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Deep learning approaches are now a popular choice in the field of automatic emotion

recognition (AER) across various modalities. Due to the high costs of manually labeling

human emotions however, the amount of available training data is relatively scarce

in comparison to other tasks. To facilitate the learning process and reduce the

necessary amount of training-data, modern approaches therefore often rely on leveraging

knowledge from models that have already been trained on related tasks where data is

available abundantly. In this work we introduce a novel approach to transfer learning,

which addresses two shortcomings of traditional methods: The (partial) inheritance of

the original models structure and the restriction to other neural network models as an

input source. To this end we identify the parts in the input that have been relevant for

the decision of the model we want to transfer knowledge from, and directly encode

those relevant regions in the data on which we train our new model. To validate

our approach we performed experiments on well-established datasets for the task of

automatic facial expression recognition. The results of those experiments are suggesting

that our approach helps to accelerate the learning process.

Keywords: transfer learning, attention, explainable AI, emotion recognition, deep learning, facial expression,

human inspired, eye tracking

1. INTRODUCTION

In recent years deep learning approaches, have become a popular choice in the field of automatic
emotion recognition. Among other things, Convolutional Neural Network (CNN) architectures
are promising to overcome the limitations of handcrafted features by directly learning suitable
representations from raw data. However, to train a CNN that handles such raw data input with high
accuracy from scratch, vast amounts of annotated data are necessary as the absence of handcrafted
features requires additional abstraction layers to be automatically learned by the network. In
practice however it is relatively rare to have a dataset of sufficient size available for the specific
task a network should be trained for. A common solution to this problem comes in the form of
transfer learning where the previously gained knowledge of a model about related tasks is used to
facilitate the learning process.

Specifically there are three potential benefits that can be gained from transfer learning (Torrey
and Shavlik, 2010): Increased initial performance of the new model, a steeper learning slope that
leads to faster learning and an increase in the final performance level that the model can achieve.
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For CNNs there are two major transfer learning strategies to
be considered: The first one is to use a pretrained network as
a feature extractor by only replacing the last fully-connected
layers of the network. The second strategy is called fine tuning.
Here, the Network is first trained on the related task and then
fine-tuned to the target task by training on the target data.
While either of those methods has been successfully applied to
improve the state-of-the-art for a variety of recognition tasks,
there are some limitations that need to be considered. When
using a pretrained network for transfer learning the constrictions
of the specific architecture are also inherited by the final model.
Since the pretrained model is at least partially included in
the structure of the final model, a change of architecture later
on will therefore always require a complete retraining of the
initial model. Modern CNN-Architectures can easily take up
to multiple weeks to fully train, which makes such a complete
retraining process rather time consuming or even unfeasible
without the respective hardware equipment available. The second
limitation is, that the learned knowledge can only be shared
amongst neural networks—at least when applying finetuning. It
is therefore not possible to transfer knowledge from other sources
like different machine learning models or even humans directly
into the process.

Such human knowledge could for example come in the
form of visual attention. Eye movement studies have shown
that humans fixate particular regions of the face in order
to detect emotions (Green and Phillips, 2004). Drawing on
knowledge about human attention, a neural network should
be more sensitive to the relevant parts of a face and less
sensitive to others. In fact, previous studies have shown that
deep learning architectures with an attentionmechanism can lead
to significant improvements in performance over previous deep
learning models (Minaee and Abdolrashidi, 2019). However,
this attention is usually learned during the training process and
can not be easily transferred from one model to the other to
improve performance.

In this work we are presenting a model-agnostic, generalizable
methodology to transfer learned knowledge of important regions
from one model to another. Overall, our paper consists of
three contributions:

1. We present a novel method to inject knowledge about
the salience of facial regions that are relevant for emotion
recognition from an arbitrary source into the training of a new
model. This way we are able to accelerate the training process
by forcing the neural network to focus on the relevant parts of
the input.

2. We conducted a preliminary eye tracking study to obtain
information on the human attentional process. Based on
the results of this study we are presenting a method to
automatically identify regions within the face that were
relevant for a human annotator.

3. To avoid costly labeling we developed an approach to combine
this information with saliency mapping techniques from the
research field of Explainable Artificial Intelligence to assess
the regions of the input that are most relevant for the
decision of a pretrained neural network. This way we are

able to simulate the attentional processes of humans when
transferring knowledge from one model to another.

2. RELATED WORK

Classical transfer learning approaches have been successfully
applied for the task of automatically recognizing emotions for
quite some time.

For instance, Ng et al. (2015) pretrained a deep Convolutional
Neural Network on the generic ImageNet dataset. By successively
first finetuning the network on an emotion recognition
related auxiliary dataset and then on the final target dataset,
they were able to achieve significant improvements over the
proposed baseline.

Another approach was proposed by Xu et al. (2015),
who trained deep CNNs to identify different faces in images
and then transferred the high level features to recognize
facial expressions. For training a facial expression detection
system, they then used those networks as feature extractors
to feed a support vector machine. In a study performed on
a self recorded corpus they found, that their model not only
performed significantly better than traditional approaches but
was also more robust against occlusions that covered part of
the face.

However, those methods have the common shortcoming that
the architecture of the pretrained model is inherited by the
final model and can therefore not be adapted easily. Another
method of transferring knowledge between models, that is
closely related to our approach and overcomes those limitations
is Teacher-Student learning, also sometimes called Knowledge
Distillation. Here a student-model is trained on the predictions
of a teacher model instead of an annotated gold standard to
transfer knowledge between models. While originally developed
for model-compression (Buciluǎ et al., 2006) this approach
has also been shown to achieve similar benefits as traditional
transfer learning.

Li et al. (2017) employed a Teacher-Student model to adapt a
speech recognition model to a new domain. In their experiments
they evaluated the proposed approach in two scenarios. Firstly
they adapted a clean acoustic model to noisy speech. In the
second scenario they used adult’s speech to adapt to children’s
speech. As a result of their experiments they observed a
significant improvement in accuracy.

Meng Z. et al. (2019) used a “smart” Teacher-Student
model for domain adaption and speaker adaption in automatic
speech recognition. Their model selectively chooses to learn
from either the teacher model or the gold standard labels
conditioned on whether the teacher can correctly predict the gold
standard. That way they achieved significant improvements for
the respective tasks.

Similar to the adaption of noisy domains, Ge et al. (2018)
used a selective-knowledge distillation model to recognize low-
resolution faces. For that, they trained a teacher model on high
resolution images and distilled the most relevant features into a
student model for the recognition of specific faces in resolution-
degraded images.
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Albanie et al. (2018) exploited the idea that the emotional
content of speech correlates with the facial expression of the
speaker to develop a cross-modal Teacher-Student model for
automatic emotion recognition. By using a trained model for
automatic facial expression recognition as a Teacher, they
created labels for the visual domain of video data to train the
Student on the corresponding audio data. Their completely
unsupervised approach achieved reasonable results on various
standard benchmarks.

While these Teacher-Student approaches can be very
effectively employed to compress knowledge that has been
learned by large and complex models into smaller and more
efficient ones, the transfer itself is performed indirectly via labels.
In contrast to traditional fine tuning approaches, this does not
necessarily reduce the time that is needed to train a model
till convergence.

Besides transferring learned knowledge between models,
attention mechanisms have been a popular approach recently to
achieve similar benefits. Attention mechanisms are a component
of a network’s architecture that is responsible for guiding the
networks attention to specific regions of interest in the input.
For computer vision tasks attention can be loosely compared to
the human visual attention mechanism that is capable of quickly
parsing the field of view, discarding irrelevant information, and
then focusing on a specific target region of interest to process (Itti
and Koch, 2001).

Such a focus system for automatic facial expression
recognition has been proposed by Minaee and Abdolrashidi
(2019). By implementing an attention mechanism into a
convolutional neural network they guided their network to pay
more attention to task-relevant regions of the face, which resulted
in significant improvements in classification performance over
previous models on multiple datasets (FER, CKPlus, FERG,
and JAFFE).

Meng D. et al. (2019) recently conducted a study on the
effectiveness of attention for facial expression recognition in
video sequences of variable length. Their Frame Attention
Network used a self-attention and a relation-attention
mechanism to identify the most relevant regions within a
frame as well as the relevance of certain features within a
global representation for the given video. Their tests on the
CKPlus dataset showed that the addition of the self-attention
module increased the classification performance significantly.
Also adding the relation-attention module additionally
increased performance beyond the state-of-the-art for
this dataset.

Li et al. (2018) developed multiple approaches that
dynamically redirect the attention of a CNN to clearly visible
facial regions, to enhance facial expression recognition in case
that the face in the input image might be obstructed. To evaluate
their models they conducted experiments on multiple corpora,
including the CKPlus and AffectNet dataset. The results of those
experiments showed all their attention-based systems effectively
outperforming other state-of-the-art methods. A visualization
of the learned attention maps further more revealed that their
models indeed learned to shift their focus onto the unobstructed
part of an image in case the face was not clearly visible.

Fernandez et al. (2019) used the learned attention of a network
to remove irrelevant parts of the input data before the final
classification step. During their experiments on the CKPlus
corpus they found that the attention module improved the
overall system classification performance and noise-robustness of
the model.

3. OVERVIEW OF OUR APPROACH

In this section we present a genericmethod to assess the relevance
of specific areas in the input and integrate this knowledge into a
newmodel during training. Based on previous work from Schiller
et al. (2019) our approach utilizes saliency maps generated by
XAI algorithms like deep Taylor decomposition. These maps
aim to identify the parts of the input that were relevant for a
specific decision of a neural network. Inspired by findings that the
human learning process can be accelerated by providing visual
cues (Mac Aodha et al., 2018) we aim to use those saliency maps
to guide the attention of a Trainee network, which we want to
focus on areas that were relevant for another model that has been
pretrained on a similar task.

The overall architecture for our method is illustrated in
Figure 1. In the first step we are using the model, from which
we want to extract the knowledge, to classify a given input
sample. We refer to this model as the Trainer. Based on the
prediction of our Trainer, we then create a saliency map that
assigns a relevance value to each pixel of the input image, with
respect to how relevant this pixel was for the specific decision
of the model. For our experiments, we did this by performing
a deep Taylor decomposition, which is described in more detail
in section 5.2. In the third step we utilize this saliency map to
identify the regions that were most relevant for the prediction
and use them to create a masked version of the input image by
setting all non-relevant pixel values to zero. Section 5.4 details
our implementations of this step. Finally, we use those masked
images as input to train our new network—the Trainee model
(see section 5.5).

The motivation behind this approach is that we aim to
improve the training of the new model by directing its focus
toward relevant areas based on the knowledge of the Trainer
network. This was inspired by the human learning process which
occurs for instance when a teacher explains to a student which
characteristics are relevant to determine a certain plant or animal
species. We achieve this by masking the input data of the Trainee
model during the training process so that it learns which areas are
important. Afterwards, we validate the model with the unmasked
input images to ensure that it has learned to identify the relevant
areas by itself and can be used for predictions without requiring
the additional masking step.

4. DATASETS

While the proposed method is in general universally applicable,
we test the validity of our approach for the task of facial
expression recognition (FER). FER has been an active area of
research for quite some time now and a lot of work has gone into
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FIGURE 1 | The relevance based masking process. (1) The input picture is classified by the Trainer network. (2) The decision is then analyzed via deep Taylor

decomposition. (3) Based on the resulting saliency maps we generate masks that are zeroing out non-relevant information. (4) Masked images are used to train the

Trainee network. (5) Predictions are always performed on the unmodified image. (Images are taken from the CKPlus dataset ©Jeffrey Cohn).

the development of suitable datasets. However, those corpora
vary greatly in terms of size, image- and label-quality. We
therefore chose three different corpora for different purposes
within our experimental setup. We use AffectNet to train the
Trainer model because it is, to our knowledge, the largest
available dataset for facial expression recognition tasks. This
helps us to train a rather deep and therefore complex neural
network. The CK+ dataset is used to compare the Trainer model
to the human gaze annotations, since we wanted to test our
model on images from a domain that the model has not seen
before. Also, the comparably small size of the dataset allowed
us to annotate the complete corpus. Finally, we use the FERPlus
dataset to evaluate our system, since this corpus is large enough
to obtain statistically relevant results.

In the following, we present those datasets in detail and briefly
discuss their respective advantages for the employed tasks.

4.1. AffectNet
To train deep neural networks that learn an appropriate
representation from raw sensory input, large amounts of
annotated data are required. For the task of affect recognition,
AffectNet (Mollahosseini et al., 2017) is one of the largest
datasets available. The data from AffectNet has been collected by
querying different search engines with a large amount of emotion
related keywords. The so collected data has been manually
annotated by specifically trained annotators with respect to both
discrete categorical (Neutral, Happy, Sad, Surprise, Fear, Disgust,
Anger, Contempt, None, Uncertain, Non-Face) and continuous
dimensional (valence, arousal) emotions.

Overall, the corpus consists of around 420,000 annotated
images. However, during our examination of the data, we
identified 22,198 unique images that occur repeatedly with
different labels assigned. For our experiments, we randomly
chose one of these images each and removed the other
duplicates. This way we reduced the size of the corpus by
∼34,000 samples. Furthermore, we excluded all images with
no annotated emotions, where the annotator was uncertain or
where no faces were visible at all. This leaves us with 269,118

samples. For training and validation we kept the set-distribution
provided by the authors. Since the official test-set has not been
released yet, we use the validation set instead as suggested by
Mollahosseini et al. (2017).

4.2. FERPlus
The FER-Dataset (Goodfellow et al., 2013), originally created
by Pierre Luc Carier and Aaron Courvill, was gathered by
crawling the internet with specific search queries. Over 600 search
queries, consisting of a combination of emotion, gender, age,
and ethnicity related keywords, have been created for this task.
The first 1,000 pictures for each query have then been selected
and filtered by human annotators. The remaining 35,887 images
were thenmapped onto seven distinct emotion categories (Anger,
Disgust, Fear, Happiness, Sadness, Surprise, and Neutral). While
this process enabled the creation of a relatively large corpus,
the resulting labels are not very accurate. To improve the label
accuracy of the FER dataset, Barsoum et al. (2016) decided to
re-label the corpus, utilizing a different annotation process.

For this purpose they utilized crowd-sourcing to label each
image by 10 different annotators with respect to the same
eight categorical emotions, that already have been used in the
AffectNet dataset as well as the categories unknown and not a face.
The resulting dataset was called FERPlus. For our experiments
with FERPlus we used a majority vote mechanism to determine
the gold standard label for all annotations. After removing all
images with unknown emotions or without faces, 35,488 images
remained from the original training, validation and test sets. We
kept the set-assignment as suggested by the authors of the dataset.

4.3. CKPlus
The Cohn-Kanade (CK) database by Kanade et al. (2000) has
been specifically developed to serve as a comprehensive test-bed
for comparative studies of facial expression analysis. To this end
the authors recorded 210 adults across varying genders, ethnicity,
and age groups. All participants were instructed to perform a
series of facial expressions consisting of single action units or
combinations of them. Each recording starts with a neutral facial
expression and ends at the peak of the target facial expression.
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FIGURE 2 | Distribution of emotion labels for all corpora after preprocessing.

The last frame has then been annotated for facial action units
(Ekman and Friesen, 1978).

Later the dataset was reprocessed and extended by Lucey et al.
(2010) to overcome limitations that have become apparent since
the original release. Besides adding more data to the corpus
an important contribution of this reprocessing is the revising
and validating of the emotion labels. This validation consisted
of an elaborated multi step selection process that included the
matching of the observed action units with the labeled emotion
as well as visual inspection by emotion researchers. For our
experiments we took the last image of each sequence as the
emotion-labeled sample for the respective recording. For each
session we also took the first image as a sample for the neutral
class. Overall this leaves us with 654 images.

5. IMPLEMENTATION AND EXPERIMENTS

In this section we describe our implementations of the generic
process we introduced in section 3. In the first subsection, we
develop our Trainer model. After that, we present our approach
to the creation of saliency maps and compare those maps the
human perception in the third section. In the fourth and fifth
section, we present three masking algorithms and describe how
we use them to transfer knowledge from the Trainer to the
Trainee model. Finally, we outline the measures we took to make
our experiments deterministic.

5.1. Training the Trainer
To explore a suitable network architecture for our Trainer model,
we trained a set of multiple state-of-the art CNNs from scratch
on the previously described AffectNet dataset. Specifically, we
selected four popular CNN-Architectures for our experiments:
Xception (Chollet, 2017), MobileNetV2 (Sandler et al., 2018),
InceptionV3 (Szegedy et al., 2016), and VGG-Face (Parkhi et al.,
2015). All networks were trained until a plateau was reached

using the same hyper-parameters. Specifically we used the Adam
optimizer with a 0.001 learning rate, set the batch size to 32
and applied the categorical cross-entropy loss function to train
the model.

For all models, we applied the same set of empirically
evaluated data augmentation steps in order to increase the
robustness and to prevent the models from learning position-
dependent features: Each image has been rotated randomly
up to 25 degrees and shifted randomly by up to 10 percent
of its total width and height along the x-axis and the y-axis
respectively. We also applied a random zoom of up to 85
percent of the original image dimensions. Furthermore, each
color channel was shifted within a range of 20 percent and the
overall brightness of the images was adjusted between 50 and
150 percent of the original values. Finally, we randomly flipped
each input horizontally. To counter the heavily imbalanced
sample distribution of the dataset (see Figure 2) we also applied
a weighted loss function which weights each classes by their
relative proportion in the training dataset. This approach has
been suggested by Mollahosseini et al. (2017).

After all models had been trained, we calculated the respective
F1 scores on the validation set for each epoch and chose
the overall best performing model as our Trainer model. In
our experiments, the peak performance was reached by the
InceptionV3 network architecture, trained for 42 epochs. This
configuration achieved an F1-Score of 0.59, which is comparable
to the proposed baseline of 0.58 on the validation set 1.

However, before we employ our model as a Trainer we first
want to analyze its strengths and weaknesses. Figure 3 shows
the confusion matrix for the Trainer model. We can observe
that on the one hand our model works best for samples of

1http://mohammadmahoor.com/affectnet/. Mollahosseini et al. (2017) proposed
to use the validation set for the baseline approach since the test set has not been
officially released.

Frontiers in Computer Science | www.frontiersin.org 5 March 2020 | Volume 2 | Article 6

http://mohammadmahoor.com/affectnet/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Schiller et al. Relevance-Based Data Masking

FIGURE 3 | Confusion Matrix of the validation set of the AffectNet dataset

using the InceptionV3 model.

the Happy and Sad categories. On the other hand it does not
perform well on the Neutral class which is often mistaken for
Sad or Contempt. One possible explanation for this could be
that the expressions within these classes look very similar and
depend on the context for correct identification. Despite these
shortcomings our model still performed rather well, considering
that emotion recognition is a non-trivial task where even the
agreement amongst human raters is often quite low (Goodfellow
et al., 2013; Mollahosseini et al., 2017). An example for this can
be seen on a subset of the AffectNet dataset, where the inter-rater
agreement of two annotators was measured on 36,000 randomly
selected samples. The results reported by the authors show that
the highest agreement between those annotators exists for the
happy class with 79.6%, while the least agreement is in the neutral
class with 50.8%. The similarity in trends between the predictions
of our model and the human inter-rater agreement suggests that
our model is paying attention to similar regions of the input as
the human annotators, when assessing the facial expression of a
person while labeling the dataset.

5.2. Extracting Relevance
After training and selecting our Trainer model we then use it
to calculate so called saliency maps from the research field of
Explainable Artificial Intelligence (XAI), which aims to increase
the explainability of incomprehensible models, such as neural
networks. In general, saliency maps are heatmaps that highlight
the parts of the input that were relevant for a particular decision
and are the most commonly used method to explain the decision
of neural networks visually (Adadi and Berrada, 2018). Currently,
there are three popular ways to create such saliency maps. The
first one relies on approximating the decision making process
of an opaque model with a better explainable statistical model.
Such an approach has been presented by Ribeiro et al. (2016)

in the form of the LIME framework. While this method has the
advantage of being model-agnostic, since the approximation only
relies on the deviation in the prediction with respect to a change
in the respective input, the inner workings of the classification
algorithm are completely disregarded. The second method to
create saliency maps for neural networks makes use of gradients
to determine what parts of the input would change the prediction
the most if they were slightly different (Simonyan et al., 2013).

In this work, we rely on the Layer-wise Relevance
Propagation (LRP) concept by Bach et al. (2015). LRP utilizes the
learned weights of a network to approximate the contribution
of each input to the output by assigning a relevance value Rli
to every neuron xli of each layer l. The relevance value of the
output neuron, which one wants to analyze, is set to be the
output value of that neuron and this relevance value is then
successively propagated backwards to each previous layer until
it reaches the input layer where the neurons correspond to the
input pixels. For our experiments we chose the LRP concept
since, in contrast to the other two approaches, it satisfies the
conservation property. This property states that the relevance

values of the input R
input
i sum up to the output of the neuron that

one analyzes. Therefore, all relevance values are in proportion
to each other, e.g., if a pixel’s relevance value is twice as high as
the relevance value of another pixel then it contributed twice as
much to the prediction. This enables us to easily compare the
contribution of different pixels and to choose the most relevant
ones for our masking algorithms.

At each step of the relevance propagation, we use the deep
Taylor decomposition approach introduced by Montavon et al.
(2017) that aims to embed the LRP method into a more
general theoretic framework by using a Taylor approximation
to approximate how relevant each neuron xli of layer l was

for the neurons xl+1
j of the subsequent layer l + 1. For this

approximation, the relevance of xl+1
j needs to be modeled as

a function Rl+1
j (xl) which depends on the neurons xli of the

previous layer. This is typically done during previous steps of the
relevance propagation. After such a function is found, one can
decompose it using the Taylor series

Rl+1
j (xl) = Rl+1

j (̃xl)+
∑

i

∂Rl+1
j

∂xli

∣∣̃
xl
(xli − x̃li)+ ε, (1)

with Taylor residual ε and base point x̃l. If the base point, which

is chosen depending on xl+1
j , is a root of Rl+1

j and if one assumes

that ε is small enough then the propagated relevance from xl+1
j to

xli is given by

∂Rl+1
j

∂xli

∣∣̃
xl
(xli − x̃li). (2)

This whole process is shown in Figure 4. Depending on the
choice of base point x̃l we obtain different deep Taylor methods
andmany older LRP variants can be obtained in this way. For our
study we use the deep Taylor implementation of the iNNvestigate
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FIGURE 4 | Visualization of the deep Taylor decomposition algorithm. After the forward pass, the output is propagated backward through the network to calculate

relevance Rli of each neuron i of every layer l for the prediction.

FIGURE 5 | Saliency maps for samples of each class generated by applying deep Taylor decomposition to our Trainer model fitted to the AffectNet corpus.

framework by Alber et al. (2018). To give an impression about
how the resulting saliencymaps look like in our use case, Figure 5
depicts saliency maps that were generated to analyze our Trainer
model when classifying samples of each AffectNet dataset class.

5.3. Analyzing Human Perception
For our approach we are taking inspiration from the human gaze
behavior. The idea behind this method is to only consider those
regions as relevant, which were viewed by a human during the
process of annotating the images. However, since obtaining the
gaze information for large datasets like AffectNet or FERPlus is
not feasible within a reasonable amount of time, we propose to
use the model-generated saliency maps as proxy for the human
attention. We consider this to be feasible because we assume that
the most relevant areas for the model are similar to the regions

considered by humans. In order to validate this assumption,
we conducted a preliminary study in which we tracked the eye
movements of human annotators during the labeling process
and compared their gaze behavior with the previously created
saliency maps.

5.3.1. Method

Two human annotators participated in the experiment. Both have
not received special training for this task, but are experienced
in labeling emotion related corpora. The participants were
instructed to label the complete CKPlus dataset with respect
to the eight discrete categorical classes of the original labeling
scheme. The CKPlus dataset was specifically chosen since it is
well-established in the community as a corpus for research into
detecting individual facial expressions. The participants were
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seated 70 cm in front of a 27” monitor running at 2560 x
1440 pixel resolution. A The Eye Tribe ET1000 eye tracker was
positioned beneath the monitor to record the eye movements of
the annotators during the process. The participants then started
the labeling process using a custom written interface. A GUI
displayed images from the dataset in random order for the
annotators to label. All images were displayed in 1200 x 1200 pixel
square in the center of the display. Once they decided on a label,
the participants could then just speak the respective label into a
microphone. This way we avoided introducing additional noise
into the eye tracking recordings since the participants gaze could
always remain focused on the user interface. No time constraints
were imposed on the labeling process. By pressing a key on
the keyboard in front of the participants, they could themselves
determine when the next image was displayed. Between each
image a blank screen was displayed for 500 ms. After the blank
screen, a central fixation cross appeared for 200 ms followed by
another blank screen for 500 ms. This process was adopted from
Utz and Carbon (2016).

5.3.2. Evaluation

A popular method for investigating a user’s gaze behavior is the
visualization via heatmaps (Courtemanche et al., 2018). While
heatmaps can be used to create graphical representations for
various types of input data, the processing of eye tracking data
needs some additional consideration. The main types of human
eye movement to consider are fixations and saccades. Fixations
can be viewed as maintaining the visual gaze on a target in
order to obtain information while saccades are rapid movements
between fixations. Since conscious fixations occur, for example,
when reading a text or viewing an image, they are commonly
used as data points to create heatmaps, while saccades are
often ignored. The human field of view (FOV) consists of three
concentric areas of decreasing acuity around the currently fixated
gaze point: The foveal-, parafoveal-, and peripheral area. Usually,
the eye moves in a way that places visual points of interest within
the foveal area, where the acuity is the largest. But while the
image becomes more blurred toward the edges of the visual field,
the sensory input from the parafoveal and peripheral can still
be processed to extract useful information (Courtemanche et al.,
2018). Figure 6 illustrates the different areas in the visual field for
a given fixation.

The maximum distance from a fixation point where the
user might cognitively observe objects is called visual span
and is determined by the visual angle and the distance to the
viewing plane. To generate informative heatmaps for eye tracking
behavior, Blignaut (2010) suggest using a visual angle of 5◦. This
results in an observed area that is equivalent to the parafoveal
area. The distance to the viewing plane is the distance of the user
to the monitor.

Similar to the heatmap creation procedure described by
Courtemanche et al. (2018), we calculate each point for the
heatmap as follows:

I(x, y) =
N∑

n=0

p(x, y, fn)

FIGURE 6 | Illustrated visual perception of human gaze for the displayed

image during the annotation. The inner ring shows the foveal area, the dashed

ring encircles the parafoveal area and the rest corresponds to the peripheral

vision. The sharpness of the perceived image is decreasing from the center of

the foveal area to the outside. (Images are taken from the CKPlus dataset

©Jeffrey Cohn).

The intensity I of a given pixel with coordinates x and y in the
heatmap is defined by the sum over the probabilities p for each
fixation fn that the pixel has been perceived by the user during
the time of the fixation. To estimate this probability we apply a
Gaussian scaling function,

p(x, y, fn) = e
−((x−fn,x)2+(y−fn,y)2)

2c2 .

where x and y are the pixel coordinates of the heatmap and fn,x
and fn,y are the coordinates of the fixation fn. The constant c
can be arbitrarily chosen, but is related to the full width at half
maximum (FWHM) of p which is given by:

FWHM = 2.358 · c

Blignaut (2010) suggested to choose c as such that FWHM is equal
to 40% of the visual span. We therefore set c to

c = 0.17 · visualspan.

To compare the eye gaze heatmaps with the saliency maps of
our model, we apply the same heatmapping algorithm to the
raw relevance values calculated by the deep Taylor decomposition
approach described in section 5.2. To limit the visual focus of the
network, we only consider the nmost relevant pixels for this task,
where n is equal to the average number of fixated points by both
of our participants during the eye tracking recordings. Besides a
visual inspection, we also generated masks from the contour of
the heatmaps to quantitatively compare the overall focused area.
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TABLE 1 | Comparison of the overall perceived areas between two annotators

and the respectively generated heatmaps of our explanatory model.

ID_1 ID_2 ZeroMeasure Spearman Cosine distance

U1 U2 0.546 0.689 0.296

U1 IncV3 0.405 0.548 0.423

U2 IncV3 0.371 0.515 0.454

To this end, we calculate the ratio of the overlapping area from
the user- and model-generated heatmap to the pixel-wise union
of both areas. The result of this metric is a value between 0 and
1. A value of 1 means that both heatmaps have identical position
and contour, while a value of 0 means that there is no overlap
between the viewed areas at all.

The results are displayed in Table 1. When comparing the
overlapping areas between the heatmaps of each user and the
model, we can see that they approximately share 40% of the
pixels. Similarly, the values for the Spearman correlation and the
Cosine Distance metric indicate a medium accordance between
them. While the perceived areas shown in Figure 7 might have
different contours, both of them contain the most relevant
areas, such as the eyes, nose, and mouth. We can see that the
regions that are considered relevant in this case are similar
to areas at which the human annotators looked during the
labeling process.

5.4. Masking the Input
To create masked versions of a dataset we first need to figure
out what the most relevant regions are for each input image.
While the concept “most relevant” can be easily grasped by
humans by just looking at the saliency map (see Figure 4),
it is difficult to find a generic algorithm that selects exactly
those regions. When creating a saliency map for the prediction
of a specific input every part of this input gets a specific
relevance value assigned. Higher values imply that the input
has been more relevant for the decision of the model while
lower values are indicating that the input has been less
relevant, those terms are purely relative. It is not obvious
at what value information can actually be considered as
not important for the prediction of the Trainer and should
therefore be zeroed out in the masking process. In this section
we are therefore addressing the question “How relevant is
actually relevant?”

To this end we implemented and tested three different
masking algorithms that zero out parts of an input picture based
on the saliency map, for this picture, of the Trainer network.
Two of those algorithms build up on previous work in Schiller
et al. (2019) and the third is inspired by the human perception
we investigated in section 5.3. Each of those algorithms takes an
image I and generates a binary mask M with same shape as the
input image. The masked image is then created by taking the
component wise product I ∗M.

The first masking algorithm we tested is negative masking,
where we are zeroing out the top 10 percent of all relevance
values. That is each entry mi of the mask M is calculated

based on the corresponding relevance values Ri of the saliency
map as

mi : =

{
0 if Ri is part of the top 10% of all Ri’s

1 if not.

The motivation behind this algorithm was to force the Trainee
network to pay attention to features that were not used by the
Trainer network. The resulting Trainee model could then be used
in a fusion system together with the Trainer network.

The second masking algorithm we implemented is mean
masking which zeroes out all pixels whose relevance values Ri are
smaller than the mean relevance value of the image. In this case
mi is calculated by

mi : =

{
1 if Ri ≥

∑N
i=1 Ri
N

0 if not,

where N is the total number of pixels in the input picture. This
masking aims to accelerate the training process of the Trainee
network by only showing the areas of an input picture that were
already identified as relevant for the Trainer network.

For the final masking algorithm we choose the n pixels with
the highest relevance values, where n is the average number
of fixated points by the participants in our eye tracking study
described in section 5.3. We then use those pixels as replacement
for human fixations and apply the heatmapping approach
presented in section 5.3 to identify relevant information in
an input image. Based on this heatmap we generate a mask
by setting mi to zero if the intensity Ii of the heatmap
at the corresponding pixel i is also zero. In total mi is
calculated by

mi : =

{
1 if Ii > 0

0 if not.

Since this form of masking is modeled after the human
perception, we refer to it as perceptive masking.

Figure 8 shows an example of all masking approaches.
Overall, the negative masking method still retains most of the
original input image since only 10 percent of the pixels are
masked out. In contrast to that, the perceptive masking removes
the majority of the image and only leaves the most important
areas such as the eyes, nose, and mouth visible. Compared to
the other two methods, the mean masking approach provides
a middle ground where the lesser relevant half of all pixels
are removed.

5.5. Training the Trainee
In our experimental setup we employed the InceptionV3
architecture with ∼23.8 million parameters trained on the
AffectNet dataset as Trainer model (see section 5.1). As the
Trainee we chose the MobileNetV2 architecture which only
has 3.5 million parameters and is therefore more lightweight
and can be trained faster than the original Trainer model.
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FIGURE 7 | Eyegaze comparison between two users, during the annotation of an image, with the respective areas that were relevant for our neural network to classify

this image. (Best viewed in color. Images are taken from the CKPlus dataset ©Jeffrey Cohn).

FIGURE 8 | Illustration of the masking algorithms used for training. (1) The first row shows the negative masks where the most relevant regions are zeroed out. (2) The

middle row displays masked images, using mean masking where pixels with less than average relevance values were zeroed out. (3) Finally the third mask uses a

perceptive masking algorithm, that is modeled after the human eyegaze behavior. The masked areas in these images are highlighted in red color to improve visibility

(Best viewed in color).
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The reason why we chose these architectures is because
we wanted to show that our approach can be used to
transfer the knowledge from a much larger network with
almost seven-times as many parameters to a small and
lightweight model with a completely different architecture
which enables new application scenarios for the Trainee
network (e.g., devices with limited computational capabilities like
mobile phones).

As classification target for the Trainee network we chose the
FERPlus dataset for the task of facial expression recognition.
While transfer learning is most often performed by transferring
knowledge from related tasks with more data available, we
specifically chose to train our Trainee model for the same task as
the Trainer model. Applying the perceptive masking algorithm
our model serves as proxy for a human annotator. This way we
aim to assess the validity of directly integrating the attention of a
human annotator into the system in the future.

To establish a baseline we first trained our model on the
non-masked FERPlus data, without using any transfer learning.

To evaluate our transfer learning approach proposed in
section 3, we created a masked version of the FERPlus dataset
for each masking algorithm introduced in section 5.4: negative-,
mean-, and perceptive-masking. For this we used each image I of
the FERPlus corpus as input for our Trainer model and generated
a saliency map that analyzes the prediction of our Trainer model
for this input I. Based on these saliencymaps we generated binary
masksM with the same shape as the input picture and then used
the masked image, which is the componentwise product I ∗M, as
new training image. In this way we encode knowledge from the
Trainer network in the new training set by guiding the attention
to certain areas, depending on the saliency maps of the Trainer
model and the chosen masking algorithm.

This leaves us with three new versions of the FERPlus dataset.
By training the Trainee network on one of those masked training
set we can transfer knowledge from the Trainer network to
a completely new model architecture instead of having to use
the same architecture with pretrained weights as in traditional
transfer learning approaches. This enables us to experiment with
and compare different architectures for the Trainee network.

In addition to training the Trainee model exclusively on
masked training data, we also trained a version of our Trainee
model for each masking algorithm, where we first used the
masked training set and then switch to the original non-masked
dataset after a few epochs. After that, the unmodified images are
used as input to make sure that the specifics of the new corpus are
taken into account.

In section 6 we present a comparison of the training progress
of our seven different Trainee models.

5.6. A Word on Reproducibility
For the evaluation of our proposed approach we used
TensorFlow2 to implement the necessary experiments and
performed the model training on NVIDIA Tesla V100 GPUs.
However, during training we noticed that the initial results were
not deterministic and could not be reproduced in consecutive

2https://tensorflow.org

runs even though the parameters were not changed and the
random seeds were fixed. Figure 9 shows the progression of
three identical runs which resulted in different slopes for the
F1 and Loss metrics. As illustrated, the indeterministic influence
factor led to massive differences between each learning curve
and caused that in one case our model started learning after
3.5 million steps while in the other case it already began after
0.8 million steps. Additionally, we occasionally observed runs
where our model immediately started overfitting or did not learn
anything at all even though the configuration was the same. We
suppose that, since most runs eventually ended up at similar
performance levels after enough training time this was not as
apparent or relevant in previous research, but because one of our
goals was to improve the learning process and thus the initial
model performance we needed to be able to create reliable and
reproducible learning curves in order to compare them to each
other. This problem has recently been acknowledged by NVIDIA
at the GPU Technology Conference 2019 where they reported
similar observations and discussed their work to eliminate non-
determinism from deep learning when using TensorFlow on
GPUs (Riach, 2019).

After extensive research and testing we found two solutions to
solve this problem. The first one was to perform all experiments
on the CPU instead of the GPU, but since this would have
required much more computation time we decided to use an
alternative solution. For that, we set up an NVIDIA Docker
environment3 and used the official TensorFlow container4

provided by NVIDIA. Since version 19.06 this container
includes a determinism feature which can be enabled to ensure
the selection of deterministic convolution and max-pooling
algorithms as well as the deterministic operation of bias additions
on GPUs. In addition to that, the number of worker threads had
to be limited to one, since parallel processing across multiple
threads can also introduce unreliable behavior and thus lead
to indeterministic results. After applying all of these changes
we were finally able to reproduce the exact progression of
each metric across multiple consecutive runs with the same
configuration.

6. RESULTS AND DISCUSSION

In this section, we present and discuss the results of our
experiments, comparing the training progress of different
implementations of the generic transfer learning approach
proposed in section 3. To this end, we utilized our InceptionV3
model which was pretrained on the AffectNet dataset (section
5.1) to mask the FERPlus dataset with the algorithms introduced
in section 5.4 and subsequently train a MobileNetV2 architecture
network on the modified data (section 5.5).

Figure 10 shows the learning curves of our Trainee model
for each of our masking algorithms, as well as the "no mask"
base model which is trained on the unmasked, full images.
As illustrated, the mean masking algorithm greatly accelerated
the training process in the beginning, but fell under the

3https://github.com/NVIDIA/nvidia-docker
4https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow
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FIGURE 9 | History of F1 and Loss metrics for three identical training runs of the same model with the same configuration and the same random seeds which

produced indeterministic results before applying changes to ensure reproducibility.

FIGURE 10 | Learning curves of the Trainee network trained on differently masked versions of the Ferplus dataset. Here, “no mask” refers to a model, that has been

trained on the full, unmasked images. The combined version (e.g., “mean mask + no mask”) have been trained on the masked corpus for 9 epochs (marked by ①)

before switching to the unmodified dataset. The shown results are evaluated on the unmodified images of the validation set.

performance of the network trained on plain images after
about 700,000 training steps. This is to be expected since the
masking process hides information from the network. While this

helps the network to process the remaining relevant input the
additional information would still be useful to achieve an overall
better performance.
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FIGURE 11 | Confusion Matrix of the validation set of the FERPlus dataset

using the reference baseline model. The model has been trained on the

unmasked images for five million steps.

FIGURE 12 | Confusion Matrix of the validation set of the FERPlus dataset

using the best performing model. The model has been trained on the negative

masked images as well as the unmasked input for five million steps.

Additionally, Figure 10 shows that switching from themasked
input data to the unmasked input during training after nine
epochs retains the initial acceleration of the masking algorithm
while obtaining slightly higher performance than when just
training with the input image directly.

Since the performance of the Trainer model is skewed
toward the happy class (see Figure 3), we investigate whether
our transfer-learning approach introduces the same bias to the
Trainee model. To this end we calculate the confusion matrices
for our best performing model, as well as the “no mask” base

model, to compare the per-class-performance between them.
Figure 11 shows the confusion matrix for the “no mask” base
model. Our best performing model, trained first on the negative
masked images and subsequently on the full, unmasked input is
shown in Figure 12. Each model has been trained for five million
steps on the training set of the FERPlus dataset. The official
validation set of the corpus has been used for validation.

Comparing the two matrices, we find that the biggest
difference in per class performance lies in the prediction quality
of fear and contempt. While the base model struggles to predict
fear correctly, the masked model exhibits a similar weakness with
the contempt class. However, since the trainer model does not
show a skew toward either of those classes, we argue that this
phenomenon is not due to the bias of the Trainer model.

Initially, we intended to use the negative masking algorithm to
zero out relevant information and therefore train a network that
focuses on different areas than the original Trainer network. This
newly created network could then be fused on the decision level
with the explanatory network to improve results—an approach
that has been successfully used before in a different domain
(Schiller et al., 2019). Yet we found that the negative masking
approach performed better than the mean masking method. A
potential reason for this contra-intuitive observation lies in the
fact that the zeroing out of the most important pixels might have
acted as a highlighting and helped the network to learn rough
shapes of important features, such as the eyes or the mouth (see
Figure 8).

The third approach we tested was the implementation of
perceptive masking which is modeled after the human gaze
behavior. We found that the perceptive masking approach
performed the worst if we do not switch to unmasked training
images. When switching the input after nine epochs to the
unmodified images, the performance was comparable with
the mean masking approach. Most likely this is due to the
additional loss in information caused by the more restrictive
masking process. This is related to the fact that the deep Taylor
decomposition we used for saliency map creation assess the
relevance of every pixel of the input image. It is therefore
necessary to choose the most relevant pixels as proxy for human
fixations. More selective saliency map generation algorithms like
the ones in Huber et al. (2019) or Mopuri et al. (2018) might
be better suited for this particular masking algorithm, since they
already select a smaller number of pixels.

If possible we think that perceptive masking should be used
with actual human fixations. This has the additional advantage
of incorporating human knowledge into the training loop. While
the similarity measurements and the visual inspection of the
perceived areas in section 5.3 indicate that our Trainer model is
overall looking at similar facial features as the human annotators
(eyes, mouth, nose, etc.), a closer look reveals that it does not
necessarily focus on the correct features for a specific prediction.
An example for this can be seen in Figure 13 that depicts a case
where the Trainer model predicted an image wrongly as anger.
The gold standard label of the image is disgust which is indicated
by a wrinkled nose or the raising of the upper lip (Lucey et al.,
2010). Here the model is clearly ignoring the nose wrinkles and
focuses on the mouth, nose, and eyes instead. In contrast, the
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FIGURE 13 | Example for an image that got correctly labeled as disgust by the human annotator but not by our Trainer model. Comparing the gaze behavior of the

human with the most relevant pixels for the decision of our Trainer model shows that our model is not focusing on the characteristic nose wrinkles (Best viewed in

color. Images are taken from the CKPlus dataset ©Jeffrey Cohn).

human annotator is mainly paying attention to the wrinkled nose
which is highly relevant for the prediction.

In general, we observed that our approach can contribute to
a faster training in all cases. However, the masking should be
discarded after an initial warm-start to maintain pace and ensure
the overall quality of the model.

One advantage of our proposed transfer learning process is
that it is explainable in the sense that we can see what kind of
information is transferred from the Trainer to the Trainee model
by looking at the generated saliency maps or masked images.
This potentially enables us to recognize whether the transferred
information stems from faulty reasoning of the Trainer network.
In this case, one should remove the faulty samples from the
masked training set or use another Trainer model.

In contrast to traditional transfer learning approaches, like
fine-tuning, our proposed method does not incorporate the
source model into the architecture of the target model. We
refer to this effect as being model-agnostic. Being model-agnostic
comes with three major advantages. First of all, the new Trainee
network does not need to use pretrained weights from the
Trainer network and therefore we are free to choose any kind
of architecture for the Trainee network without retraining the
Trainer model. Secondly, the transfer of relevant regions via
the augmentation of the input data has the advantage of being
independent of the Trainer model acting as source of knowledge.
The only condition is that it is possible to create saliency
maps for the predictions of the Trainer model. This way our
approach is not restricted to the use of neural networks. In
theory, one could use any model or even humans as source
of knowledge, as long as it is possible to assign a relevance
value to each input value in relation to a specific prediction.
Thirdly, our approach is not limited to one Trainer model. It
can be easily adapted to incorporate the trained knowledge from
multiple sources.

Unlike traditional transfer learning approaches however,
our method does not provide any information about the
interrelations between the input pixels. Therefore the learned
features, which are passed from onemodel to another when using
the source model as feature extractor or for fine tuning, must
be learned again in our scenario. Since we have shown that our
Relevance-based Data Masking (RBDM) approach, in its current
form, can achieve a positive impact on the training speed but
does not contribute much to increase the overall performance of
the Trainee model we think that the choice of transfer learning
method depends on the intended application. If there is already a
pretrained model available whose architecture fits the respective
target use case then we recommend to go with the traditional
feature extraction or fine tuning approach. On the other hand,
if complete control over the architecture of the target model
is a concern (e.g., to ensure inference performance or restrict
deployment size), or knowledge from other sources should be
integrated into the training process, we suggest to apply our
proposed RBDMmethod.

7. CONCLUSION

In this work we proposed a method for facial expression
recognition that utilizes saliency maps to transfer knowledge
from an arbitrary source to a target network by essentially
“hiding” non-relevant information. In contrast to common
transfer learning approaches our proposed method is
independent of the employed model, since the knowledge
is solely transferred via an augmentation of the input data.
This property comes to play when there is no pretrained model
available whose architecture is appropriate for the respective
application (e.g., when specific criteria for inference performance
or model size must be met).
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Furthermore, we conducted a preliminary eye tracking study
to obtain information on the human attentional process for facial
expression recognition. The goal of this study was to assess the
feasibility of incorporating the human gaze behavior directly
into our proposed method. We used the results of this study
to develop an approach that combines the gained information
with saliency mapping techniques to assess the regions of the
input that are most relevant for the decision of a pretrained
neural network. This way we were able to mimic the attentional
focus of the human annotators for our pretrained model and
could therefore integrate the model into our method as a human
proxy. This allowed us to evaluate the benefits of integrating
the human gaze behavior empirically on a larger dataset that
would have been too expensive to label. However, we also found
that while our model was overall considering the same set of
facial features (e.g., nose, mouth, eyebrows, etc.) to recognize
facial expressions as the human annotators, we found that it
did not necessarily consider the most characteristic features for
the respective predictions. This suggests that there might be
additional benefits of using actual humans perception as source
for our proposed transfer learning process.

Finally, we applied our approach to transfer knowledge
between two domains and model architectures. To this end
we used the InceptionV3 model architecture trained on the
AffectNet dataset as the source, and the smaller MobileNetV2
architecture on the FERPlus dataset as the target model. The
evaluation of our experiments showed that our new model was
able to adapt to the new domain faster, when forced to focus on
the parts of the input that were considered relevant by our source
model. However, in order to not forfeit the overall performance
we needed to switch the input to the full images after a few
epochs of training.

Overall, we argue that our approach allows us to exploit
saliency maps to transfer knowledge between models. In the
future we would like to explore additional ways to utilize saliency
maps for this task, for example by using them as additional
training targets or combining our methods with other transfer
learning approaches.
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