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The symmetry of the free energy of superfluid 'He is used to investigate stationary points which

correspond to possible superfluid phases. For this purpose a complete classification of both continu-

ous and discrete subgroups of the symmetry of the free-energy functional describing p-wave super-

fluidity of 'He, G =SO(3)XSO(3))CU(1), is presented. The corresponding order parameters of
phases with broken symmetry are determined explicitly. It is shown that all superfluid phases previ-

ously found in the literature by minimizing the Ginxburg-Landau functional are included in this

classification. Hence, in all these phases the symmetry 6 is only partly broken such that they still

contain a residual symmetry. This is true both for inert and noninert states. The concept of broken

relative symmetric~if great importance for an understanding of the properties of superfluid

H=—appears as a very natural feature in such a group-theoretical treatment. The classification is

also apphed to superfluid He in a magnetic field and with dipolar coupling. Using the methods of
differential topology developed by Michel, we show that the symmetry properties of phases and

their energy are related. This is explicitly verified by applying the classification to two systems

whose free-energy functional is simpler than that of superAuid He (e.g., d-wave pairing or super-

fluidity in neutron stars) and a&hose minima are known from analytic calculation. Hence, group-

theoretical methods prove to be a very valuable tool for investigating the stationary points of com-

phcated free-energy functionals in condensed-matter physics, in particular of those where an analyti-

cal minitnization sonns untractable as in superfluid 'He.

I. INTRODUCTION

The superfluid phases of iHe are unusiin)ly complex
states of condensed matter which exhibit a unique wealth
of physical properties. ' This fact is in striking contrast
to the extreme simphcity of the system on the microscopic
level, since iHe is composed of spherical, i.e., structure-
less, atoms. Its properties result from the high density of
the atoms, their strong interaction and, in particular, the
fermionic character of the He atoms due to the nuclear
spin I=—,'.

The superfluid phases known today are characterized
by a condensation of Cooper pairs into a state with rela-
tive angular momentum l= 1 and, consequently, total spin
S= 1 (spm triplet, p-wave pairing). This imphes an amso-
tropic pair wave function and, generally, leads to anisotro-
pic properties of the system. The associated order param-
eter is then given by a complex 3)&3 matrix. ' The
unusually large number of internal degrees of freedom as-
sociated with this tensor order paratneter are responsible
for the many different properties of superfluid He.
Indeed, no other single physical system known so far
shows as many physical phenomena as do these superfluid
phases, which incorporate the behavior of liquid crystals,
magnetically ordered states, and superfluids.

Phase transitions are usually connected with the break-
ing of a symmetry. This concept has proven to be ex-
tremely fruitful in many areas in physics besides

condensed-matter physics, e.g., in high-energy physics,
where the different families of particles are interpreted as
the result of symmetry breaking on a cosmic level.

In most of the systems of condensed-matter physics
with a broken symmetry (superconductors, superfluid 4He,

ferromagnet) the order parameter has a simple structure
and therefore the corresponding energy functional is also
simple. This functional can then easily be treated analyti-

cally to find its minima which correspond to possible
phases with broken symmetry. Unfortunately, for super-
fluid iHe this has not yet been possible in full generali-

ty.9 's In view of the difficulty of the problem which in-

volves 18 variational parameters it remains doubtful
whether this is mathematically possible at all.

The search for possible phases can proceed along quite
different lines. For example, it may ask for the solution
of the idealized weak-coupling problem as done by Balian
and Werthamer, Ambegaokar and Mermin' and Mermin
and Stare, " or for the solution under certain constraints
for the order parameter (like a unitarity assumption"), or
by demanding certain magnetic properties of resulting
phases' known from the experiment. A different line of
approach is due to Barton and Moore' '~ ~ho concentrate
on those phases whose order parameters do not depend on
the parameters P;, i.e., the prefactors of the fourth-order
terms in the free-energy functionals. These phases are
caBed "inert"—their order parameters do not change their
structure upon a change of external parameters; only the
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overall inagnitude of the gap will challge. Howevel', while
Barton and Moore' find all possible inert states, they also
point out that "noninert" states cannot be neglected in a
full analysis of the minimization problem. Later, Jones'5
studied the problem using a combination of algebraic and
geometric methods and thus provided the most complete
analysis up to date. He derived a general equation for ex-
trema of the free energy (which still ciumot be completely
solved}, and was able to show that some of the inert
phases found previously'i were not minima but only sad-
dle points of the free energy. Furthermore he discussed
the connection between the values of the P& and the ex-
istence of noninert states. '

Considering the states found in the above-mentioned
works one may ask for the stable states which, on physical
grounds, are most likely to be formed. In this case the P&

parameters necessary for stability should probably not be
too far away from their weak-coupling values. '2'i It ap-
pears as if this problem had largely been solved. On the
other hand, one may ask the more general question re-
garding minima of the free energy for arbitrary P&. In
this case one has to concentrate on noninert states.
Indeed, they caiinot be neglected because, as will be shown
below, they are the phases describing He-A and -8 in the
presence of an extenaal magnetic field.

In view of the formidable and as yet unsirlved-
problems connected with the mmch for minima of the
free-energy functional we suggest proceehng in a com-
pletely different way. It is based on the following obser-
vation: We find that all phases which correspond to mini-
ma of the free energy and which have so far been dis-
cussed in the literature are described by a respective order
parameter with a remaining internal symmetry; that is, al-
though these phases appear as states with a broken sym-
metry relative to the underlying energy functional, the
symmetry is not totally broken, but only partly. Hence,
we observe that an order parametel with a residual inter-
nal symmetry correspinids to a phase with a lower energy
than one where all symmetries are broken. 's To our
knowledge there exists no general proof that this has to be
so. On the other hand, using somewhat simpler order pa-
rameters than that of superfluid He, we will give explicit
examples where this observation can be shown to be
rigorously true.

The connection between the symmetry of an order pa-
rameter and its energy with respect to a free energy has
beni studied within the context of high-energy physics,
but also within a more mathematical context. For exam-
ple„Jaric' shows that, given finite groups and a real-
valued order parameter, the minima of a Ginzburg-
Landau functional must always have a residual symmetry.
Using geometrical methods Kim' described a way for
determining the energy and residual symmetry of the
Higgs potential minima. This method was then applied to
a quartic Higgs potential with SU(5) symmetry. 's The re-
sults were used to discuss the hierarchical symmetry
breaAn of SU(5) gralld ulllflcatloil theory. Abud aild
Sartori prove that within a Ginzburg-Landau theory
with algebraically independent fourth-order terms, the
minima correspond to states mth a remaining symmetry.
Clearly, these methods are also relevant for problems in

condensed-matter physics. For example, Jaric ' shows
how a symmetry classification may be used to describe a
ferroelectric phase transition in perovskites. Siinilarly,
Kim illustrates the method by applying it to a
Ginzburg-l. andau potential describing BaTi03 in order to
explain the three successive phase transitions known to
occur in this system. Clearly, there is also a close connec.
tion between the symmetry of a phase and the shape (i.e.,
"smoothness"} of its order parameter: In general, the
higher the symmetry, the smoother the order parameter.
This point has been addressed by Anderson and Brink-
man in connection with superfluid He.

In view of these facts the main aim of this paper is to
find all those order-parameter structures which still pos-
sess some of the original symmetry of the underlying
free-energy functional. Using group-theoretical methods,
we will show that there is a systematic way to derive these
order parameters, namely, by finding all subgroups H of
this underlying symmetry-group G. Concerning continu-
ous subgroups, this question has first been addressed by
Golo and Monastyrskiy and, in particular, by Minecv2
(based on the unpublished work of Volovik). In this way
Mineev2~ obtained all inert states which can be obtained
by a factorization using continuous groups. As will be
shown below there are other inert phases which cannot be
found in this way but only by using discrete symmetries.
Studying the possibility of f-wave pairing in superfluid
He, Barton and Moore' tried to employ finite groups to

find inert states.
It is important to note that a symmetry classification is

independent of any specific form of an energy functional.
In particular, one is not restricted to a Ginzburg-Landau
expansion which is only valid in the very vicinity of the
transition. All we need to know is the symmetry of the
free-energy functional. Of course, the states found by the
symmetry classification will not necessarily be minima of
the free energy. On the other hand, once they have been
found, any particular energy functional will be able to
determine which one of them is lowest in energy.

The concept described above will be helpful in all those
cases where an analytic minimization of a free-energy
function proves to be an intractable problem (i.e., usually,
whenever the order parameter has a very comphcated
structure).

Similar symmetry classifications as described above-
but with quite a different aim —have recently been shown
to be very useful for studying heavy-fermion superconduc-
tivity and rotating He and He (Ref. 29). In both
cases a symmetry-group factorization is performed in or-
der to derive the respective free-energy functionals.

The paper is organized as follows. In Sec. II we discuss
the structure of the He order parameter and the related
free-energy functional. Simpler examples than superfluid
3He, e.g., the usual superconductor and the ferromagnet
are umi to clarify the necessary concepts. In Sec. III a
short review of the group-theoretical methods needed in
the investigation of continuous subgroups is presented. In
Sec. IV we will derive all continuous subgroups of the
underlying symmetry group and ~ill explicitly calculate
the corresponding order parameters. The investigations of
continuous groups in Sec. IV turn out to be incomplete in-
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sofar as some of the phases found by Barton and Moore'
are missing. We find them to be invariant under certain
discrete transformations. This shows that discrete sym-
metries have to bc included in our treatment. According-
ly a complete classification of discrete subgroups of 6 is
presented in Sec. V. The states thus found in Secs. IV and
V are not necessarily stationary points of the free energy.
However, in some cases it is possible to give sufficient
conditions for them to be extrema. Using methods from
differential topology, we are able to give a new interpreta-
tion of inert states; this is done in Sec. VI. In Sec. VII we
will consider the restrictions imposed on the underlying
symmetry due to an external magnetic field or the micro-
scopic spin-orbit coupling. The appropriate classification
of states is preumted. In Sec. VIII two models of systems
described by a teinlor order parameter similar to super-
fluid sHC, whose respective Ginzburg-Laiu&u functional
can be minimized analytically, will be discussed (one of
them is a Pl superfluid thought to be realized in neutron
stars). We will show that all minima of the free energy
can be found by symmetry considerations alone. A con-
clusion follows in Sec. IX.

II. ORDER PARAMETER
AND GINZBURG-I. ANDAU THEORY

F=a44'+ p(44') (2.1)

It is invariant under an arbitrary change of the phase
e'~~e'e, i.e., under a gauge transformation, equivalent to
a U(l) symmetry. In the superconducting state a particu-
lar value of P is spontaneously preferred such that the
U(l) symmetry is broken. Clearly, (2.1) can trivially be
minimized; it has a single minimum given by

i
4il= —a/2P.
(2) In a ferromagnet the order parameter is the magneti-

zation S, a real, three-component vector. The free-energy
functional is given by

F=aS S+P(S.S) (2.2)

which also only contains a single fourth-order term. It is
invariant under arbitrary three-dimensional rotations of
thc spill, l.c., uildcr all SO(3) symmetry. Ill thc fcrl'onlag-

netic state, however, a particular direction of S is spon-
taneously chosen, such that the system is now only invari-

ant under rotations around S itself: The SO(3) symmetry
is reduced to a residg~J U(1) symmetry. As in the first ex-

ample, (2.2) has a single minimum at
~
S

~

=—a/2p.
(3) In superfluid He, a p-wave, spin-triplet condcsisate

In contrast to superfluid He the order parameters of
meet other systems in condensed-matter physics (with the
exception of liquid crystals} are quite simple. Corre-
spondingly the free-energy functional describing the ener-

gy change relative to the system with unbroken symmetry
is also simple.

(1) In a conventional superconductor the order parame-
ter is represented by a single complex parameter,
4=40e'~=4i+i4z, where 40 is the amplitude and P is
the phase ("gauge"). Close to T', the free-energy function-
al involving this order pariimeter is given by

G =[SO(3)]-x [SO(3)]-,x [U(i)]& . (2A)

Here the indices S,L,P indicate spin space, orbit space,
and gauge, respectively. The free-energy functional in the
Ginzburg-Landau regime can then be obtained by con-
tracting all indices in the general second- and fourth-order
terms in a way compatible with (2A). The result is"

F=a4 Tr( AA )+—,
' 4 I p) ~

Tr( AA)
~

l+p2[Tr( AAt)]l

+PiTr[(AA)(AA)']

+P4Tr[(AAt) ]

+PsTr[(AAt)(AAt)'] ) . (2.5)

These are now five fourth-order terms. The coefficients a
and pi depend on external parameters like pressure and
temperature. They can easily be calculated within weak-
coupling theory" where they obey the relation

Pz ——Pl ——P4 ———Ps ———2Pi. On the other hand, an exPli-
cit calculation of strong-coupling corrections is diffi-
cult. M Concerning the symmetry considerations ad-
dressed in this paper the actual values of a and p; are not
important; we consider them to be as given. The super-
fiuid phases which may be found near T', are given by the
minima of (2.5). The absolute minimum corresponds to
the stable equilibrium phase, local minima only yield
metastable states.

While in the first two examples the free energy can be
trivially minimized, this has not yet been possible in full
generality in the case of (2.5} describing superfluid iHC

close to T, . In order to support our observation, ex-
plained in Sec. I, that minima of the free energy generally
possess a residual internal symmetry (and hence can be
found by symmetry considerations), two more examples of
systems described by a tensor order parameter and their
associated free energies will be presented in Sec. VIII.
They are close in complexity to (2.5) but can still be mini-
mized analytically. The results will be compared with
those found by the respective symmetry classification of
possible states. In these cases it a&ill turn out that the
symmetry classification yields all minima.

(1=1,S =1) is formed. ' The BCS pair wave function
is thus given by

4(k) =v 3i4(T)A„jk~(H.H),
i.e., by a symmetric matrix in spin space describing S= 1

and a linear k relation describing i= l. (Here, v" are the
Pauh spin matrices. ) The normalized order parameter

A&J is hence a quantity with two indices: one in spin
space and one in orbit space. It can be written as a com-
plex 3X3 matrix containing 18 real parameters. If we
only consider the interactions responsible for the forma-
tion of the condensed state, i.e., neglect small, residual in-
teractions like the dipole interaction, the free energy must
be invariant under separate three-dimensional rotations in
real (or orbit) space, in spin space, and under a gauge
transformation. The symmetry group allowing for all
these symmetries and which is least restrictive in the ener-

gy, is then given by'
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III. GROUP THEORY (L') k ———ilia, jI, , (3.7)

It may be written as

h =exp(iT }

~1+ET,
(3.3)

(3.4)

where T are the generators of the infinitesimal transfor-
mations of the group H, i.e.,

TA=O . (3.5)

The order-parameter A=A&j has the transformation
properties of a "bivectoi':" it transforms like a vector
both with respo:t to its spin part (firs index) and to its or-
bital part (second index). This fact, combined with the in-
variance properties of the free energy under the group of
transformations (2.4) concerning rotations in spin and or-
bit space and a gauge transformation, imply that T can be
written as a linear combination of these transformations:

I= a.L+ b.S+c4 . (3.6}

Here S =(S,S,S') and L =(L",L",L'} are the three-
component spin operator and orbital angular momentum
operator, respectively (i.e., 3 X 3 matrices). They are given
by

From a group-theoretical point of view, "broken sym-
metry" means that below the transition the lowest state of
the system is no longer invariant under the full group 6
of the symmetry transformations but only under a sub-

group H C G. Therefore H describes the remaining (resi-
dual) symmetry of the state. The group 6 may be factor-
ized with respect to H:

(3.1)

Here the coset-space R =6/H contains all transforma-
tions that change the ground state of the system. Hence
R describes the broken symmetries of the system.

In the case of the transition from a paramagnetic to a
ferromagnetic state the respective groups are 6=$0(3)
and H=SO(2) [=U(1)]. In the paramagnetic state the
system is invariant under three-dimensional rotations in
space [SO(3)], while in the ferromagnetic states only rota-
tions around the spontaneous magnetization S, described
by U(1), leave the ground state invariant. Therefore the
broken symmetries, corresponding to any rotation chang-

ing the direction of S, are given by R =SO(3)/U(1) =S,
the rotations represented by the two-sphere.

In superfluid He the symmetry-group 6 is given by
(2A). At this point we are interested in the various factor-
izations of 6 with respect to continuous subgroups H
under which the order parameter A„jis still invariant.
Once we have found these groups the speciflc structure of
A» can easily be determined. The factorization with
respect to groups leading to inert states has first been dis-
cussed by Mineev (based on unpublished work of Volo-
vik}.

Every group element h CH corresponds to a transfor-
mation leaving A&J invariant:

hA~j ——Aqj . (3 2)

( S")„i= i—fir„„i,. (3.8)

Furthermore, @=—iA'8/B(() is the operator for a gauge
transformation, with

@A=A . (3.9)

While S only acts on the first index of A„J,L only acts
on the second one and 4 only operates on the overall
phase.

There are altogether seven generators (L,S,4)—a fact
which is also reflected in the existence of seven infini-
tesimal, but otherwise arbitrary, real parameters
a =(a„,ar, a, ), b =(b,b~, b, ), c. The relations (3.7) and
(3.8) define Lie algebras among the L', S" components

[L',Lj]=ii)le,jk L (3.10a)

[Sj',S"]=iAe„„iS~. (3.10b)

Inserting (3.6)—(3.9) into (3.5} leads to

ajejjkApk+ hie~~/ j+icApi 0 (3.11)

which is a set of nine homogeneous equations for the nine
complex components of the order parameter A„jin terms
of the parameters a;,b„,c (i,@=1,2,3). By constructing
all possible linear combinations of the generators in (3.6),
i.e., by finding all continuous subgroups H&1 of 6, we
are able to derive all those order-parameter structures that
still possess some of the original symmetry (2.4).

IV. CONTINUOUS SYMMETRIES

T=a (L+S) (4.1)

corresponding to H=[SO(3)]- -. Here, the order pa-L+ S
rameter is still invariant under joint, three-dimensional ro-
tations of L and S. In this sense it is the most symmetric
of all possible order parameters. Solving (3.11) one finds

1
Aw= ~3&~j (4.2)

which is a special case of the more general form (see the
remarks made above)

A» —— e R»(n, 8),
3

(4.3)

We will now hst all possible linear combinations of the
infinitesimal generators, i.e., all possible continuous sub-
groups H of G. Equation (3.11}is then used to calculate
the components of A&j. The respective investigations in-
cluding discrete symmetries, e.g. , rotations by 2n/m in.
spin and orbit space accompanied by discrete changes of
the overall phase, will be treated in the next section. It
should be stressed that the order parameters thus obtained
are only determined up to a rotation in spin and orbit
space and an overall phase factor, because there is no
fixed coordinate system.

First we start with the case where the phase invariance
is separately broken [i.e., c=0 in (3.6)].

(1) c=0 and a=b. This implies
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=[SO(3))- -x [U(1)]p .

(4,4)

(4.5)

We observe that the factorization of G with respect to
[SO(3)]- -, the group of all joint rotations of L and S,L+ $'
leaves us with [U(1)]~ as well as [SO(3)] -—the group

of all relative rotations of L and S. Hence, in the BW
state the relative spin-orbit symmetry as well as the gauge
symmetry is broken. This broken symmetry is called
"spontaneously broken spin-orbit symmetry" (SBSOS).
The term was introduced by Leggett who was the first
to realize the existence of this particular symmetry break-
ing.

As elucidated by Liu and Cross3" the new content of
SBSOS lies in the breaking of a relative symmetry. The
symmetries of rotations both in spin and orbit space are
here also broken, but not independently —actually a linear
combination of these symmetries is broken. It implies
that while the constituent degrees of freedom in spin and
orbit space are not long-range ordered their relative orien-
tation is.

A system with a broken relative symmetry consequently
behaves like one in which the symmetries of the constitu-
ent degrees of freedom are individually broken but which
cannot distinguish betwom them —it confuses them. We
see already here that the notion of a broken relative sym-
metry appears quite naturally within a group-theoretical
formulation. It occurs every time when a product of
groups is not simply factorized by factorizing each indivi-
dual group.

With the exception of the BW phase having H=SO(3),
the symmetry-subgroup H is composed of U(1) subgroups
only {i.e., we can choose a„=a„=b„=b„=O).The set of
equations (3.11}determining the nine complex parameters
A» is then given by

a, (51iA„z 512M„i}+bg(—5„iA2J 5„2Aij }+—icA» 0. ——
(4.6)

One can show that it separates into four independent sub-
systems, belonging to different sets of A» components.
For A» to be nonzero, the determinant D of the matrix
(4.6) has to vanish:

D =D]D2D3D4 . (4.7)

Here, the D; are the determinants of the submatrices be-
longing to the A» components as indicated:

where 8» is a rotation matrix describing relative rota-
tions of spin and orbit space, represented by a rotation
axis n and a rotation angle 8. Note, that this more gen-
eral state is invariant under simultaneous rotations
described by a matrix OIJ. in orbit space and (RQR ')~
in spin space. This is, of course, the Balian-Werthamer
(BW) state. The explicit phase factor e'~ is due to the
separately broken gauge invariance. To determine the de-
generacy space R =G/H, i.e., the broken symmetries, we
factorize G with respect to H:

& = I[SO(3)]-X[SO(3)] X[U(1)],I/[SO(3)]

Di ——[(a,—b, ) —cz][{a,+b, ) —c2]

(Aii, A, 2,Azi, Ai2), (4.8a)

D2 b——g —c (A i3,323),2

D3 ——a, —c (Aii, 332),

D4 i——c (333) .

(4.8b)

(4.8c)

(4.8d)

This way of writing allows for a simple and systematic in-
vestigation of all linear combinations of a„b„andc in
(4.6). Depending on which of the D; we choose to be zero
(nonzero) we can immediately determine which of the A»
components are nonzero (zero). To construct a linear
combination of infinitesimal generators means that we
impose conditions on them ("break" the symmetry). One
can easily convince oneself that in the case of (4.6) a single
condition (say, c=O) implies a remaining symmetry
H=U(1) XU(1), leading to an inert phase. On the other
hand, imposing more than one condition (say, c=O and
a, =b, } implies an even more restricted symmetry,
H=U(1), leading to noninert phases. We now complete
the list of possible phases.

(2) c=O; a„b,arbitrary. This implies

T=a,L'+b, S', (4.9)

and hence H=[U(1)]s X[U(l)]L, . Since D&,Dz,D3+0
and Dq —0, one im—mediately obtains the polar state

0 0 0
A~)= 0 0 0

0 0

Its order parameter is still invariant under separate rota-
tions around the preferred directions in spin and orbit
space which are both real unit vectors. Accordingly, its
broken symmetries are given by

R = I [SO(3)] /[U(1)]s j X I [SO(3)]„/[U(1)]LI

X [U(1)]y (4.11)

(4.12)

i.e., besides the phase invariance, also the invariance with
respect to rotations in spin and orbit space other than
around the preferred directions themselves, is broken.
The polar state is unique in that it is the only phase
without a broken relative symmetry.

(3) c=O; b, =O, a, arbitrary. This implies

(4.13)

and hence H=[U(1}]L, . Since Di,D3&0 and D2,D4 —0, —
the order parameter has the structure

0 0

A~~ ——p 0 0 8 (4.14}
0 0 C

with S =[I~ I'+ l~ I'+ IC I'] '" and ~»,& com-
plex. The condition b, =O implies that in this noninert
state the symmetry ~ith respect to rotations in spin space
has been completely broken:
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& =[so(3)]-x I [so(3)]-„/[U(1)]LI x[U(1)]p (415)

=[SO(3)]-,x(S')-x [U(1)]q, (4.16)

insofar as it is less symmetric (i.e., more restrictive) than
the polar state (4.10) which is seen to be a special case of
(4.14), with A =8 =0.

(4) c=0„'a, =0, b, arbitrary. This implies

T=b,S', (4.17)

and hence H=[U(1)]s. It corresponds to the previous

state with orbital and spin components interchanged; i.e.,

0 0 0

Aq)~p 0 0 0 {4.18)

8 C

and & =(S )-X[SO(3)]-„x[U(1)]~.Here the rotation

symmetry in orbital space is completely broken. Again
the polar state is obtained for A =8 =0.

(5) c=O and a, +b, =O. This implies

T=a,(L'+S'),
and hence H=[U(1)]t, +s .
D2,D&~0, this leads to

A B 0
A~J. ——p +B +A 0

0 0 C

(4.19)

Since D1 ——D& —Oand—

(4.20)

where A, B,C are complex numbers and

p =[2(
~

A
~

+ ~8
~

)+
~

C
) ] '/z. This state is a gen-

eralized representation of the so-called g phase found by
Barton and Moore. '1 However, the name "oblate state"
appears to be more useful, because it actually describes a
squashed spherical state. In fact, (4.20) representsyrecise-
ly the order-parameter structure of the Bz phase, i.e., of
the 8 phase in an external magnetic field [with
~ = —,

'
t (~„+~„),8= —1i(~„—~„),C =&»).

therxriore, by flattening the sphere completely, i.e., on
choosing 8 =C =0, one obtains the usual planar state.
Thus the actual planar state contains both continuous and
discrete symmetries. The broken symmetries of (4.20) are
found to be

8 =( I [SO(3)]-X[SO(3)]-) /[U( 1 )]s +t. ) X [U(1)]y

which is, of course, the axial state. It is still invariant
under rotations around one direction (the z direction) in
spin space and under a joint transformation of the phase
and a rotation around I, The broken symmetry is ob-
tained as

8 =
t [SO{3)] /[U(1)]s I

x j [SO(3)]-, x [U(1)]&/[U(1))

=(S )-x(S')-„x[U(1)]Lp,

(4.25)

(4.26)

1.e., the invariance with respect to rotations of directions
in spin and orbit space, as well as the relative gauge-orbit
symmetry [U(1)]t is broken. 3

(7) a, +c=O; b, =O. This implies

T=a,(L'—4), (4.27)

slid lienee H =[U(1)]L, y. Stllce D
~ =D1=0 alld

D, ,D4~0, one finds

A

vZ
8

where p=[
~

A
~

complex numbers.

completely broken

iA 0
iB 0 (4.28)

iC 0

+ IB I + I
C

I ]
In this state spin-rotation symmetry is
{b=0):

8 = I [so(3))-x[so(3)]-x [U(1)]y] /[U(1)]L,

(4.29)

=[SO(3)]-,x(S')-, x [U(1)]L, , & . (4.30)

Because of the more restrictive symmetry requirements its
order parameter is less symmetric than both that of the A

phase (A =8 =0) and that of the A~ phase (8 = iA, —
C=O). In fact it is a general representation of the Az
phase, which is obtained by choosing A = —,(b,«+5«),
8= ,'i(b,„5«),—C=O.—Note, that the orientation of
the spin-coordinate system in the present case
(d=—d~, e—=dz) has been chosen differently from the one

A
for the A phase (d=—d, ), which is, however, of no impor-
tance.

(8) b, +c=O; a, =O. This implies

(4.21)
T=b, (S'—4'), (4.31)

=(S')-, x(S')-, x [U(1)]&,L, x [U(l)]& (4.22)

which includes the broken relative symmetry [U(1)]s L

with respect to rotations in spin and orbit space.
(6) a, +c=O, b, arbitrary. This implies

T=a,{L'—4)+b,S', (4.23)

and hence H=[U(1)]t„~X[U(1)]s.Since D& ——0 and

D 1,Dz,D4+0, one finds

0 0 0

A~g
—— 0 0 01

(4.24)

1 i 0

and hence H=[U(1)]s ~. It can be obtained from the

previous state by interchanging orbital and spin space, i.e.,

B C
iA iB iC
0 0 0

(4.32)

T=a,L'+b, (S'—4), (4.33)

and hence H=[U(1)]L X[U(1)]s &. Since Dz ——0 and

Here rotation symmetry in orbital space is completely bro-
ken (a =0), i.e., &=[SO(3)]-,X(S')-, X[U(1)]& &.

(9) b, +c=O, a, arbitrary. This implies
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Di,D3,D4+0, oile finds

0 0 1

A~J. —— 0 0 i
1

'000.
which is called "P phase" (Ref. 13}. Its symmetry proper-
ties, etc., are obtaliled by interchanging the orbital aild tlie
spin parts of the Andiron-Brinkman-Morel (ABM} state
(4.24) (A~A). Accordingly, in this case a relative
gauge-spin symmetry is broken.

(10) c=a, —b,. This implies

T=a,(L'+4)+b, (S'—4), (4.35)

and hence H=[U(1)]L, +&X[U(1)]s ~. Here one has

Di ——0 and D2,D&,D~+0, such that

1 i 0
A~J- ————i 1 01

|MJ

0 0 0
{4.36)

which is the representation of the A i phase. The broken
symmetry is given by

11=($ )-X($ )„X(I[U(1)]sX[U(l)]L, X[U(1)]/I/I[U(l)]L, +yX[U(l)]5 y))

=(S ) X($ ) X[U(1)]1 s

(4.37)

(4.38)

In this case a U(1) symmetry involving a hnear combination of all three symmetries, i.e., a gauge-spin-orbit symmetry, is
broken as first discussed by Liu.

(11) a, +c=Oand b, +c=O. This implies

T=a,(L'+S'—4), (4.39)

(4.41)

and hence H= [U(1)]L, +s ~. Here one has D i,Dq+0 and D2 ——D3 ——0 such that

0 0 A

A~) p 0 0 iA (4.40)

8 i3 0

with p =[2( )
A

~
+

~
8

~
)] '~, which has been called the "e phase" (Ref. 13); one may view it as a linear combination

of the A and the p phase. This noninert state is only invariant under joint U(1) rotations of spin, gauge, and orbital vari-
ables. In a way it is complementary to the A i phase. Its broken symmetries are

R =(S )-X($ )-X ( I [U(1)]s,X [U(1)]L,,X [U(i }]yI~[U( 1 )]1.,+s, -y)

=(S )-X($ )-X[U(1)]s,pX[U(1)]L, ,p, (4.42)

T= —c (L'—2S'—4 ), (4.45)

and hence H=[U{1)]L 2s &. It is obtained from (12) by

interchanging the spin and orbital parts of the order-

i.e., a relative spin-gauge and a relative gauge-orbit sym-
metry is broken.

(12) c=a, +b, and c+b, =0 This implie. s

T=c(2L'—S'+4), (4.43)

and hence H=[U(1)]i~ s +&. We are dealing here with

a different linear combination of infinitesimal generators
than in case (11),and hence with a different symmetry H.
Since Di ——D2 ——0 and Di,Dq+0, one has

A —iA 8 '

A&& ——p —id —A i3 (4.44)

0 0 0

with @=[2(2(A
~

+ (S
~ }] '~. This noninert state is

a superposition of the A, and the P phase. As in the case
of the e phase it has two separate broken relative U(1)
symnmtries.

(13)c=a,+b, and c+a, =O. This implies

I

parameter ( A ~A ).
The last two states are similar to case (11) because the

symmetry-group H involves particular linear combina-
tions of all three symmetries, i.e., particular joint rota-
tions. Consequently, their broken relative symmetries will
all be very similar.

We have thus found 13 order-parameter structures
which still contain the symmetry of a continuous sub-
group H of G: one with a remaining SO(3) symmetry„
four with a U(1) XU(1) symmetry (they all lead to inert
states), and eight with a remaining U(1) symmetry, yield-
ing noninert states. The states (3), (4), (7), (8), (12), and
(13) have not yet been discussed in the literature.

In Fig. 1 the consecutive factorization of the
symmetry-group 6 is shown schematicaliy. An arrow
running diagonally always indicates that the factorization
involves more than one group, such that the resulting
phase has a broken relative symmetry.

%'e note, that the phase mth the highest remaining
symmetry [SO(3)] is the 8 phase. It is known to be stable,
i.e., to have the lowest energy, in the largest part of the
experimentally determined phase diagram. Its order pa-
rameter is the smoothest of all phases. 2 Next are the inert
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SO(3) SO(3)- U(&)

SO(3).L~s

U(&)
L~+ Sg

l[

U())s

U(&)s

U(1),

U( I)

8; (1}

8, , g, oblate, (5)

polar (2)

A;(6)

U (l)s U ())

U(l), , e
g

U(&), .~ A, ; (IO)

(&),
Z

(&)„

Aq,.(7)

(3)

(1)s

())s (4)

(1}s,-L, - o

( )s, -zL, - e

(&)28@-lz+ &

()2)

()3)

FIG. 1. The symmetry classification of the group
6=[SO{3}]X[SO{3}] X[U{1)]~into continuous subgroups is

shown schematically. Diagonal arrows indicating a factoriza-
tion that involves more than one group at a time, lead to broken
relative symmetries, On the right-hand side the names of the
phases (if any) and their respective numbers in the listing of Sec.
IV are indicated.

states with a U(1)XU(1) symmetry, two of which are the
A and Ai phases which are also found to be stable in a
certain region of the phase diagram.

V. DISCRETE SYMMETRIES

The investigation of the continuous subgroups of
6=[SO(3)]-X[SO(3)]-„X[U{1)]pin Sec. IV, yielded 13

different order-parameter structures. Seven of them
{1,2,5,6,9,10,11) have already been discussed in the litera-
ture, " '5 i.e., have been found to be stationary points (or
even minima) of the free energy functional (2.5)."
This shows that the structure of these phases is given by
symmetry alone: the order-parameter matrix A„&is deter-
mined by the requirement to be invariant under the action
of the respective continuous subgroup of G.

On the other hand, there are four more phases which
are known to be stationary points of the free energy: the

o. phase, ' the bipolar phase, and the axiplanar phase' (as
well as the 5 phase, whose order parameter is the trans-
pose of that of the axiplanar phase' ). They have not been
found by the analysis of Sec. IV involving continuous

symmetries. If we adhere to the observation that the
minima of the free energy correspond to phases whose or-
der parameter has a residual internal symmetry, we have
to search for symmetries other than continuous ones, i.e.,
discrete symmetries. Therefore, our aim in this section
will be to classify all discrete subgroups of 6 and to deter-
mine the order-parameter states invariant under their ac-
tion.

The continuous subgroups of 6 can be specified by the
infinitesimal generators of 6: Each element is written as
an exponential of a linear combination of generators.
There is an analogue in the theory of discrete groups: A
discrete group is generated by a subset of elements, i.e.

„

each element can be written as a product of powers of
generators. The cyclic groups C„,for example (i.e., the
rotations through 2n k In, k = 1,2, . . . , n ), are generated
by one element only. However, because of the large num-
ber of different discrete subgroups of 6 these generators
turn out not to be so useful. We will therefore resort to
another approach.

I.et HD be a discrete subgroup of 6 {2.4}. Each ele-
ment of 6 can be written as a triple (r', r,exp{i/0))
describing a rotation r' in spin space, a rotation r' in orbit
space, and a gauge transformation exp{i/0). Clearly, r'
and r' will have to be elements of discrete subgroups of
SO(3), and exp{ i{{}u)an element of a discrete subgroup of
U(1).

The discrete subgroups of SO(3) and U(1) are well
known. For SO(3} they are given by

(i) C„:the point group of rotations about the z axis
through 2mk In, with k =1,2, . . . , n The e.lements of C„
are denoted by c„.

(ii) D„:generated by the point group C„and an addi-
tional rotation through n around an orthogonal axis.

(iii) T,O, Y: the point groups of the tetrahedron, the
cube, and the icosahedron, respectively.

The subgroups of U(1}are given by C„.
For each discrete subgroup Hz of 6 there exists a

minimal direct product subgroup H, XH, XH~ of 6 that
contains HD. "Minimal" means that there is no direct-
product subgroup of H, XH, XH~ that contains HD. It
is easy to construct H„H„andH& by projection of HD
onto the factors [SO{3)]'i"",[SO(3}]"", and U(1}of G.

This construction may be applied to continuous sub-
groups as well. If, for example, we take the symmetry
group of the 8 phase, [SO(3)]- -„,the trivial result is
that SO{3)XSO(3) is the minimal direct product contain-
ing [SO(3}]-

We will see later that Hr„the discrete group of gauge
transformations, is essentially determined once H, and
H, are given. It is therefore sufficient to elucidate the
structure of the spin and orbital parts of HD with respect
to H, ~Ho.

The discrete subgroups H~ of H, &H, can be though
of as follows. There exist invariant subgroups H,

' of H,
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Ha=[(r» r» exp(&0»})] (5.1)

where k is an index which we use to denote the elements
of HD, one has to solve

r'»Ar»exp(iy»)=A for all k, (5.2}

i.e., one has to determine A„) and P» for given
r», r» GSO(3). These equations can be solved for arbitrary
r», i» (Ref. 40). Equation (5.2) can be seen to break up
into four systems of equations if the rotations are about
the z axis. The orientation of the rotation axes is not im-
portant, the solution is essentially determined by the rota-
tion angles a» and P» of r» and r». (Different orienta-
tions of rotation axes lead to different, but equivalent
forms of the order parameter. ) The solution of (5.2) is
straightforward but tedious and will not be reproduced
here. The most important general result is that

lv»l = I&»+&»I or le»l I&» I
«0~.

and H,' of H, such that the factor groups H, /H, '
and

H, /H, ' are isomorphic (i.e., one-to-one) ~ (A subgroup H
of 6 is called invariant if gHg =H for all gEG. In-
variant subgroups are necessary for the construction of
factor groups. ) The group HD is then given by the set of
all pairs (h„h,} with h, EH, /H' and h, GH, /H, '

where
h, and )i, are isomorphic elements.

Following Toledano etal. we use the notation
Hn ——(H, /H, ';H, /H, '). A proof that all subgroups Hn
are of this type has been given by Bruder. ~ Since H, and
H, were chosen such that H, XH, was the minimal direct
product containing Hn, we do not consider nontrivial
subgroups of H, XH, that are direct products.

Some examples will explain this construction.
(i) H, = C2 and H, =C3 ~ The invariant subgroups are

given by the trivial group E and the groups themselves.
Therefore the only possibility to obtain isomorphic factor
groups is to take HD ——(Cz/Cz, Ci/C3) =C2 XCi.

(ii) H, =H, =C3 ~ The invariant subgroups are E and
C&, hence either Hn (Ci/——C3 C3/C3) C3X—C3 or
HD —(C3/E;C3/E) =[(e,e), (c&,c&), (e3 e3)].

(iii) H, =C4 and H, =C2. The first possibility is
HD ——C4X C2 as before. The group C4 has a nontrivial
invariant subgroup, namely, C2 ~ The factor group C4/C2
is isomorphic to C2, hence we find

HD ——(C4/Cg'„C2)

=[(ez,e4), (c2,cg), (c2,c~),(cg,c4)] .

Several notations of these groups exist in the literature
[eg C«C2)]"

Following this recipe, we can write down all discrete
subgroups of SO(3)XSO(3): The invariant subgroups of
C„,D„,T, 0, and Fare known, and it is easy to calculate
H, /H,

'
and H, /H,

'
~ Once all discrete subgroups of

SO(3) X SO(3) ate found, we can proceed to determine the
order-parameter states invariant under their action togeth-
er with the appropriate gauge transformations.

The states are obtained by solving systems of linear
equations as in the case of continuous subgroups. If A„J
is to be invariant under the transformations of the discrete
group

This explains our earlier remark that the gauge group is
determined by the spin and orbital parts of HD. If, for
example, a» =P» =m/2, y» must take the values 0 or n./2
or m unless A&J, ——0.

Having solved (5.2) for all possible discrete subgroups
Hn of 6 (2.4), we can now give a complete classification
of all superfluid order-parameter states that have a residu-
al symmetry. The complete list shows a certain redundan-
cy: Some of the states can be generated by several dif-
ferent groups.

The first result of the classification in Table I is that all
the phases with a continuous symmetry are also produced
by discrete symmetry requirements. This was to be ex-
pected since C~ approximates U(1) for large m. It is
surprising, however, that already small discrete groups
can force the order parameter into a deflnite state. An ex-
ample is given by the polar phase: it is invariant under
D„XD„,but is already generated by D2 &(D2.

It is interesting to note, that some of the phases that ap-
pear in the classification of continuous symmetries are
found to be invariant under additional discrete symmetry
transformations. For example, the A phase tur'ns out to
be invariant under D„XC plus appropriate gauge
transformations (n and m are arbitrary which establishes
an invariance under D„XC„plusgauge transforma-
tions). This is the additional Zz symmetry mentioned in
Refs. 24 and 41 ~

Our motivation for investigating discrete symmetries
was the fact that some of the inert phases are not invari-
ant under the action of continuous groups. Table I proves
that the bipolar, planar, and a phases, which were not
found by continuous requirements contain a discrete sym-
metry:

(i) the bipolar phase is produced by (D4/C2, 'D4/C2)'
(ii) the planar phase by (D /E;D /E) for m & I; and
(iii) the a phase by ( T/E; T/E).

(The planar and a phases appear in a different form than
that given in Ref. 13. Nonetheless they are equivalent up
to a trivial rotation of the coordinate systems. ) As a re-
sult we find that the classification of continuous and
discrete subgroups of SO(3) XSO(3) XU(l) yields all inert
phases.

It is interesting that these phasm previously deter-
mined by the zero points of systems of nonlinear
equations=-an be found by mere symmetry requirements.
The symmetry classification is sometimes lengthy, but one
does not encounter any substantial difficulties in carrying
it through. In the next section we will look more closely
at this connection between algebra and analysis.

The noninert phases found by Barton and Moore' are
obviously not determined by symmetry alone: Their
structure depends on the coefficients in the free energy,
and symmetry considerations cannot reproduce this
dependence. Nevertheless even they appear because each
of them is also invariant under certain transformations:

(i) the e and g phases already appeared in Sec. IV; they
are phases with a continuous symmetry

(ii} the axiplanar and 5 phase can be written in the
form'3



Symmetry
group Other groups

TABLE I. Order-parameter states invariant under the action of discrete subgroups of 6 (2.4). In the first column the spin-orbit

part of a symmetry group is sho~n. The second column presents a generating set of group elements, indicating the combination of
gauge transformations with spin and orbital transformations. The notation is the same as before, e.g., (c„',ck, 2ir/l j denotes a rota-
tion through 2m/n in spin space, 2m/k in orbit space, and a multiphcation by exp(2m/I) (gauge transformation). Here, e, is a rota-
tion about the z axis, c„„arotation about the x axis, c~„+~+,a rotation about a diagonal of a cube. The identity element is denoted

by e, the corresponding trivial group by E. The third column sho~s the order-parameter state determined by the symmetry group;
the normalization factor has bem neglected for simphcity. All parameters appearing in the matrices are arbitrary conip/ex constants.
The fourth column presents all other groups that lead to the same order-parameter states, e.g., subgroups of the group in the first
column. In the cases where the gauge transformations have not been exp1icitly specified they are the same as in column 2.

Generating set
of group Order-parameter
elements states

(e,cia, e j

A D 0
8 E 0
C F 0

EXC
1' )2 (e,c',Oj

0 0 A

0 0 8
0 0

ExC&
EXD„, (e,ci„irj

(e,c',2n/m j

A iA 0
8 i8 0
C iC 0

C&XC&
(c,', e, m j

(e,cq, ej

A C 0
8 D 0
0 0 0

C, XC
m Q2

{e,c„',Oj

(c,', e, ir j

0 0 A

0 0 8
0 0 0

Ci XD, (e,ci„,m j

(Ci/E;C„/C„~), (ci,c„',e j, n &4

C, XC
Ptl )2

(e,c',2e/ni j

(ci,e, e j

A iA 0
8 i3 0
0 0 0

(Ct/E;C„/C„~),(ci,c„',m+2'/n), n&4

C„XC
n, Nl )2

(e,c',2n/m j

( „'c, ,e2e/jn
0

i 0
—1 0
0 0

(C /E;C /E), (c',c',4e/m j

D„XC
n~1
Ptf )2

(e,c',2e/m j

(c„',e, O)

(ci„,e, e j

0 0 0
0 0 0
1 i 0

C, XC
C, XC nm p2
(Ct/E;C„/C„~), (cq,c„',2n/n j, n &4

D„XD
n, m &1

(e,ci„nj

(ci„,e, n j

(e,c',Oj
'

(c„',e,O}

0 0 0
0 0 0
0 0 1

C. XC
C„XD
(Cg/E;C /C ~)

( Cg/E;Cp/E) (cg,ci,O)

A C 0
8 D 0
0 0 E

( Cp/E; Cg/E) 1

( ci,cg, il'j

0 0 C
0 0 D
A 8 0
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Symmetry
group

Generating set
of group
elements

TABLE I. ( Continued).

Order-parameter
states Other groups

(C, /E;C, /E) (c,',C3,211/3j A iB
iC 0

(C, /E;C. /C, ) f C 3,C 4, —17/2 j

iA 0
i8 0

—ic 0

(C, /E;C, /E) f C4,C4, 1T j
1 B

0

8 0
—A 0
0 0

(C4/C„C,/C, )

( C3/Z;C, /C, ), (c,',c,', ~j

(c./E;c. /E)
(c',c',Oj

B 0
A 0
0 C

(C~ /E; C~ /E)
mp4 {c',c~,211/m j

0
0
8

0
0 iA

i3 0

(C„/E;C2„/C2)

n)3 (CJ',c,'„,n/n j

A

iA

B

iA 0
0

iB 0

( D3/8;&3/&)
fcq, cq, Oj

fc~ c~ oj

A

0
0

0 0
8 0
0 C

( D2/E;D2/E)
(C~,C~, 1Tj

1 1

(c',c,', Oj

A 0
0 0
0 0

( D4/C2, 'D4/C2)
f c3,,+y, c4,~/2 j

1 1

l 1

f C~ pcgy~1T j

1

0
0

0 0
i 0
0 0

(c2„C2„,Oj

(c',c',Oj

A

0
0

0 0
A 0
0 B

(C3,C3„,11 j

0
1

0

1 0
0 0
0 0

(T/E;T/E) 1 1

( C3 x+g+stc3 x+p+$&2~/3 j

0
e -2@i/3

0 0

( ~/E; F/E) 1 I
f sC37 +&+4&C31 +»+jO

1

0
0

0 0
1 0
0 1

( T/E; T'/E)

(0/E;0/E)
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0 0 A

0 0 8
C D 0

and this state is invariant under ( C2/E;Cz/E);
(iii) another noninert phase found by Jones' is invari-

ant under C2 g C2.
This proves that all phases previously found to be sta-

tionary points of the free energy contain a residual sym-
metry given by a subgroup of 6 (2A). All other order-
parameter structures given in Table I are potential candi-
dates for new stationary points of the free energy. If we
subject them to the condition BF/BA„,=0, the free, com-
plex parameters in Table I become functions of the coeffi-
cients in the free energy. All cases which we were able to
investigate in this way lead to phases already known.

VI. SYMMETRY AND STATIONARY POINTS
OF THE FREE ENERGY

The symmetry classification described in Secs. IV and
V does not provide any explicit information about wheth-
er the resulting states are stationary points of the free en-

ergy or not. On the other hand, the symmetry classifica-
tion led, for example, to inert phases which are known to
be stationary points of the Ginzburg-Landau free ener-

gy. ' ' Hence there seems to exist a direct connection be-
tween the symmetry of a state and the fact that its free
energy is a minimum. One may therefore ask the ques-
tion whether it is possible to predict the existence of sta-
tionary states once the underlying symmetry group of the
free-energy functional is given. By using methods bor-
rowed from equivariant topology, ' it will be shown
that the answer is in the af6rmative.

To do this, two theorems will be needed whose proof
has been given by Michel. 2 In order to understand these
theorems and their bearing on the Ginzburg-Landau
theory of 'He, a few mathematical terms have to be intro-
duced. For further mathematical details the reader is re-
ferred to Refs. 20, 42, and 16.

Mathematically the minimization of the Ginzburg-
Landau functional involves the following ingredients:

(i) a manifold M of complex 3X3 matrices A&J with
Tr(AA )=1;

(ii) a group 6 (2.4) of transformations acting on the
manifold;

(iii) a smooth real function F (the free energy) on the
manifold, which is invariant under the action of 6, i.e.,
for m EM and arbitrary g E6 one has F(gm) =E(m ).

We define the orbit G(m) of a point rn by
6(m)= jgm ~g&6], i.e., 6(m) is the set of all points
obtained by letting all transformations in 6 act on m.
The invariant function E is seen to be constant for all
points of an orbit. If F is stationary in a point mo, i.e.,
BE/BA„J.

~

=0, it will be stationary in all points of
6(rno). Hence 6(mo) is a stationary orbit

Furthermore, the little group G~ of a point m is de-
fined as the subgroup of 6 leaving m invariant,
6 = Ig&6

~
grn =m j (note that in our case "points of

M" are matrices).

If m and n lie on the same orbit, i.e., if n =gm for
some g EG, it follows that G„=gG g '. In this case the
little groups of n and rn are conjugated

All points on the orbit of m belong to little groups con-
jugated to 6 . There may be points on other orbits hav-

ing little groups conjugated to 6 as well. This fact leads
to the definition of the stratum S(m) of m. It is the union
of all orbits of points having little groups that are conju-
gated to 6, i.e., n is an element of S(m) if there is an
element g in 6 such that G„=gG g

The stratum is a somewhat abstract notion. One may
say that a stratum is the union of all orbits of the same
symmetry type: All points of a stratum have conjugated
and therefore isomorphic little groups. This may be illus-
trated in a simple example: As manifold we take M =S2,
i.e., the sphere in R, and choose G=SO(2) =U(1), the ro-
tations about the z axis, as the symmetry group acting on
the manifold. The north and south poles of the sphere
remain invariant under 6: Their respective orbits consist
of one point only. The little group of both of them is
SO(2). All other points of M =S are transported along
orbits of constant latitude, i.e., circles. These points are
invariant under the identity element of 6 only, hence their
little group is 6 =E The m. anifold M =S2 can be di-
vided in two strata. One consists of the north and south
pole, the other one of the rest of S .

The first important result of Michel ' is the follow-
ing. If an orbit 6(m) lies isolated in its stratum S(m),
i.e., if there exists a neighborhood U of G(m) such that
UPS(m)=6(m), then 6(rn) is a stationary orbit of
euery smooth real function on M that is invariant under G.
We note, that if a stratum is composed of finitely many
orbits, each of them is isolated in its stratum. This
theorem allows one to draw conclusions about superfiuid
phases of He. We first consider the 8 phase. Its invari-
ance group (little group) is [SO(3)] -, which deter-s+ L
mines the 8-phase order parameter uniquely. It follows
that the stratum of the 8 phase consists of one orbit only,
i.e., the orbit is isolated in its stratum. Therefore Michel s
theorem states that the 8 phase is a stationary point of
every smooth real function that is invariant under 6 (2.4).
This conclusion is independent of the form of the free-
energy functional. It is not limited to a Ginzburg-Landau
type expression valid only close to T, . Note, that Balian
and Werthamer showed that within a weak-coupling
theory the 8 phase is indeed the stable state at all tem-
peratures.

The above argument is not only valid for the 8 phase,
but for all inert phases. They can be found explicitly by
group theory, as shown in Secs. IV and V. Hence the in-
ert states are stationary points of any smooth free-energy
function invariant under 6 (2.4). Michel's theorem thus
makes remarkably genera1 assertions about stationary
points without evaluating a single derivative.

The above result had already been conjectured by
Jones He tried to construct all algebraically indepen-
dent polynomials in A&J. invariant under 6 (2A). If all
such polynomials were known, it would be sufficient to
prove that the inert states are stationary points of these
polynomials. However, so far it was not possible to prove
their independence and completeness. The geometrical



SYMMETRY AND STATIONARY POINTS OF A FREE. . . 143

method used here avoids these problems altogether.
Michel's theorem cannot be applied to the noninert

phases: as their structure depends on the coefficients in
the free-energy functional, they elude a theorem making a
statement about all 6-invariant functions. Nonetheless,
there are special cases where it is possible to use a second
theorem by Michel. 2 For our purposes it can be formu-
lated as follows.

I.et rn be a point of the manifold M. If the little group
6 is maximal in the set of little groups (i.e., if there is
no other little group containing 6 ) then each 6-
invariant smooth real function E on M is stationary in at
least two orbits of S(m). However, now the stationary
orbits depend an the function E.

We note that there can be several maximal little groups,
because two little groups may not be comparable at all
(neither G„CG nor G CG„).

This theorem does not lead to new results for
6=SO(3)XSO(3)XU(1): The maximal little groups like
[SO(3)]- produce inert phases. Hence Michel's firsts+L
theorem can be applied, which is much stronger than the
second one. If, however, the symmetry group is restricted
by an external magnetic field or by taking into account
coupling of nuclear dipole moments as discussed in Sec.
VII, the second theorem can be useful.

VII. SYMMETRY REDUCTION
DUB TO A MAGNETIC FIELD
OR SPIN-ORBIT COUPLING

=(SO(3)/E;SO(3)/&) x U(1) . {72)

In the presence of dipolar couphng the spin and angular
momentum projections S, and I., cease to be good quan-
tum numbers: nevertheless, the 3X3 matrix A&J may be
taken as an order parameter. The pair interaction dom-
inates the dipolar interaction by six orders of magnitude,

An external magnetic field defines a direction and
hence breaks the symmetry with respect to rotations in
spin space. The symmetry group of superfluid iHe in a
magnetic field G,s is therefore smaller than G (2 4), i.e.,
G,s CG. The order parameter couples to the magnetic
field via the terms" H&(AA )&~„andie„„iH&(AA)„i,
Therefore in spin space only rotations about the magnetic
field leave the free energy invariant. The symmetry-group
G,s then takes the form '

G;=[U(1)]s,x [SO(3)]-„x[U(1)]&

If we use the symmetry classification given before and
take into account those groups which in spin space con-
tain only rotations about the z axis, we find that the polar,
A, P, and A i phases are produced explicitly by subgroups
of G,s. According to Michel's first theorem, these
phases are stationary points of all free-energy functions
invariant under G~~. As before Michel's second theorem
gives no result.

The symmetry group of 'He subject to the dipole in-
teraction is

Gd;p=[SO(3)]- -x[U(i)]y

so that we may assume it to determine the overall struc-
ture of the order parameter. The dipolar interaction, as a
small perturbation, then chooses a state from a manifold
of degenerate ones.

The symmetry classification of (7.2) can easily be found
from the results obtained in Secs. IV and V. We have to
take those subgroups in which operations in spin space are
compensated by identical operations in orbit space. %e
find that the A i, planar, a, and 8 phases are given expli-
citly by symmetry requirements. From this we can con-
clude that these phases are stationary points of all free-
energy functions invariant under Gd;p.

In order to find other phases by Michel's second
theorm, we have to know all maximum little subgroups of
Gd;p. We find that [U(1)]s +I, y

——((U(1);U(1));U(1)) is a
maximal little group that does not lead to an inert phase,
but to

0 0 A

0 0 iA

B iB 0
(7.3)

Michel's second theorem allows one to conclude that
amang all matrices of this form there are at least two sta-
tionary points for any free energy.

If we insert (7.3) in (2.5) and require BE/BA&J ——0, one
finds that A and 8 in {7.3) can be chosen such that this
equation has indeed two solutions.

Finally, a combination of the symmetry restrictions due
to a magnetic field and the dipolar coupling leads to a
symmetry group

6 d;p
——[U{1)]s+i, X [U(1)]p

=(U(1)/&;U(1)/E) xU(1) . (7.4)

The subgroups are easy to find. One example is
[U(1)]s +yx [U(1)]i, ~, leading to the A, phase. Hence

the Ai phase is a stationary state of the most general
free-energy function which is invariant under 6
Indeed the phase diagram af iHe shows a small wedge of
the Ai phase just below T, .

There are two nantrivial maximal little subgroups of
[U(1)]s+L, ——(U(1);U(1)), leading to the oblate

phase {4.20), and again [U(1)]z +L &, i.e., the e phase. In

this case Michel's second theroem can be applied and
predicts at least two stationary points in the strata of the
oblate and the e phase. It is satisfactory to see the oblate
phase appear at this point: the Bz phase {4.20), i.e., the 8
phase in a magnetic field, lies in the stratum of the oblate
phase. If we consider the 8 phase in the presence of dipo-
lar couphng and neglect the magnetic field for a moment,
me are led to the oblate phase as mell: the dipolar interac-
tion favors a state in which spin and orbit space are rotat-
ed against each other bye~ @=104'. If we choose the z
axis of spin space to be the rotation axis, the order param-
eter of the 8 phase is transformed to the oblate form.
Hence the structure of the Bz phase is determined by
symmetry.
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VIII. SYMMETRY CLASSIFICATION
OP EXACTLY SOLVASLE MODELS

As shown in Secs. IV—VI the symmetry classification
of 6 (2.4) yields all order-parameter states found previ-
ously by minimization of the Ginzburg-Landau functional
(2.5). This sllppoits the observation discllssed lil Sec. I
that minima of the free energy usually correspond to
states with a remaining internal symmetry.

It is worthwhile to verify this point explicitly in the
case of other systems described by a tensor order parame-
ter, whose free-energy functional is nonetheless simpler
than (2.5). Two examples will be presented.

(1) If, hypothetically, the feature of superfluidity of
iHe~corresponding to the breaking of the U(1) symmetry
in (2.4)—-did not exist, while the other properties were still
present, the order-parameter A&J would be a real matrix.
The underlying symmetry of the free-energy functional
would then be given by

6 =[SO(3)]-,X[SO(3)], . (8 1)

To minimize (8.2) it is convenient to represent the 3)&3
matrix A„~by three vectors (i.e., a triad), and their rela-
tive orientations in terms of three angles. One finds that
there are exactly two minima.

(i) For y i+ y2 & 0 and yz & 0 the minimum is given by
an order parameter where the three vectors lie mutually
perpendicular and have the same length. This is the order
parameter of the BW state; the corresponding energy is
given by I' = ——', a / (3yi+ yz).

(ii) For yi+y2&0 and yi &0 the order parameter of
the minimum can be represented by an (anti) parallel
orientation of all three vectors where only the sum of
the square of their lengths is determined by (8.2}. This
corresponds to the polar state. The energy is given
I' = ——,'a /(yi+yi).

Next, we apply the concept of symmetry classification
to (8.1). The result easily follows from those obtained in
Secs. IV and V by neglecting the phase [i.e., U(l)] degree
of freedom. Concerning the continuous symmetries this
implies putting c=O in (3.11). Therefore, the states
(1}—(5) in Sec. IV (with real matrix elements) are possible
candidates for phases with a remaining symmetry: the
BW state with a SO{3) syinmetry, the polar state with a
U(1) XU(1) symmetry, and three more states with a
remaining U(1) symmetry. The comparison with the ana-
lytic solution shows that the minima of (8.2) are indeed
the states with the highest remaining symmetry.

(2) Even more interesting are the states thought to
describe the bulk matter of neutron stars. i They are as-
sumed to be due to Cooper pairing of neutrons into a P2
state (l=1, S =1, and J=2 because of strong spin-orbit
coupling). In order to describe a J'=2 state the order pa-
rameter has to be a traceless symmetric tensor 8„„.(This

Because of A=A' the free energy in the Ginzburg-
Landau regime can be obtained from (2.5) by putting
pi =p2= )'i/2, pi—pc= p5=———'Y2/3, i.e.,

r =as'Tr(AA)+-, 'b, 'Iy, [Tr(AA)]'+y, [Tr(AA)']] .

(8.2)

also holds for /=2 pairing" in superfluid 'He. Indeed, as
shown by Sauls and Serene, the Ginzburg-Landau func-
tionals for the two problems are identical. Hence the re-
sults of Mermin for the stable states in the case of /=2
pairing may be used. ) In the case of such a pairing the
free energy has to be invairant under joint three-
dimensional rotations in spin and orbit space and a gauge
transformation, " i.e.,

6 =[SO(3)]-X[U(1)]p . (8.3)

+ —,'b, IPi ~

TrB
~

+Pz[Tr(88')]i

+PiTr(828'2) I, (8.4)

where we again assume 8 to be normalized [Tr(88') = 1].
This functional has three fourth-order invariants. The

minimization of (8A) is quite nontrivial but can still be
performed analytically as shown by Mermin. Depend-
ing on the P; there are three distinct absolute minima.

(i) For Pq & —Pi+
~ Pi ~

the order parameter is given by

l i 0

Bp„———i - —l 0
l

(8.5)

.00 0.
which has the form of the A i phase (4.36}and whose en-

ergy is I' =—a /2'.
(ii) For —6Pi &Pi & 0 the matrix has the form

1 0

0 e 2'/3
pv

0 0

0

e 4mi/3

(8.6)

which is the a phase; its free energy is given by
+= —a'/[2(p2+ pi/3)].

(iii) For Pi & —4Pi —2
~ Pi ~

the (highly degenerate)
minimum is given by any rea/ matrix 8„(upto a phase
factor}; its energy is found as F= —a2/
[2(Pi+P2+A/2)].

Now to the symmetry classification of (8.3). This is
again easily done by noting that the symmetry (8.3) corre-
sponds to that of superfiuid He with a dipolar coupling.
Its symmetry classification has been discussed in Sec. VII.
There are three continuous subgroups: [U(1)]J2

[U(1)]zi ~, and [U(1)]J. The corresponding order pa-
rameters are found from (4.6) by setting a, =b, =c/2,
a, =b, =e, and a, =b„c=0,respectively. All three yield
inert states. In the first case, 8 has the form (8.5) which
is the first of the global niinima found by Mermin. In
the second case, 8 is obtained as (4.40}, the e phase, with
A =8=1; although a stationary point, it does not corre-
spond to a global minimum. In the third case, 8 is given
by a real, traceless matrix with an overall phase factor,
corresponding to the third stable phase found by Mer-
min. The discrete symmetries yield two more inert

In the Ginzburg-Landau regime the free energy compati-
ble with this symmetry can be obtained from {2.5) by put-
ting (A—= ) 8=8 and using the appropriate Fierz identity
for traceless 3)& 3 tensors. One finds""6

F=ah Tr(88')
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phases: (T/E;T/E) leads to the tz phase (8.6), i.e., the
second minimum of the free energy, and {D /E;D /E)
to the analogue of the planar phase, which, however, is al-
ways a saddle point of the free energy. There are some
more discrete symmetries {more restrictive than the two
mentioned above) which lead to noninert states.

Therefore we find that all minima of (8.5) are included
in a symmetry c1assiflcation, i.e., can be obtained by sym-
metry alone. Here we were able to verify explicitly the
importance of discrete symmetries.

IX. CONCLUSION

Using group-theoretical methods a complete classifica-
tion of the continuous and discrete subgroups of the sym-
metry group 6= [SO(3)]-X[SO(3)]-X [U(1)]~, relevant

for superfluid He, has been prestmted. The states invari-
ant under their action have been explicitly determined.
We have shown that all phases previously found in the
literature (i.e., by minimizing the Ginzburg-Landau free
energy) are included in this classification. The inert states
can be obtained directly from symmetry requirements„
there are no free parameters to be adjusted. The noninert
states are not given by symmetry alone; however, they ap-
pe'u naturally in the classification, because each of them
is also invariant under a group of transformations.
Several states of a new symmetry type were derived. The
concept of broken relative symmetry appears as a natural
feature in such a group-theoretical treatment.

The invariance under a group of transformations does
not generally prove a state to be a stationary point of the
free energy. The investigation of this question in the
second part of our work led us to the conclusion that the
eight inert phases are stationary points of any free energy

invariant under the symmetry-group 6=SO{3)
XSO(3) XU(1). In particular, this conclusion is indepen-
dent of any Ginzburg-Landau expansion which is only
valid in the vicinity of the phase transition.

Concerning the noninert states only less strict results
hold: It was shown that some of them are stationary
points of an arbitrary free-energy functional if their
parameters are adjusted properly. It is remarkable, how-
ever, that both resu1ts are based on purely geometrical ar-
guments: It was not necessary to calculate any deriva-
tives.

These results were also applied to He in a magnetic
field and He subjected to dipolar coupling, respectively.
In both cases the symmetry classification again yielded all
the phases obtained by physical reasoning or exact minim-
ization. Applying the classification to two models of or-
der parameters whose free-energy functional is slightly
simpler than that for He (e.g., those describing d-wave
pairing in superfluid He or superfluidity in neutron stars)
and which can be minimized analytically, we have expli-
citly proven that a symmetry classification yields all mini-
IQa.

We conclude that group-theoretical methods employing
symmetry considerations are a very valuable tool for the
investigation of the stationary points of free-energy func-
tionals.
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