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We have calculated the pair-breaking critical current for superfluid 3He-B at 
all temperatures by taking into account the anisotropic distortion of the order 
parameter in the presence of superflow. We find that the component of the order 
parameter along the flow A H is strongly reduced, while Az, the component 
perpendicular to the flow, slightly increases. The superfluid density Os has also 
been determined as a function of the superfluid velocity v~. Fermi liquid 
corrections are explicitly included and it is shown that these corrections lead to 
a drastic change in the functional dependence of Atl, A., p~, etc., on vs. In 
contrast to this, the pair-breaking critical current is shown to be independent of 
the Fermi liquid corrections. 

1. I N T R O D U C T I O N  

Recent  experiments 1 designed to measure critical currents in superfluid 
3He-B have led to a renewed interest in the theoretical aspects of such 
critical currents. Calculations of depairing critical currents for the superfluid 
A and B phases of 3He have previously been performed by Fetter,  2 who 
specialized to the Ginzburg-Landau  regime, and by Vollhardt and Maki 3 
(VM), who not only included Fermi liquid corrections, but also allowed for a 
general tempera ture  dependence.  However ,  considering the similarities 
between the BCS superconductor  and the B phase 4 of superfluid 3He, 
the latter authors assumed a large, uniform current (corresponding to 
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t2s --~ 1 0  - 3  - -  10-2~F) to produce only an isotropic change of the magnitude of 
A(T), the order parameter. That is, an explicit distortion of the order 
parameter due to the superflow was not included. The purpose of the present 
paper is therefore to improve on this point by taking into account the 
anisotropic deformation of the order parameter in the presence of a uniform 
superflow (in the z direction). For this the (three) gap equations for 3He-B in 
the presence of superflow have been treated self-consistently. 

It is very interesting to note that the present problem and the one of 
3He-B in a strong magnetic field 2;5 have several features in common. Indeed, 
the gap equations prove to be very similar in both situations, i.e., the effects 
of a strong magnetic field and of superflow on the 3He-B order parameter 
resemble each other. In both cases the order parameter is anisotropically 
distorted, the functional dependence of this distortion on the respective 
pair-breaking parameter being almost identical. 

The calculations employ a microscopic approach where, as before, 3 the 
uniform current is introduced into the single-particle Green's function via a 
frequency shift as was done by Maki and Tsuneto. 6 Furthermore, we 
explicitly include Fermi liquid corrections, which prove to be of decisive 
importance for our results. The effects of the Fermi liquid corrections are 
incorporated by renormalizing the quasiparticle mass and the superfluid 
velocity as shown by Leggett. 7 

The present calculations employ the weak coupling model for simpli- 
city. In spite of the fact that strong coupling corrections seem to be necessary 
to explain some deviations from the weak coupling results (see, for example, 
the results of recent measurements by Archie et al.8), the weak coupling 
model is quite adequate for obtaining functional dependences and qualita- 
tive features if we exclude the problem of the stability of the A phase. This is 
also the reason why we will not elaborate on the phase transition from the 
B-phase state to the axial state (in fact, to the "planar" state; however, in the 
weak coupling model and in the absence of a magnetic field both states are 
degenerate), which will eventually occur when the superflow is increased 
beyond the pair-breaking critical current, if this is at all possible experi- 
mentally. It has been shown by Fetter 2 that this transition sensitively 
depends on strong coupling corrections. 

The calculations have been performed for the following values of the 
Fermi liquid correction parameter FI: F1 = 0, F1---6.04 (corresponding to 
zero pressureg), and F~ = 15.66 (corresponding to melting pressureg). The 
results we are going to present will concentrate on the first two cases only, 
because the recent experiments l were done at saturated vapor pressure (i.e., 
essentially zero pressure) and also because the results for F~ = 15.66 are 
qualitatively very similar to those for F~ = 6.04. 
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2. FORMULATION 

The single-particle Green's  function for 3He-B in the Nambu 
representation for zero current is given by 

G0(p, oJn) = (i~on - ~=p3- o-2plA  9 o0 -1 (1) 

where 

~ = P 2 / 2 m * - I ~ ,  /~ = P/PF, OL = (o'1p3, O'2, o'3P3) (2) 

m* is the effective mass of a quasiparticle,/~ is the chemical potential, and o-i, 
pi are Pauli matrices which operate on the spin and the particle-hole space, 
respectively. Here A is the order parameter  vector; in the absence of current 
(isotropic case) it can be written as 

a(p) = A-p (3) 

but in the presence of superflow A(p) will become anisotropic (self- 
consistency of the gap equations!) and is then instead given by 

A(p) = (A• A:p2, AILp3) (4) 

A L and All are the magnitudes of the order parameter  perpendicular and 
parallel to the external flow, which is supposed to be along the z direction. 
For zero current we have Az = All and Eq. (4) reduces to Eq. (3). 

As discussed by VM, the effects of a uniform current are now intro- 
duced into the above Green 's  function by replacing i~o~ by iw~ + Vs" p, where 
vs is the superfluid velocity and p is the quasiparticle momentum. The reason 
lies in a gaugelike transformation of the order parameter  A(r)--> 
exp (2imvs. r)A(r), where m is the mass of a 3He atom. 

As has been shown by Leggett, 7 the interaction between quasiparticles 
leads to a polarization of the liquid, which in turn modifies the effect of the 
current. In other words, the polarization results in a mean-field screening for 
the superfluid velocity vs so that the system does not feel the bare velocity Vs 
but rather an effective velocity vs*, with 

 9 - v s / ( 1  + ~ F 14 , )  (S)  V s - -  

The function ~b is a generalized Yosida function, which will be derived within 
the context of the calculation of the superfluid current and the superfluid 
density. Consequently, the Fermi liquid corrections are accounted for by (i) 
using m*lrn = 1 +  89 in the expression for the density of states, etc., and (ii) 
by replacing v~ in the Green 's  function by v*. In the presence of a uniform 
current the proper  Green 's  function is then given by 

G(p, ~o,) = Go(p, to, - is cos 0) (6) 
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where 

S = V s P F  (7) 

and 0 is the angle between vs and p, and PF is the Fermi momentum. 
The gap equations in the weak coupling limit are given by 

3 r 
f d p  ,1 Ai(p) = - 3 g l T  2 ( -~)3 (p" p ) z Tr {o'2(p1+ i02)aiG(p', ~o,)} (8) 

tOn 

This leads to a set of two equations for A• and All, i.e., the components of the 
order parameter perpendicular and parallel to the flow. Depending upon 
whether we perform the p' integration or the ton summation, we obtain 

1 -o Io ~ - =  3~rT 52 Re dzfi(z)[(w~-isz)Z+&l~zZ+AZ,(1-z2)] -1/2 (9a) 

o r  

1 3 r ~~ fot [(E+sz)/2T]+tanh[(E-sz)/2T] ~-=4  J0 d~ dz[i(z) tanh E (9b) 

where i = 1, 2 and 

f l (z)=l_z 2 f2(z)=2z 2, E2 2 2 2 2 , = ~  +Anz + A . ( 1 - z  z) (10) 

Furthermore, we use h =N(0)lgll ,  wc=-W,o=(2no+l)1rT, where N ( 0 ) =  
3Nm*/p~ is the density of states at the Fermi level and wc is the cutoff 
frequency. 

The coupling constant A can be eliminated from Eq. (9) in the weak 
coupling limit by subtracting the respective equations at T = T~ and at T = 0 
and vs = 0. For the latter case Eq. (9b) reduces to 

1 f d~ 1 (11) 

2 ~ 2 where Eo = s ~- + Aoo and Aoo = ABcs(T -- 0). 
For further treatment (and the numerical analysis) of Eq. (9) we will use 

the form given in Eq. (9b) containing the tanh functions. After elimination of 
h we obtain 

d ~  f01 dzfi(z) {tanh[(E+sz)/2T]+tanh[(E-sz)/2T]E ~0} = 0  

(12) 

where the convergence of the integral is guaranteed. Equation (12) deter- 
mines the order parameters in the presence of a uniform current. 
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We now turn to the superfluid mass current j, associated with the 
superfluid velocity v,, which is given by 

Js = O v s - i  (13) 
where j is the mass current of quasiparticle excitations due to the superfluid 
velocity: 

y d3a -  88 G(p, oJ.) (14) 
con 

Here 0 = Nrn is the mass density of 3He. 
We now want to simplify the expression for IJl- The summation and 

integration have to be done very carefully to avoid difficulties with con- 
vergence.10 Depending upon whether we perform the ~ integration or the ~on 
summation, we obtain [here we use ]o= j/N(O)pF] 

~ Io 1 z(iw. 2 ]~ T)= 89 dz Re [(oJ,-isz)2+Aii z +Az, (1-z2)]  a/2 
(15a) 

o r  

]~176176 Jo z~ . E+sz E - s z \  dz -~ tanh ~ -  tanh -~----)  (15b) 

As in the case of the gap equations, we will use Eq. (15b) for the necessary 
numerical treatment, except near To, the transition temperature. 

The superfluid current/'s can be written as 

js =psv~ (16) 

where ps is the superfluid density, which has the general form 

Ps/P = (1 - ~b)/(1 +  89 (17) 

~b is a generalized Yosida function, which appeared in the reduction factor 
for the superfluid velocity and which accounts for the polarization of the 
fluid. Inserting Eq. (17) into Eq. (16) and using the definition of s in Eq. (7), 
we can write 

L = (1 - c~)so/pF (18) 

Hence Eq. (18) yields a consistent definition of ~b by means of the superfluid 
current: 

~b = 1 -L / s  (19) 

where ]~ = j, PF/P. We can now express/'s fully in terms of s rather than the 
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bare vs. First we replace vs by means of Eq. (5) and use N(0)= 
3p(1 + 89 2 to obtain 

j'~=s(1+ 89 + xF,1 )1"~ (20) 

Now we substitute 4, by means of Eq. (19) and divide by the common factor 
1 + 1F1. This finally leads to 

j~ = s - 3/~ (21) 

It is important to realize that/'s only depends on the Fermi liquid corrections 
through s, the effective superfluid velocity. 

3. LIMITING CASES 

The existence of two order parameter  components and hence of two 
coupled gap equations makes an analytic solution for the energy gaps and/s 
generally impossible. Only at T = 0 and in the Ginzburg-Landau regime can 
one obtain analytic results, although even at T = 0 the gap equations cannot 
be solved in closed form. Therefore  numerical methods generally have to be 
employed. However,  some expressions can be evaluated for the above- 
mentioned limiting cases. 

3.1. T = 0  
In this case the integrals appearing in the gap equations can be solved; 

nevertheless, the equations become unmanageable and do not simplify the 
analysis. Only the expressions for is (and hence &) can be evaluated easily. 
We obtain 

; = S - -  O ( S  - -  All ) (2 $2 -- A~)3/2 (22) 
s 

and 

(s2--A~) 3/2 
r = O ( s  - -  &) s(s 2 + A~-- at) (23) 

where #(x) is a step function with 

0 for x < 0  
0 (x )=  1 for x l>0  

The two results imply that at T = 0 and for s < A, we obtain/'s = sp/pr and 
4) = 0. Indeed, it is easy to see that s = All is the pair-breaking condition for 
the superfluid velocity, i.e., pairs only start to be broken for s > All. 
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3.2. T = T c  
In this case the order parameter and hence s are small compared to T~, 

so that we can expand the gap equation (9a) and/',, Eq. (15 a), in terms of A., 
ALt, s << To Eliminating A from the gap equation by subtracting the respective 
equation at T = T~, we find (up to second order) 

1 2 2 (24a) 3(4A. + All) = A 2 -  2s2 
1 2 3AI~) -2  6 2 3(2A• + = a 0 -  ~s (24b) 

where 
(8"n'2T2~ 1/2 T 1/2 

Ao(T) = \ ~ /  (1 - -~ - )  

is the order parameter of 3He-B near Tc in the absence of superflow. The 
two gap equations can easily be solved for All and A• and yield 

2 Ali= A2o- 2s z, A• = Ag (25) 

We see that near Tc the component of the order parameter perpendicular to 
vs, A• is not affected by the flow at all up to this order of the expansion, while 
All is strongly reduced. 

In a similar way the expansion of Eq. (15a) for L yields 

* 212__0 ~'(3) / 2  2 _) ], = (~.T~)ZS~A• A~t (26) 

Substituting Al, ALl by means of Eq. (25), we obtain 

21 ((3) /5 2 ) 
]~ = 2--0 (rrTr 2 s ~ A 0  - 2s 2_ (27) 

In general, however, the gap equations, etc., have to be treated numerically. 
For this we have first solved the gap equations self-consistently for given s 
and T. Then/', and d~ (and OJP for given Ft) have been evaluated at the same 
point of (s, T) by means of Eqs. (19) and (21). Once this was done we 
calculated v~ via Eq. (5) for given F1 to account for the Fermi liquid 
corrections. In this way we obtained the values for A.  and All as functions of 
v~ for various reduced temperatures as shown in Figs. l a  and lb. In the 
former we show the results for F1 = 0 and in the latter for F1 = 6.04, 
corresponding to zero pressure. 9 

The functional dependence of A• and All on v~ is almost identical to that 
of the order parameters of 3He-B in a strong magnetic field, where a similar 
distortion of the energy gaps occurs. Both v, and the magnetic field,H act as 
a pair-breaking parameter. One of the differences is, however, that at T = 0 
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Fig. 1. The components of the order parameter of 3He-B parallel 
and perpendicular  to the superflow, All and A~, as functions of the 
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even very small magnetic fields suffice to break pairs, while in the case of 
superflow the superfluid velocity vs has to exceed v ~ = (All/Aoo)Pv to satisfy 
the pair-breaking condition. It is interesting to notice how the Fermi liquid 
corrections change the functional dependence of the energy gaps on Vs. For 
F1 = 0 and T~ Tc <- 0.5 both AI and All are double-valued for Vs > Vsll, where 
VsU characterizes the superfluid velocity at which All goes to zero. At this point 
the B-phase order parameter  reduces to that of the planar state, which in our 
case corresponds to the A-phase state. It should be stressed here that the 
lower (upper) branch of All (A• for v~ > Vstl is unlikely to be reached 
experimentally. The reason is that at the point where At and All turn back, 
i.e., at the infinite slope (or even slightly before that5), the B-phase state 
becomes energetically unstable against the transition to the A-phase state. 
The inclusion of the Fermi liquid corrections--which results in a rescaling of 
the abscissa--removes this double-valuedness, so that the gaps now behave 
monotonically and are single-valued. A similar behavior has been obtained 
for ps, the superfluid density, as shown in Figs. 2a and 2b. The p~ is 
characteristically nonlinear and all curves terminate at vs = v~lt(T), i.e., 
where All = 0. One can see that p~ is strongly reduced by the Fermi liquid 
corrections except near T = 0 and vs = 0, where ~b is small and the Fermi 
liquid corrections are thus unimportant.  Lastly, we show in Figs. 3a and 3b 
the superfluid mass current ]s as a function of v~, again for F1 = 0 and 
F~ = 6.04. At T = 0 and vs < A00/Pv no pair-breaking can take place and ]s is 
simply given by ]~ = pv~. When vs is further increased, competition occurs 
between this increase of ]s and the decrease due to pair-breaking, which now 
sets in. Therefore/'~ has a maximum alter v~ = Aoo/Pv is fulfilled. By means of 
a broken curve we have indicated the locus of the critical current ]sc, i.e., of 
the maxima of js at different temperatures. It should be realized that the 
inclusion of the Fermi liquid corrections only changes the horizontal but not 
the vertical position of those maxima, so that ]~c is independent of the Fermi 
liquid corrections. 

4 .  D E P A I R I N G  C R I T I C A L  C U R R E N T  

After we have calculated Al, All, is, and Ps as functions of T and s we 
now want to determine the depairing critical current ]~c defined by the 
maximal value of/s. Hence,  ]~c is determined by 

d L a L d s  
0 (28) 

dv, ds dvs 

It is not difficult to see that ds/dv~ ~ 0 for all v~, so that Eq. (28) reduces to 

dis 0i~ OL aA• 0j~ _ + _ _  _ _  ~ 0 A , = 0  ( 2 9 )  
ds Os OA. Os 0All Os 
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In principle this last equation can be solved exactly, because OHOs, ajs/OA., 
and OjJOAii are easily calculated from Eq. (21) and OA./Os and OAii/Os can be 
obtained by taking the derivative of the gap equations. Nonetheless it is 
easier to determine the maxima of j~ by numerical localization of the peaks 
of the js curves. As explained above, the critical current is independent of the 
Fermi liquid corrections. This can also be understood from Eq. (29), which 
has exactly one solution for s (i.e., sc~) for any given temperature irrespective 
of the Fermi liquid corrections, which are incorporated in s itself. Then scr 
determines ]~c. The corrections play a role, however, in the calculation of the 
critical velocity vs~ by means of Eq. (5). 

In the vicinity of the transition temperature T~ the critical current can be 
determined analytically. From Eq. (27) we find that j~ has a maximum at 
Scr = (5/18)1/2A0.  This leads to a critical velocity of 

1 2 - ~ r  ~ 1 T ) 1 / 2  I.).sc~(1-1-~F1)~%/5(~)1/2( (30)  

and the depairing critical current in this limit is 

~ , > " ~ -  ' / ~  . " -  ~ ' ~   9 ~ I "  " q  P 
I'~ = ---(- \ ~ J \ - ' ~ J  -~F (31) 
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Fig. 4. The critical velocity use as a function of the reduced temperature 
T/Tc for several values of the Fermi liquid correction parameter Ft. 
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Fig. 5. The pair-breaking critical current isc vs the reduced temperature T/To. The solid 
curve shows the present results, while the broken curve represents the results obtained 
earlier by VM (see text). 

Comparing this result with the one by VM, we see that the present result for 
jsc is smaller by a factor x/5/3 = 0.75. This value also readily follows from 
Fetter 's  earlier result, 2 if we take the weak-coupling limit in his correspond- 
ing expression; tl it has also been recently obtained by Kleinert. 12 

The results for the whole temperature range are shown in Figs. 4 and 5. 
In Fig. 4 the critical velocity vsc has been plotted as a function of T/Tc for 
various values of F I .  We see that vs~ is a nonmonotonic function of the 
temperature  when Fermi liquid corrections are included, having a maximum 
around T~ Tc = 0.7. In contrast to this, the critical current j~ is independent 
of the Fermi liquid corrections and is shown in Fig. 5. For a comparison we 
have included the results of VM by a broken line (labeled "isotropic gap"). It 
is evident that the present critical current is always lower than the one 
obtained by leaving the gap isotropic (this result is not unexpected, because 
in the present calculation a restraint on the system has been removed). 
However,  the difference is always less than 25%. 

NOTE A D D E D  IN PROOF 
After submitting this paper  we have received a preprint of H. Kleinert 

with a similar calculation of js~. 
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