p (q, ( ) =0.
P~P P P

Equations (6) and (8) together with (4) yield g(q, ~) as given by the phenomenological theory, Eq. (2).
The current relaxation kernel M(q, &u) is found to be given by

M(q, ~) =2zy+[id/2~n(E, )p,'] Z(p. q)~G, U-, -, .(q, ~)~G, .(p' q)
P ~ P

with

(9)

y=lm~, ,"(E,) =~n(E,)n; J(«-, /4~) I &(pF-pF') I'.
Note that Z" ~ are smooth functions of the coupling constant and therefore can be approximated by the
lowest-order expression.

Substituting the bare vertex U'(p —p') =n,
I V(p —p') I' in place of U~ p. in (9), one recovers the well-

known result of weak-coupling transport theory,

M(q, ~)=i/~=in, gp, 2«(E, -p"/2m)
I V(p, -p, ') I'[I-(p p )].

M (q ~) = — U~ . = —F (cu) d=1 2, as w-0,d ~ q'+ (k ~ q)' q' i
p

2 0 iD y2 2p
2 7 d t

where E,(&u) = (2/m)(i/&ur)'~' and E,(~) = (1/27t'E7) In(1/urT) (neglecting the momentum dependence of U,).
This divergence appears to be the one previously found within a mode-coupling approximation for

M(q, e). A similar divergence occurs in the q&0 current correlation function. Moreover we can
prove that the diffusion pole never gives rise to any divergent contribution for M(0, v).

(10)

Let us now turn to a discussion of infrared divergent contributions to UP P
~ and M, with the eventual

goal to explaining a behavior of M~ -I/ur. The natural way in which infrared singularities may enter
perturbation theory is via the singular nature of the density propagator [cf.(2) J, which is a conse-
quence of particle conservation. Summing up the particle-hole ladder diagrams [Fig. 1(a)] we obtain
a, (bare) diffusion propagator I"'(q, ~) = 2iyU, /(&u+ iD,q') (q, ~ small), where D, =27E/md is the bare
diffusion constant. Note that the integral on q of I (q, z) diverges in the limit &u —0 in d ~ 2 dimensions.
In Fig. 1(b) the leading contribution (in term of y/E) of this type of divergence to the irreducible vertex
part Uz ~ is shown, obtained by adding vertex corrections to F . (The double counting of the lowest-
order crossed diagram is of no consequence for the following). Substituting this into (9) and expanding
in q and k, one finds the following divergent contribution to M(q, a):
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FIG. 1. (a) The diffusion propagator I', i.e. , the sum of particle-hole ladder diagrams; (b) the leading diagrams
of the irreducible vertex U& P~ with respect to the divergence of I" for -0; (c) A, the sum of maximally
crossed diagrams.
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There is, however, a further possibility of infrared divergencies in M even at q =0, which has been
noted first by Abrahams et al. : in the presence of time-reversal invariance the diffusion pole is car-
ried over to the particle-particle channel, giving rise to a singular structure

Ap p o(q, w) = 2iyUO/[++ iDO(p+p')']

for p'= —p (2k p scattering), where A' is the sum of the maximally crossed diagrams [Fig. 1(c)J. Since
the diagrams of A are particle-hole irreducible, they contribute to Up &, and hence M, yielding a
divergent contribution even at q=0,

M'~p(0, &u) = -2UoZ(1/a+i Dok') =(i/T)E~(u), as u-0.
k

The divergence is removed by the time-reversal invariance breaking fields, such as generated by spin-
flip scattering. "

The result (10) and (11) is only meaningful as long as u is not too small. Since according to (3) the
diffusion coefficient D is related to M by D(q, &o) = Do[(i/T)/M(q, &o) J it is not justified to keep the diffu-
sion constant D, in (10) and (11) fixed if M diverges. Replacing D, in (10) and (11) by D(0, ~) a self-
consistent equation for M(0, ~) is obtained:

2 1
(12)

Here we have introduced an upper cutoff A, of the
order of the Fermi momentum p p and a, time-
rever sal-invariance-breaking term i/7', (T,
spin-flip scattering time). The replacement D,
-D in (12) is justified because of the identity
satisfied by the complete vertex function

Fp, p'(q) I (p-p'+q)/2, (p'-p+q)/2(p+p )

in the case of time-reversal invariance. The
M(q, (o) of Ref. 6 would correspond to a self-con-
sistent generalization of (10). It has been shown
in Ref. 7 that such a treatment gives rise to diver-
gent contributions to M(q, &u) one order of U,
smaller than the one in (12). We have identified
these divergencies in terms of diagrams but are
able to show' that these are cancelled by similar
diagrams which are, however, not generated by
the self -consistent generalization.

Let us now discuss the self-consistent solution
of (12). Ind&2 dimensions (12) has the familiar
solution M(0, 0) =i/T in the limit of small impurity
concentration. In d - 2, if time-reversal invari-
ance (obtained formally by putting 1/T, =0) is as-
sumed, M diverges in the limit &-0 as seen
from the% integral in (12). The self-consistent
solution has indeed the form M(0, 0) =i/r —&u,'/(o
as required for a localized solution. Here +,
= (~/2)'E p'A, ' for d =1 and (d,' =2Ep'x„'exp(- I/&)
for d = 2, where A = n, n/V(q =0)/E F) ' is a dimen-
sionless coupling parameter and x, =—(k,/PF) is a
cutoff parameter. The d =1 result agrees with
the exact solution"'" for the polarizability a(0)

apart from a factor" of t;(3)= 1.20 and for the dy-
namic conductivity as far as the coupling constant
dependence is concerned (the level repulsion ef-
fect giving rise to a (In(o) "factor in o((o) is not
obtained by our present theory). In d =2, &o, is
seen to become exponentially small for small
coupling A. , giving rise to an extremely large po-
larizability n and localization length r,

The effects of inelastic scattering at finite tem-
peratures may be qualitatively incorporated in
our theory by replacing &u by (o +i/r;„, (, where
7;„,& is inelastic collision time. The leading-or-
der correction to the weak coupling result M=i/~
is In(~;„,&) (d =2) and (r;„,&)'/2 (d =1) temperature
dependence in the low-T resistance of a dirty
metal film or wire. Such effects seem to have
been observed"'" recently and have been inter-
preted" in terms of the 2kF mechanism.

Further details on this work will be published
elsewhere. '
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