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Gutzwiller-Hubbard lattice-gas model with variable density: Application to normal liquid He
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The results of the Gutzwiller approach to a Hubbard lattice-gas model with a variable density of
particles is used to describe the pressure dependence of thermodynamic properties of the ground state
of normal liquid 'He. The molar volume of the liquid is given by that of the underlying lattice and
the filling factor n = 1 —5 of the band, where 6 describes the deviation from half-filling. If the lattice
is taken as incompressible, one finds that there exists a critical pressure at which a transition to a lo-

calized state occurs. The transition is accompanied by a disappearance of 6, i.e., the transition only
takes place at exactly half-filling. As the transition is approached, 5 and the density of doubly occu-
pied sites are found to scale. The pressure dependence of the effective mass, the spin susceptibility
and the compressibility is calculated. In a second model, the lattice is assumed to be compressible,
shifting the critical pressure to much higher values. The on-site repulsion U is related to the micro-
scopic soft-core potential f0(r), which allows one to calculate the pressure dependence of the effective

mass and the spin susceptibility. The absence of a localization transition for pressures of the order of
the melting pressure of 'He leads to a smooth pressure dependence of the calculated quantities which
are qualitatively borne out by experiment.

INTRODUCTION

Liquid He is a strongly correlated Fermi system '

which in several respects may be considered the prototype
of a Fermi liquid. This neutral, isotropic, and clean
high-density system consists of spherical, hence structure-
less, atoms which interact via a strong hard-core (i.e.,
short-range) repulsion and a weak van der Waals attrac-
tion.

Recently, the interest in strongly correlated Fermi sys-
tems with a strong short-range repulsion, which had pre-
viously focused on the physics of liquid He and neutron
stars, has further increased owing to the unusual proper-
ties of the so-called "heavy-fermion systems. " These
material are characterized by a very high effective mass
rn, a strongly enhanced spin susceptibility X„and a Wil-
son ration R ~X, /m* which is not much different from
that of a noninteracting system. These properties of
heavy-fermion systems are generally believed to be due to
the almost-localized f electrons of the rare-earth or ac-
tinide components in the heavy-fermion compounds,
which experience a strong intra-atomic repulsion and
which may hybridize with the spd conduction electrons.

Yet another example of a strongly correlated Fermi sys-
tem with apparently similar features is that of electrons in
disordered systems close to the metal-insulator transi-
tion.

In view of the fact that both normal-liquid and
superfluid He (Refs. 9—13) have been the subject of inten-

sive investigation over the past decade, it is only natural
that He has been used as a testing ground for concepts
dealing with strongly correlated Fermi systems. '

Microscopically, a general property of the strong short-
range repulsion seems to be a suppression of charge Auc-
tuations and an enhancement of (local) spin fluctuations.
The latter degrees of freedom are of low energy such that
the spin entropy will appear already at a temperature To
much lower than the (renormalized) degeneracy tempera-
ture TF*. Phenomenologically, a unifying feature enters
via the Fermi-liquid behavior, which characterizes the
low-temperature thermodynamic properties for T & To. '

The overall question then arises of how a strong, short-
range repulsion may lead to a large effective mass, a large
Pauli spin susceptibility, a Wilson ratio of order unity,
and a large Fermi liquid parameter I'0, which in the case
of He (where Fo »F', ) implies a small compressibility.

As first observed by Anderson and Brinkman, " the
Gutzwiller variational approach' ' to the Hubbard mod-
el, '"' ' obtained by Brinkman and Rice' ' for the
metal-insulator transition in a half-fi1led band, yields re-
sults in qualitative agreement with the properties of nor-
mal liquid He. A detailed discussion of this lattice-gas
model and of the concept of an almost localized Fermi
liquid has been given by Vollhardt. The lattice-gas
model stresses the importance of the fact that He atoms
want to stay well separated so as to avoid the mutual and
short-ranged interaction between the hard cores. Within
such a picture the large effective mass of the He quasi-
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particles and the small compressibility of the liquid, i.e.,
the largeness of Fo and F], can be understood in a natural
way.

In the model the hard-core repulsion is described by an
interaction which only acts on the same lattice site and if
the particles have opposite spin. The effective Hamiltoni-
an has the form

H=g gt;, c; c, +Urn;„n;, .

Here the first term represents the kinetic energy, where t,j
is a (nearest-neighbor) hopping constant for i &j and
c;,c; are the usual fermion creation and destruction
operators for particles with spin o. at a site i. This term is
quantum mechanical in origin. The second term de-
scribes an on-site interaction, where U is an effective in-
teraction constant and n; =c, c; are density operators.
This lattice model, generally referred to as the Hubbard
model, ' ' ' was originally introduced to treat electronic
correlations and magnetic ordering in narrow-band elec-
tron systems where the Coulomb interaction could be as-
sumed to be strongly screened. Note, that in the case of a
liquid like He, the existence of a lattice (whose actual
coordination should not, of course, inhuence the results
for the physical properties of the liquid very strongly)
serves for two purposes: (i) it describes the well-known
short-range, solidlike correlations of the liquid, and (ii) it
provides a finite probability for interactions. In this way
the finite size of the He atoms is simulated. Further-
more, in the original version of the model with equal
numbers of particles and lattice sites, the lattice mimics an
attractive interaction not present in (1).

In fact, the hard cores of the He atoms do not allow
two atoms to be strictly at the same lattice site, in contrast
to the case of pointlike electrons. We therefore consider
the atoms to be distributed in a regular array of cells
which, in the case of a solid, are singly occupied. There
will be a finite probability for double occupancy of a given
cell. This would correspond to an interstitial in the lat-
tice, which, in turn, is associated with the existence of a
vacancy. It is then natural to identify the energy of for-
mation of an interstitial with the on-site repulsion U in
the model. In the following we will nonetheless use the
expression "doubly occupied site" when we actually mean
"doubly occupied cell."

A variational solution for the lattice model (1) was pro-
posed by Gutzwiller. ' ' He constructed a variational
wave function

~f&=/ [1—(1—g)n n ]
~

$0&

n =n)+ng

m =n, —n, ,

(4a)

(4b)

where m measures the magnetization of the system and
n =1—6, such that 6 denotes the deviation from the
half-filled-band case.

The ground-state energy per lattice site, of the Hubbard
model in the Gutzwiller approximation, Ezz ——EGz/L, of
the system, is found to be given by'

EG~ ——gq E +Ud+ n. —
2

Here,

E = g E(k) &0
k

I
& ~Fa

is the average energy of the particles with spin o. in the
uncorrelated state, with kF as the respective Fermi
momentum and

E(k)=L ' g t~ exp[ik (R; —Ri)] ..

reduced. The reduction factor g is supposed to take
both of these features into account.

Using the wave function '

g& the ground-state energy
has to be calculated from (1). To this end, Gutzwiller' ''
introduced an approximation to evaluate the necessary
matrix elements as well as the norm (f

~
P&. This ap-

proximation is equivalent to the calculation of the classi-
cal, statistical weighting of different configurations of par-
ticles (neglect of relative phases of configurations). It
focuses on configurations of spins with different number
of doubly occupied sites. Hence, while the interaction
term in (1) may be treated exactly using the variational
wave function

~
g&, the kinetic energy is approximated by

neglecting spatial correlations. For a detailed discussion
see Ref. 20. The basic idea behind the choice of the varia-
tional wave function (2) and the simple approximation for
the ground-state energy is, in fact, very close to that of the
Jastrow wave function and the correlated basis function
approach by Feenberg. ' Most recently, it has been
shown that the result of the Gutzwiller approximation
may also be obtained within a saddle-point approximation
to a suitably chosen functional integral representation of
the Hubbard model.

The spin configurations used in the above-mentioned
approximation are determined by L, N„N „and D, the
numbers of lattice sites, up spins, down spins, and doubly
occupied sites, respectively (n =N /L, d =D/L). In
general, n, &n, and we introduce

given by that of the noninteracting system (i.e., a Slater
determinant)

~
Po&, but with a reduced amplitude. Here,

g is a variational parameter and D =g; n, , n;, is a number
operator counting the number D of doubly occupied sites
on the lattice. Clearly, D will decrease for increasing in-
teraction strength U in order to reduce the overall interac-
tion energy. For this to occur the hopping probability,
i.e., the quantum-mechanical kinetic energy, also has to be

We have added the third term on the right-hand side (rhs)
of (5) to make Eo~ positive. It represents an energy shift
of the ground-state energy which is independent of the in-
teraction. Assuming a band of energy states of total
width 6, the shift implies that the energy is measured
from the lower band edge rather than from the Fermi en-
ergy. In this way one also obtains the correct low-density
limit (n ~0) of the energy for the noninteracting case.
The quantities q represent the respective discontinuities



GUTZWILLER-HUBBARD LATTICE-GAS MODEL WITH. . . 6705

Note that the Gutzwiller approximation has a very attrac-
tive feature: it obeys Luttinger's theorem concerning the
conservation of the Fermi-surface volume. Equation (5)
for the ground-state energy still has to be minimized with
respect to d to determine the optimal number of doubly
occupied sites.

In the case of a half-filled, nonmagnetic band (N,
=N, =L/2, i.e., m =6=0), Eq. (5) describes a transition
at a finite interaction strength U = U, (where U, =8

~
Fp

and Ep
——E, +E, ) at which the lattice sites become singly

occupied (d =0). ' '' At this point the kinetic energy
goes to zero (since q, =q, =0) and hence the system is lo-
calized (infinite effective mass). As discussed by Ander-
son and Brinkman" and Vollhardt, the results for the
effective mass, the spin susceptibility, and the compressi-
bility closely resemble the experimentally measured be-
havior of these quantities for normal liquid He in the
ground state. In fact, the results may be understood
within the concept of a simplified Landau theory. The
effective mass m * and the Landau parameters Fo and Fo
are thus obtained as'

1

1 —U
(8)

1Fo= —p (1+U)'
(9)

1F' =p —1
(1—U)

(10)

where U= U/U, and p =1. For U~1 the effective mass
and Fo diverge, while Fo saturates at a small, negative
value (Fp= ——,'). Hence, in the case of He, where the
effective mass is considerably enhanced over its bare value
(2.76&m*/m &5.76), the dimensionless interaction pa-
rameter is always close to unity, i.e., He is always close
to the localization transition ("almost-localized" Fermi
liquid). Eliminating the interaction parameter U in favor
of the pressure-dependent effective mass, (8), allows one to
calculate the pressure dependence of Fo and Fo. One
finds that, for increasing pressure Fo approaches the
pressure-independent value Fo ———,', while Fo grows
strongly. In particular, the pressure independence of Fo
implies that the pressure dependence of the spin suscepti-
bility

X, =ppN(0)
1+Fo

[N(0) is the density of states at the Fermi level for both
spin projections of a Fermi gas with bare mass] comes al-
most entirely from that of the effective mass m *. Hence
the Wilson ratio

in the single-particle occupation probability at the Fermi
surface of the correlated system and are given by'

1/2 2

q =2, i/d+6+ d-1 —5+m —2d & 1 —5—m —2d

1 —($—m)~ 1 —5+m —2d

7, /[ppN (0)(m '/m)] =(1+Fp) '-4
is also essentially pressure independent. This shows that
the strong enhancement of the spin susceptibility over its
Fermi-gas value is not due to an incipient ferromagnetic
transition (Fp~ —1) as anticipated by paramagnon
theory. The results for Fo and Fo are borne out by ex-
periment ' qualitatively so in the case of Fp (i.e., the
compressibility), but even quantitatively for Fp (i.e., the
spin susceptibility). It tells us that the simple lattice
Hamiltonian (1) already describes essential features of the
interaction within liquid He correctly. In this sense stat-
ic properties of He may be understood to be largely
determined by the tendency of the hard cores of the parti-
cles to keep well separated, i.e., by an incipient localiza-
tion of the particles.

Using a totally different approach, qualitatively identi-
cal results have been obtained by Pfitzner and Wolfle.
They showed that the Fermi-liquid interaction and the
quasiparticle scattering amplitude for an almost-localized
Fermi liquid tend to a universal limit characterized by
large values of Fo and F i and small values of Fo, F], and
the higher l components. Their arguments are based on a
diagrammatic approach involving the two-particle vertex
function in the particle-hole and particle-particle channels.
Similar results are obtained within a refined version of the
so-called induced interaction model of Babu and
Brown. Most recently, Baeriswyl et al. , using sum
rules on charge and spin conductivities, showed that al-
most localized Fermi liquids in a real lattice have small
values of F&'.

An extension of the lattice-gas model for He to finite
temperatures was discussed by Seiler et al. ' Within the
model three different temperature regimes may be dis-
tinguished: (i) for T «Tz the system is a Fermi liquid,
(ii) for TF & T & U it shows classical behavior, but is still
strongly correlated, while (iii) for T && U the system
behaves free-particle-like. In the second temperature re-
gime the entropy of the almost-localized fermions is
bounded by R ln2/ He atom, because in this temperature
range essentially only singly occupied lattice sites exist.
The existence of such a bound had already been assumed
much earlier by Goldstein (see also Ref. 33). Within
this framework the crossover from Fermi liquid to classi-
cal behavior at T-Tz has been described, which other-
wise is outside the scope of Fermi-liquid theory itself. A
good qualitative agreement with the measured specific
heat, spin susceptibility, and thermal-expansion coefficient
is obtained. In particular, it is found that the anomalous
behavior of the specific heat, i.e., the sharp kink at about
100 mK and the plateaulike structure above this tempera-
ture, is caused by the bound of R ln2 on the entropy.

VARIABLE FILLING FACTOR

The results of the original lattice-gas approach to He
(Refs. 11 and 20) were based on the assumption of a half-
filled band (5=0). There remained the question of the
validity of this assumption, even though the finding of the
incipient localization, i.e., the vicinity of the solid phase,
where a half-filled band is formed anyhow, makes this as-
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sumption appear reasonable.
In the following we will study the situation where the

number of particles is not necessarily equal to the number
of lattice sites, i.e., n =1—6(1. For this purpose 6, the
deviation from half-filling, will be considered as a variable
itself. Consequently, we need a new equation to deter-
mine this variable. It is provided by an equation for the
pressure, to be discussed below. We want to understand
the behavior of 6 when the external pressure P and/or the
interaction U is increased.

We write

THE PRESSURE

Etot =EGH +Eres (14)

Using the volume dependence of the ground state ener-

gy (5) introduced via (13), we may now define an associat-
ed pressure. For this we bear in mind that (5) does not
represent the total ground-state energy of the lattice-gas
model, since (1) and (5) neither contain an explicit attrac-
tive part necessary to hold the system together, nor any
realistic repulsive part. Hence, the total energy per lattice
site, E„„may be written as

X cVV
1 —6= —=—

V L

Us

(12a)

(12b)

where E„, represents the residual contributions to the
ground-state energy per lattice site not included in (1)~

Taking the definition of the external pressure P,
P = —(BE„,/BV)~ „„„,we obtain

where v = V/N is the volume per particle in the liquid
and u, = V/L is the volume per lattice site. [In the rest of
the paper U and U,, will be given as molar volumes in units
of cm; note that U translates into an actual volume per
particle, a (A ), by use of the Avogadro number N~:
u (cm') =" 0.6022a (A ). ]

In the lattice model the volume per lattice site,
U, = V/L, is taken as the specific volume of the solid itself.
The solid is then defined by d =0, 6=0, i.e., by single oc-
cupancy of every lattice site (half-filling). The liquid is
characterized by 6 & 0, i.e. , a finite number of unoccupied
sites on the lattice. In this way the larger molar volume
of the liquid as compared to the solid is naturally taken
into account: for 6 ~ 0 one has v ~ U, . The molar volume
of the liquid is then given in terms of the volume of the
solid and the finite filling factor by

P =PGH+P„,

aL
PGH EGH av

aEGH
(16)

and

1 aEGH
EGH ( u, us «6)av ' ", x a. Us «6

aE,H a,
„av

where PoH ———(BE&H/BV)~ and P„,= —(BE„„/BV)z is
the pressure due to these residual interactions. In general,
EGH ——EGHL is a function of U, U„and 6 such that

Us
(13)

aEG„
a6

a6
UU, aV

Since the volume U is a function of the external pressure
the volume of the solid, U„and the filling factor, will also
be pressure dependent. At this point the lattice-gas ap-
proach may be pursued in two diff'erent ways: the lattice
itself may be assumed to be incompressible (u, =const). In
this case an external pressure would only act on the parti-
cles on the lattice while the lattice spacing stays constant.
Then the pressure dependence of U comes entirely from
that of the filling factor, i.e., u, =const, 6=6(P). Alterna-
tively, and more realistically, the lattice (i.e., the solid)
may be treated as compressible itself. In this case both U,

and 6 are functions of the external pressure. We note that
experimentally the transition from the liquid to the solid
occurs via a first-order transition. At the melting pressure
P =34.36 bars, one has u(P )=u =25. 54 cm
and v, (P ) =—v, =24. 23 cm, and hence 6(P ) =—6
=0.0513, showing that at melting pressure the molar
volume of the liquid is about 5% larger than that of the
solid across the transition. So at the transition a volume
reduction occurs. This effect (as, in fact, the first-order
transition itself) is not described in our theory, which is
based on the effective Hamiltonian (1) and which does not
contain a mechanism responsible for the transition to the
solid.

Using (13) we find

aL 1
1 ——'

av U,

aU 1 K

aV I K
(19)

a6
1 ——

av LU
(20)

where

Ks
Us

U

(21a)

1 aUK=-
U ap

(21b)

are the compressibilities of the lattice (i.e., solid) and of
the liquid, respectively.

Combining (15)—(21) leads to an expression for the
external pressure in terms of the volume changes of EGH
and P„,:
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1 Ks BEGH
P = ——1 —— EGH+-(1 —5)

U K 86 v vs

EzH is then given by

EoH ————,
'

I
Eo

I y q [1—(5—om) ]+Ud +2
I
Eo

I
n .

~EGH

BU

Ks

s $ K

~ECH

BU
v, b

+~res (22) (29)

To proceed further we have to (i) obtain an explicit ex-
pression for EGH, (5), in terms of v, v„and 5, (ii) find the
volume dependence of P„„and (iii), in the case of a
compressible lattice, we have to know its compressibility

Point (i), concerning EoH, itself amounts to (a)
evaluating eo, (6), i.e., the average energy of the correlat-
ed system, (b) minimizing EGH with respect to d and, last-
ly, in the case of a compressible lattice, (c), determining
the volume dependence of the interaction U.

In order to evaluate co we need the density of states
due to the motion of the particles on the lattice. This
point has been discussed in detail in Ref. 20. There it was
shown that the results of the Gutzwiller approximation
are largely independent of the actual lattice type used for
the calculation —an important feature for the applicability
of a lattice-gas model to describe a liquid. In fact,
the lattice enters via a dimensionless parameter
p =2

I
eo

I
N(0)v„where N(0) is the density of states

(DOS) at the Fermi surface (in Ref. 20, v, = 1). This pa-
rameter is always close to unity: for a constant DOS,
p =1; for a Hubbard ellipse, p =1.08; and for free fer-
mions, p =1.2. For computational reasons, i.e., to enable
one to calculate analytically, here we will use a constant
DOS. This implies that for the calculation of properties
which are determined by the DOS close to the Fermi en-
ergy, we assume particle-hole symmetry. We have
checked other types of DOS's, finding only (slight) quanti-
tative but not qualitative differences in the final results.

Using a constant DOS of width 6 the average energy of
the uncorrelated system of o. spins with general band
filling n =1—5 and magnetization m is found as

In the nonmagnetic case (m =0, q:—q) we have

EGH —q I
Eo

I
(1 —5')+Ud +2

I
Eo

I
(1—5» (30)

where q
' is the effective mass. In this situation it is very

convenient to introduce a new variable x,

x =&d+5+&d, (31)

while the expression for q is greatly simplified:

(33)

Equation (16) then reduces to

2

EoH —— Eo
I
[(1—5) +(1—x ) ]+U

2x
(34)

Equation (29), in conjunction with (31), may be used to
calculate the spin susceptibility 7„

1 ~ EGH
Y.

p Bm

which is found as

rn =0
(35)

1 2x —x —5
s 4 22IroIv, x —5

(36)

which may be used to replace d in (30). So EoH(d, 5) now
becomes a function of x,5 with

2
2

(32)

& = ——'
I

Eo
I
(1 IIT')—

where

(23) Comparing this result with the expression (11) from
Fermi-liquid theory yields an expression for the Landau
parameter Fo,

p = —5+om,
IEoI =b, /4.

(24)

(25)
m*

Fo = —1+a
m

x —6
1 —x

(37)

In the paramagnetic case

e=e, +E,= —
I

eo
I
(1—5') . (26)

Concerning the actual values of
I

eo
I

and N (0), we
choose the Fermi-gas values

I
&o

I

=
I 5EF EFI—

where we take p =2N(0)
I

eo
I
v, =1.2 as discussed below

Eq. (26).
Returning to the nonmagnetic case (34), we may now

rewrite the equation for the pressure, (22). The first term
on the rhs of (22), expressing the 5 dependence, reads

2 (27)
EoH + ( I —5)

as
—=8IroIP, (38)

3 EF
N(0) =—

2 Us

to be in accord with the usual Fermi-liquid theory; at
melting pressure

I Eo
I
=2. 1 K. Note that EF appearing

in (27) and (28) is the Fermi energy for the system at
5=0, i.e., for the solid volume: EF=(3m /v, )

~ /2m

with

1 2 2 4(1 —x )P= —x x
8 x +5

—5(2—5) (39)

On the other hand, the U dependence of EzH only enters
via a U dependence of U:
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BEGH

BU

aU
av" (40)

(1—g, )'
d= 6.

4
(49)

dEGH

Bv

8
I

Eo
I P'—

vs

aU„
8IEoI ~"

while the v, dependence is due to
I

Eo
I

and U:

(41)

In this case d and 6 scale with each other as the transition
is approached. At this point the effective mass also
diverges,

with
26

(50)

So we find, from (22),

8IEoI
vs

Ks — Ks
1 ——P+ —P'

K K

2
Ks (3U 1 BU

Bv, 1 —6 Bv
+ x —6 +Pres2x

P '=
—,', [(I—5) +(1—x ) ] . (42)

(43)

Furthermore, close to the transition the Landau parame-
ter Fo, (37), goes to a constant value:

2

3
Fol C

C

2

For g, «1, implying 6 «d « 1 and U ~ 1, one obtains
Fo I, = —

—,', while for g, & 1, implying d «5«1 and

U&&1, one has Fo I, ~ —1, in which case the system
would tend to be ferromagnetic (Nagoaka effect). Note
that —1 (F0 (0 for a repulsive interaction.

MINIMIZATION OF THE GROUND-STATE ENERGY

The minimization of (30) with respect to d may now
easily be performed by using (34) and minimizing with
respect to x; one finds

x(1—x)
4 2x —5

(44)

with U= U/(8 Eo I
). It is an implicit equation for d as a

function of the interaction U and the band filling. Intro-
ducing

INCOMPRESSIBLE LATTICE

We first study the case of an incompressible lattice,
where an external pressure only acts on the particles but
not on the lattice itself. In this situation v, =const and we
choose v, to be given by that of the solid molar volume at
melting pressure: v, =v, (P ) =24.23 cm . Consequent-
ly, the compressibility a., =0,

I
so

I

is constant, and the in-

teraction U may also be taken as constant. The equation
for the pressure, (43), then reduces to

g =6/x (45) P = P+P„, ,
8 FoI

(52)

1 —xU=
1—2

(46)

which allows for a discussion of various limits:

(i) For 6=0 and d&0 one obtains d = —,'(1 —U), the re-
sult for the half-filled band case, i.e., localization occurs at
a finite interaction strength U = U, .

(ii) For d =0 and 5&0, the only solution is U= co, i.e. ,

localization is only possible for infinitely strong repulsion.
(iii) For d «5 one finds

d= 5(1—5)
4U

(47)

(iv) Lastly, (46) allows for a solution where both d and
5 go to zero. A solution with 6~d, A, & 1, such that
/=0 at the transition, is only allowed in the special case
U = 1, where k =3. However, for general values of U & 1,
(46) leads to a solution where 1=1, such that 6/d has a
constant ratio and g assumes a nonzero value

g, = lim /= +I —1/U
d, 6 0

and hence

(48)

with 0&/&1 and (=0 for 5=0, d~0 and g=1 for
d =0, 5&0, (44) reduces to the useful result

vs, m

CX

les 2 + 3
v v

(53)

which clearly allows for the features of P„, expected to
occur. Hence, the pressure in (52) is determined by the
three quantities x, 6, and v. Together with the equation
for U, (44), and the one connecting v and 6,

where 8
I

Eo I
/v, =72.01 bars. To be able to make use

of (52), we have to know P„, As discussed earli. er, P„„is.
supposed to describe the pressures due to interactions not
contained in the on-site repulsion. At low enough exter-
nal pressures, i.e. , large molar volumes, this interaction
will have to be mainly attractive to keep the system to-
gether. Therefore P„„will be negative for large v. On the
other hand, for large external pressures, i.e., small molar
volumes, other repulsive interactions than the on-site
repulsion may enter. Therefore P„, is expected to in-

crease with decreasing molar volume and may even be-
come positive, acting against the external pressure. Since
we have not yet found a model type of interaction in the
lattice-gas model which would give a good description of
this behavior, we will have to parametrize P„,. For this a
virial type of expansion in terms of v ", n ) 2, appears to
be most natural. So we make the simple ansatz
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vs, m

1 —5 ' (54)
0.1'5

m
(iv) (P ) =5.76 .

m

From these values we find a = —5. 62)& 10" bars cm,
P= 1.67 & 10 bars cm, while U = l.3157, corresponding
to an interaction parameter U =21 K. Note that while at
melting pressure 5 =0.0513, at P =0 one has
5O =—5(P =0)=0.3423, i e , t.he. 30% volume increase of
the liquid from melting pressure to saturated vapor pres-
sure is fully contained in 5 because the solid is assumed
incompressible.

We are now able to calculate the full pressure depen-
dence of 5, the density of doubly occupied sites d, the
effective mass m, the spin susceptibility 7„ the Landau
parameter Fo, the molar volume v, and the compressibili-
ty K, which in Fermi-liquid theory is related to the Lan-
dau parameter Fo by

29nK=V
Bp

m */m
=K~

s1+F0
where p is the chemical potential and

~~ ——v N(0)

is the compressibility of the Fermi gas.

(55)

(56)

(57)

this gives three equations for four unknowns, allowing us
to establish a unique P(v) relation. The three unknown
constants a, P, and U in (53) and (44), respectively, may
be determined by fitting to three parameters. For this we
choose the molar volumes at P =0 and P and the
effective mass at P . So, including v, in (54), there are,
in total, four input parameters:

(i) v, =v, (P )=24.23 cm

(ii) vo ——v (P =0)=36.84 cm

(iii) v =v(P )=25.54 cm',

0.10

0.05

0 10 20 30
F(barsj

50

FIG. 2. d, the density of doubly occupied sites (d =D/L),
normalized to d0 ——(&n)', the corresponding value of d for the
noninteracting case, is shown as a function of pressure. (in-
comp. , incompressible lattice; comp. , compressible lattice).

The result for 5 as a function or pressure for the in-
compressible case is shown in Fig. 1 (curve labeled "in-
comp. "; this label is also used in the other figures to dis-
tinguish the results for the incompressible lattice from
those for the compressible lattice to be discussed later).
The deviation from half-filling decreases monotonically
from 5o ——0.3423 to 5 =0.0513 at melting pressure and
becomes zero at a hypothetical, critical pressure P, =46
bars.

In Fig. 2 the corresponding curve for d, the density of
doubly occupied sites, normalized to do =(—,'n ), the value
of d in the noninteracting system, is shown. It also de-
creases monotonically from d /d o ——0.058 at P =0 to
d/do ——0.020 at melting pressure. At the critical pressure
where 5 vanishes, d also becomes zero, i.e., the system lo-
calizes. Hence, the transition to a state with 5=0 occurs
simultaneously with the localization transition of the par-
ticles (d =0). This behavior becomes evident from Fig. 3,
where d vs 5 is plotted. We see that, as P, is approached,
both d and 5 vanish at the same rate, i.e., the two parame-
ters scale,

0.3
0.03

0.2 0.02

comp.

0.01 comp.

0
0

I

10
I

20
P (barsj

30 40 50 0
0 0.1 0.2 0.3

FIG. 1. 6, the deviation from half-filling (n =1—6), is shown
as a function of pressure P. The labels "incomp. " and "comp. "
indicate the results for the incompressible and compressible lat-
tice, respectively.

FIG. 3. d vs 5 for the two models (incomp. , incompressible
lattice; comp. , compressible lattice).
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FIG. 4. The effective mass m /m of liquid 'He, vs pressure
[expt. , experimental curve (Ref. 25); incompr. , theoretical result
for an incompressible lattice; comp. , compressible lattice]. The
pressure P indicates the melting pressure of liquid He, while

P, is the critical pressure where the transition d, 6~0 occurs in
the case of an incompressible lattice.

FIG. 6. The compressibility ~ of liquid 'He, vs pressure
[expt. , experimental curve (Ref. 25); incomp. , theoretical result
for an incompressible lattice].

vs

gleol

2a 3P (1 5)
BP

v' v'

2g,
1 —j, =3.69,6

lim —=
p red

(5g) where

where g, = [( U —1)/U]'~ =0.490. So, as P, is ap-
proached, 5~d, such that at the transition the band will
actually be half-filled. We mention in passing that the
scaling of d and 6 implies a smooth, analytic 6 depen-
dence of the ground-state energy even in the limit d, 6~0.

The pressure dependence of the effective mass m * is
shown in Fig. 4. At P =0, m /m = I.52, i.e., the
enhancement is smaller than that measured experimental-
ly (where m * /m =2.76). As the pressure increases, m *

increases also with about the same slope as the experimen-
tal m *. Close to the melting pressure, the increase of m *

becomes larger and, at P, where d and 5 vanish, m*
diverges at a rate given by (50).

The v (P) curve is shown in Fig. 5. The pressure
dependence of v is well reproduced, in spite of the simpli-
city of virial-type approximation for P„, in (52). The
compressibility a, (21b), is obtained from (52) as

BP, 5
1 x(1—x )

85 " 2 (x 2+5)2

U 5, , 5(1+5)
2 x ' (x+5) (1 —U ——,'x ) .

(60)

Note, that BP/B6 approaches a finite value for P~P, be-
cause of the scaling of d and 6. Therefore ~ goes to a
finite value at the transition to the solid. This is in con-
trast to the case where a half-filled band was chosen in-
dependent of pressure and where ~ was found to vanish at
the transition. "' The resulting curve for x(P) is
shown in Fig. 6. The results for ~ and m */m imply that,
at the transition, the Landau parameter Fo (Fig. 7), deter-
mined via (56), also diverges; but now

(61)F', ~m'/m,

i.e., Fo diverges less strongly than in the case 6=0, d&0,
where Fo cc (m */m) for d ~0.
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FIG. 5. The molar volume of normal liquid He in the limit
T~O as a function of pressure. [expt. , experimental curve (Ref.
25); incompr. , theoretical result for an incompressible lattice].

FIG. 7. The Landau parameter Fo, entering the compressibili-

ty, vs pressure; same abbreviations as in Fig. 4.
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FIG. 8. P, , the pressure due to interactions not described by
the Hubbard-type on-site interaction, as a function of molar
volume (incomp. , incompressible lattice; comp. , compressible lat-
tice).

FIG. 10. The Landau parameter Fo, entering the spin suscep-
tibility, as a function of pressure; same abbreviations as in Fig. 9.

16

I
/

$ I

Pr
/

/

x

'0 20
P (bars}

P
( 1 l

30 40 50

FIG. 9. The spin susceptibility p„ in units of p0, as a func-
tion of pressure [expt. , experimental curve (Ref. 25); incomp. ,
theoretical result for the incompressible lattice; comp. , compres-
sible lattice].

For completeness we show the volume dependence of
P„, (Fig. 8), the pressure due to interactions other than
the on-site interaction. As anticipated, P„,&0 for large
volume, indicating the attractiveness of this interaction,
while for small volumes P, &0, which characterizes ad-
ditional repulsion in the system directed against the exter-
nal pressure.

Finally, in Fig. 9 the pressure dependence of the spin
susceptibility is shown. It increases strongly with increas-
ing pressure (with a curvature opposite to that measured
experimentally) and diverges at P, . However, the diver-
gence is only due to that of the effective mass. This can
be seen from the values of the Landau parameter Fo, (11),
obtained from (37) (see Fig. 10). One indeed finds an
essentially pressure-independent Fo which starts from
Fo ———0.73 at P =0, goes to —0.77 at melting pressure,
and then approaches its limiting value given by (51),
Fo i, = —0.81.

Hence, the results obtained from the lattice-gas model
discussed above, in which particles interact on an in-
compressible lattice, do reproduce all essential features of
the pressure-dependent effective mass, compressibility,
and spin susceptibility of normal liquid He in the limit

T~O. In particular, we found that at the localization
transition, where d =0, the system also goes to half-filling
(5=0), such that 5/d =const.

COMPRESSIBLE LATTICE

So far we have assumed that an external pressure only
acts on the particles on the lattice but leaves the lattice it-
self unchanged. This is somewhat unrealistic since even a
solid (i.e., the lattice with d, 5=0) has a finite compressi-
bility ~, . If we want to include this effect, two questions
arise: (i) What is the compressibility of the lattice for
0(P (P, and (ii) how does the on-site interaction U
change with pressure? To account for the lattice compres-
sibility we take the pressure dependence of the molar
volume of solid He, ' u, (P), as presented by Hether-
ington et al. (solid line v, in Fig. 11), and extrapolate it
smoothly to P =0 [indicated by the dashed curve (u, ) in
Fig. 11]. 1Vote, that in the incompressible case u, was ap-
proximated by the horizontal line U, =const. The ex-
trapolation itself is quite arbitrary, but it will sufBce to de-
scribe the new features introduced by a finite compressi-
bility of the lattice. The pressure dependence of U, for
P 5 100 bars is well approximated by the expression

B

(62)Us =Us, m

with 2 =60.44 bars, 8 = —0.254, and C = —26.082
bars.

Once we allow for a compressible lattice, i.e., for a vari-
able lattice spacing as a function of pressure, the interac-
tion U between the particles also has to be considered
pressure dependent. One can get an idea of the pressure
dependence of the effective interaction U by considering
the following picture: Let us form a doubly occupied cell
by displacing an atom from a singly occupied cell. The
energy required for this process may be approximated by
the difference in the chemical potential of the actual sys-
tem, p, and that of a fictitious system without any vacan-
cies, p+6p, where an additional particle necessarily leads
to the formation of a doubly occupied cell. The
difFerence, 5p, is then given by 5@=v, '(t)p/t)n), where
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FIG. 11. The molar volumes of liquid, u&, and solid, u„He.
Both the curve for the liquid, (v~) for P&P, and that for the
solid, (u, ) for P &P, are smooth extrapolations of the respective
experimentally measured curve (see text). At the melting pres-
sure P the molar volumes of the solid and the liquid differ by
Au =1.3 cm'. FIG. 12. The radial dependence of the soft-core potential

fo ( r ) (Ref. 38).

U=
/
W/+—1 Bp

v, 8n
(63)

We note that t)tM/c)n is directly related to the compressi-
bility z via (55),

ap l &+F0
dn N(0) m*/m

(64)

Using the quasiparticle interaction fo(q =0)=Fo/
N*(0), where N*(0)=N(0)(m*/m), we find

U=
~

W ~+ fo(q=0) . —1

Vc
(65)

This expression can also be derived from a more micro-
scopic point of view. Namely, we may relate the short-
range (eff'ectively zero-range) interaction U to the soft-core
part of the polarization potential fo(r), introduced by Al-
drich and Pines.

The radial dependence of fo(r) is shown in Fig. 12.
For r (r, the potential is given by an effective soft-core
repulsion which is supposed to represent the reduction of
the bare hard-core repulsion caused by the short-range
correlations. For r ~ r„ i.e., the long-range part, the po-
tential is attractive and is assumed as unchanged by the
short-range correlations. This behavior may be
parametrized by

fo(r)=
A [1—(r/r, ) ], r &r,

' 14.5

I (14.5, 6)c.
Tp 7"0

6

r &rc
(66)

v, is a volume characterizing the difference in density of
the two systems. In addition, we have to take into ac-
count the energy of attraction,

~

8' ~, in the system which
one has to work against. Hence,

fo(q =0)=4m f dr r fo(r) .
0

(68)

The integral may be divided into one for r (r„which ex-
tends over the repulsive part of fo(r), introducing the pa-
rameter U,

U= J 'drr fo(r),
Uc 0

and one over r )r, , i.e., the attractive part offo(r):

4n
Vc

Here, u, = ', ~r, Hence, (68). yields

fo(q =0)=U, (U —
I

W
I
),

or

(69)

(70)

(71)

U=/Wf+ (72)

This equation is identical to (65), obtained from simple ar-
guments about the energy necessary to insert a particle
into a bath of others. The pressure dependence of U is
then directly given in terms of the compressibility ~ of the
liquid and

BU 2 v
1

1 din~
Bv ~ v, 2dlnv (73)

has been introduced by Bennewitz et a/. ; here,
E(14.5, 6)= —3. 18, s= —10.65 K, and re=2. 685 A. [In
fact, the expression for the attractive part in (66) was orig-
inally only chosen for r, &r &r, r, =6.3 A, while for
r & r, the shape of the potential is somewhat different.
However, these details are unimportant here. ]

Now,

where

IC (m, 6)=
' m/(m —6) 6/( m —6) —1

(67)

Note that the volume dependence of 8' may be neglected
because 8' is approximately given by the long-range part
of the bare potential. The P-v equation for the compressi-
ble case, (43), is then obtained as
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P= 8 [so/ P ——(P P—')
U(Kj

30

2U 1 din~
av, (1—5) 2 d lnU

2x —6 +P„,(U), 25

(74)
20

where 8
~

Eo
~

/U, = 1.461 && 10 u, bars and a, are deter-
mined by the assumed pressure dependence of the lattice,
(62). In contrast to the case of the incompressible lattice,
the pressure equation (74) contains Ir and dlc/dv and is
thus a second-order differential equation for P(v). In
principle, one could now again make a virial-type ansatz
for P„, in terms of 1/u with unknown coefficients which
would have to be fitted using some experimental input.
On the other hand, there are now at least two more un-
known parameters in the equation for P [r, and an in-
tegration constant, e.g. , ir(P =0)], than in the incompres-
sible case. Therefore we do not attempt to solve the
differential equation (74). Rather we take the experimen-
tally known P(v) curve as input. , which allows us to
determine U via (72). Together with (44), relating U to d
and 5, and (13), relating U and 5, we may then calculate
the full presence dependence of m*/m, the susceptibility
and the related Landau parameters.

If we take the experimental compressibility at melting
pressure, ~ =4.76&&10 bar ', and r, =3 A, we
find a value of U, which in units of 8

~
Fo

~

is given by
U(P )=1.88. This is already quite close to U=1.32
used in the preceding section to yield the correct m * at
melting pressure. However, to allow for a comparison
with our results for the incompressible lattice, we solve
(72) self-consistently for the cutoff parameters r„with
U= 1.3157 at melting pressure, using the model form for
fo(r) in (66). This yields r, =3.29 A, which we assume
to be roughly independent of pressure. The total input
into the calculation is then given by the following parame-
ters:

(i) hypothetical U, (P) for solid, (62).
(ii) Experimental Ir(P) for a liquid. "
(iii) u = u (P ).
(iv) m*lm at P
The pressure dependence of the effective interaction U

is shown in Fig. 13. It is a monotonically rising function
of P, increasing from U=0. 788 (="=14.4 K) at saturated
vapor pressure to U = 1.3 16 (

=" 27. 6 K) at melting pres-
sure P ~ For P &P, i.e., in the regime where, experi-
mentally, one is already in the solid phase, we have used
the experimentally measured U, (P) (Refs. 35—37) and a
smooth extrapolation of the v(P) curve for the liquid as
shown in Fig. 11, indicated by the dashed line (Ui). The
interaction U is seen to rise further for P & P

The results for the lattice-gas model with a compressi-
ble lattice are shown in Figs. 1 —4 and 7—10. The devia-
tion from half-filling, 6, again monotonically decreases for
increasing pressure. At P =0, one finds 60——0. 186, which
is roughly half of the corresponding value for the in-
compressible case. The other half of the volume change
of the liquid is due to the volume change of the lattice it-

15

14
0 20 30

P (bars)
40 50

FICJ. 13. The eft'ective interaction U in the lattice-gas model
as calculated from the soft-core potential fo(r) is shown as a
function of pressure.

self. For P &P, 6 is seen to decrease only very slightly
and, in fact, does not go to zero up to the highest pres-
sures included in Fig. 11. This means that in the model
with a compressible lattice, as considered here, v(P) and
U, (P) are ap. proximately parallel for P &P and do not
meet (where 5=0); even larger pressures at which the
curves might meet are outside the scope of the model in
any case. Similarly, d, the density of doubly occupied
sites, decreases monotonically (Fig. 2). At P =0, d is con-
siderably larger than in the incompressible case, mainly
because U is rather small. For P &P, d decreases only
slightly. In particular, d does not vanish, i.e., there is no
localization transition anymore. The relative dependence
of d on 6 is shown in Fig. 3. Since 6 and d no longer
vanish, a scaling property 6 ~ d in the incompressible case
cannot be deduced. In fact, an extrapolation of the curve
would indicate that d vanishes at a finite 6=0.035. As
discussed below (46), such a transition is only possible for
infinite U.

The absence of a transition d ~0 is clearly reflected in
the results for m * /m, Fo, and P, . They no longer
diverge at a finite pressure, implying a much less pro-
nounced pressure dependence of these quantities than in
the incompressible case. This is clearly demonstrated in
Fig. 4, which shows the effective mass versus pressure.
The increase of m'/m from its value 1.63 at P =0 to
5.76 at melting pressure is very smooth and closely resem-
bles the experimental pressure dependence. For P &P
this slight increase continues since our model does not de-
scribe the first-order transition to the solid at P

Using m ' we may determine the Landau parameter Fo
(Fig. 7) from the compressibility. Again, the pressure
dependence is described more realistically than in the in-
compressible case.

The residual pressure P„, may actually be calculated in
the present case. The result, shown in Fig. 8, is both
qualitatively and quantitatively quite similar to the result
of the incompressible case, where P„, had been Ptted us-

ing a 1/v expansion.
The spin susceptibility is shown in Fig. 9. The pressure

dependence is now much weaker than in the incompressi-
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ble case. On the other hand, the Landau parameter I'o
(Fig. 10) is found to be more pressure dependent, particu-
larly at low pressures. This is due to the fact that the
effective mass has a stronger pressure dependence at low
pressures than in the experiment.

CONCLUSION

Using the results of the Gutzwiller approach' ' to the
Hubbard model, we have investigated a lattice-gas model
with variable density. The model is intended to describe
ground-state properties of normal liquid He. For this
purpose we assumed the existence of a lattice on which
particles interact. The filling factor n is arbitrary; it is
measured in terms of 5=1—n, i.e., the deviation from the
case of a half-filled band. While the solid is characterized
by d =5=0 (localized, half-filled limit, where d is the
density of doubly occupied sites), the liquid state has
d, 5&0. Introducing the concept of a pressure yields an
equation governing the filling factor in the liquid. The
external pressure acts both on the interacting particles and
on the lattice itself. Neglecting the effect on the lattice,
i.e., assuming an incompressible lattice (and, hence, a
pressure-independent on-site interaction U), the change in
molar volume of the liquid is solely accounted for by the
change in the filling factor, i.e., 6. We find that, at a finite
pressure P, &P (melting pressure), a transition to a lo-
calized state with d =0 and 5=0 takes place. In particu-
lar, d and 5 are found to scale as the transition is ap-
proached. Hence, the localization transition d =0 occurs
precisely at half-filling. This fact backs up earlier investi-

gations which explicitly assumed 6=0 in the almost-
localized limit. " The pressure dependence of the
effective mass, the spin susceptibility, and the compressi-
bility are calculated. The first two quantities are found to
be strongly enhanced, while the latter is strongly reduced
compared to the noninteracting system. At pressures
P 5P, a pronounced pressure dependence due to the in-
cipient localization transition in the model is obtained.

In a second model, the effect of the external pressure on
the underlying lattice is taken into account by allowing
for a finite compressibility of the lattice. The model
repulsion U is connected to the microscopic soft-core po-
tential fo(r) by using the experimentally known
compressibility of the liquid. This allows one to calculate
the pressure dependence of the effective mass and the spin
susceptibility. As before, both quantities are considerably
enhanced because both d and 6 are small. However, an
actual transition no longer occurs. This, in turn, removes
the strong pressure dependence at high pressures found in
the case of an incompressible lattice and yields a smooth
increase with pressure, as qualitatively observed in the ex-
periment.
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