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1 Introduction

Speech-based Human-Machine interfaces have been gaining an increasing interest
among the related scientific community and technology market. One of the key
tasks to be faced within these architectures is Automatic Speech Recognition
(ASR), for which a certain degree of understanding has been already reached in
the literature. Several efforts have been oriented on purpose to take the presence
of acoustic distortions into account and reduce the mismatch between training
and testing conditions leading to poor recognition performances [1]. Multi-party
meetings surely represent an interesting real-life acoustic scenario for this kind of
application, where multiple speakers are simultancously active in a reverberated
enclosure: The presence of overlapping speech sources and of the reverberation
effect due to convolution with room impulse responses (IRs) strongly degrades
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the ASR accuracy and a strong Digital Signal Processing (DSP) intervention is
required in order to make the ASR system to work properly. Moreover, another
important issue is represented by the real-time constraints: The recognition of
the speech content related to each speaker is often required while the audio
stream is processed, making the complete task even more challenging.

Several solutions have been proposed in the literature on Multiple-Input
Multiple-Output (MIMO) to jointly address the blind separation and dereverber-
ation problems: For example a two stage approach leading to sequential source
separation and speech dereverberation based on blind channel identification
(BCI) has been proposed in [2]. A real-time implementation of this approach
has also been presented by some of the authors in [3]. The present contribution
wants to employ such an algorithmic framework as multi-channel DSP front-end
for the subsequent ASR system aimed at accomplishing the recognition task for
all available speech streaming, always at run-time. It must be remarked that the
employed solution also involves a speaker diarization module, able to identify
the occurrence of an audio segment characterized by overlapping speakers and
therefore correctly pilot the front-end and the ASR operations.

The overall framework has been developed on a freeware software platform,
namely NU-Tech [4], suitable for real-time audio processing. The HTK engine [5]
has been employed for real-time speech recognition. Experiments performed over
an LVCSR corpus (synthetically manipulated to match the addressed acoustic
scenarios) confirm the effectiveness and real-time capabilities of the aforemen-
tioned architecture implemented on a common PC.

The paper outline is the following. In Section 2 the overall multi-channel DSP
framework, aimed at separating and dereverberating the speech sources is de-
scribed. Section 3 is devoted to analyze the main parametrization and implemen-
tation issues relative to such a framework and the selected ASR engine, whereas
in Section 4 the experimental setup is discussed and computer simulation results
are commented. Conclusions are drawn in Section 5.

2 The Multi-channel DSP Front-End

Assuming M independent speech sources and N microphones with M < N; the
relationship between them is described by an M x N MIMO FIR (Finite Impulse
Response) system. According to such a model and denoting (-)7" as the transpose
operator, the following equation for the n-th microphone signal holds:

M
va(k) =Y hl su(k,Ly) +bu(k), k=12..K  n=12..N (1)
m=1

where hy, = [Rnmo Pamai - Pumopn,—1)7 is the Lp-taps IR between the
m-th source and the n-th microphone (m = 1,2,...,. M, n = 1,2,...,N) and
sm(k,Lp) = [sm(k) spm(k —1) ... su(k — L + 1)]T. The signal b, (k) is a
zero-mean gaussian noise with variance Jg,Vn. By applying the z-transform, the
MIMO system can be expressed as:
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M
Xn(2) =Y Hym(2)Sm(2) + Bu(z),  n=12,..N. (2)
m=1

The objective is recovering the original clean speech sources by means of a proper
source separation and speech dereverberation algorithms considering in addition
the presence of overlapping speakers. The framework proposed in [2,3] consists
of three main stages: source separation, speech dereverberation and BCI. Firstly
source separation is accomplished by transforming the original MIMO system in
a certain number of Single-Input Multiple-Output (SIMO) systems and secondly
the separated sources (but still reverberated) pass through the dereverberation
process yielding the final cleaned-up speech signals. In order to make the two
procedures properly working, it is necessary to estimate the MIMO IRs of the
audio channels between the speech sources and the microphones by the usage of
the BCI stage. As mentioned in the introductory section, this approach suffers
of the BCI stage inability of estimating the IRs when two or more sources are
concurrently active. To overcome this disadvantage a speaker diarization system
can be introduced to steer the BCI stage. Speaker diarization takes as input
the microphone mixtures and for each frame, the output P; is 1 if the ¢-th
source is the only active, and 0 otherwise. In such a way, the front-end is able
to detect when to perform or not to perform the required operation. Using the
information carried out by the speaker diarization stage, the BCI will estimate
the IRs and the ASR engine will perform recognition if the corresponding source
is the only active. In this work the oracle style is assumed, i.e. the speaker
diarization system is assumed to operate at 100% of its possibilities. The block
diagram of the proposed framework is shown in Fig. 1 where N = 3 and M =
2 have been considered. The three aforementioned algorithmic stages are now
briefly described.
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Fig. 1. Block diagram of the proposed framework
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Blind Channel Identification Stage. MIMO blind system identification is
typically obtained by decomposing the MIMO system in a certain number of
SIMO subsystems in order to make the problem tractable and use powerful al-
gorithms to properly estimate involved TRs. Considering a real-time scenario
adaptive filter techniques are the most suitable. In particular the so-called un-
constrained normalized multi-channel frequency-domain LMS [6] algorithm em-
ployed here represents an appropriate choice in terms of estimation quality and
computational cost.

Source Separation Stage. Here we briefly review the procedure already de-
scribed in [2] according to which it is possible to transform an M x N MIMO
system (with M < N) in M 1 x N SIMO systems free of interferences, as de-
scribed by the following relation:

Ysm»p(z):FSm,p(Z)Sm(Z)—i_BSm,p(z)? m:1:27"'7M7 p:1727---7P (3)

where P = C¥ is the number of combinations. It must be noted that the SIMO
systems outputs are reverberated, likely more than the microphone signals due
to the long IR of equivalent channels Fs _ ,(z). Related formula and the detailed
description of the algorithm can be found in [2].

Speech Dereverberation Stage. Given the SIMO system corresponding to
source S,,, let us consider the polynomials G ,(2),p=1,2,..., P as the dere-
verberation filters to be applied to the SIMO outputs to provide the final esti-
mation of the clean speech source s,,, according to the following:

P

S(2) = ) Gspp(2)Ys, p(2): (4)

p=1

Optimal filtering is employed in [2], whereas adaptive solutions, like the one
presented in [7], can be efficiently adopted to satisfy the real-time constraints.
This has been done already in [3] and the same approach is followed here too.

3 Real-Time System Implementation

3.1 The Multi-channel DSP Front-End

This section is devoted to show how the multi-channel algorithmic framework
depicted in Fig. 1 has been implemented for real-time ability within the NU-
Tech framework [4]. NU-Tech allows the developer to focus on the algorithm
implementation without worrying about the interface with the sound card. The
ASIO protocol is supported to guarantee low latency times. NU-Tech architec-
ture is plug-in based: An algorithm can be implemented in C+4++ language to
create a NUTS (NU-Tech Satellite) that can be plugged in the graphical user
interface. Inputs and outputs can be defined and connected to the sound card
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Fig. 2. NU-Tech setup Fig. 3. Room setup

inputs/outputs or other NUTSs. The implementation of the algorithmic architec-
ture reflects the block scheme of Fig. 1: Three NUTSs correspond to the actually
developed stages (i.e. BCI, DEREVERBERATION, SEPARATION) and one is devoted
to the speaker diarization oracle (DIARIZATION). In order to achieve a more op-
timized and efficient execution, all the NUTSs have been implemented by using
the Intel® IPP library. Fig. 2 show the NU-Tech interface, with the previously
described plug-ins and their interconnections. The real-time capabilities of the
complete framework have been verified processing a 40 s long audio file. The

averaged real-time factor obtained in ten algorithm runs is 0.14. Experiments
have been conducted on a Intel Core i7 870 with 4 GB of RAM.

3.2 Automatic Speech Recognition Engine

Automatic speech recognition has been performed by means of the Hidden
Markov Model Toolkit (HTK) [5] using HDecode, which has been specifically
designed for large vocabulary speech recognition tasks. Features have been ex-
tracted through the HCopy tool, and are composed of 13 Mel-frequency Cepstral
Coeflicients, deltas and double deltas, resulting in a 39 dimensional feature vec-
tor. Cepstral mean normalization is included in the feature extraction pipeline.
Recognition has been performed based on the acoustic models available in [8].
The models differ with respect to the amount of training data, the use of word-
internal or cross-word triphones, the number of tied states, the number of Gaus-
sians per state, and the initialization strategy. The main focus of this work is to
achieve real-time execution of the complete framework, thus an acoustic model
able to obtain adequate accuracies and real-time ability was required. The com-
putational cost strongly depends on the number of Gaussians per state, and in [§]

Table 1. Characteristics of the selected acoustic model

Training data WSJO & WSJ1 # of tied states (approx.) | 8000
Initialization strategy | TIMIT bootstrap # of Gaussians per state 16
Triphone model cross-word # of silence Gaussians 32
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it has been shown that real-time execution can be obtained using 16 Gaussians
per state. The main parameters of the selected acoustic model are summarized
in Table 1. The language model consists of the bk words bi-gram model included
in the Wall Street Journal (WSJ) corpus. Recognizer parameters are the same
as in [8]: using such values, the word accuracy obtained on the November ’92
test set is 94.30% with a real-time factor of 0.33 on the same hardware plat-
form mentioned above. It is worth pointing out that the ASR engine and the
multi-channel DSP front-end can jointly operate in real-time.

4 Computer Simulations

The acoustic scenario under study is made of an array of three microphones and
two speech sources located in a small office. The room arrangement is depicted
in Fig. 3. The data set used for the speech recognition experiments has been
constructed from the WSJ November '92 speech recognition evaluation set. It
consists of 330 sentences (about 40 minutes of speech), uttered by eight different
speakers, both male and female. The data set is recorded at 16 kHz and does
not contain any additive noise or reverberation.

A suitable database representing the described scenario has been artificially
created using the following procedure: The 330 clean sentences are firstly reduced
to 320 in order to have the same number of sentences for each speaker. These are
then convolved with IRs generated using the RIR Generator tool [9]. No back-
ground noise has been added. Two different reverberation conditions have been
taken into account: the low and the and high reverberant ones, corresponding
to Tsp = 120 ms and Ty = 240 ms respectively (with IRs 1024 taps long).

For each channel, the final overlapped and reverberated sentences have been
obtained by coupling the sentences of two speakers. Following the WSJ November
‘92 notation, speaker 440 has been paired with 441, 442 with 443, etc. This
choice makes possible to cover all the combinations of male and female speakers,
resulting in 40 sentences per couple of speakers. The mean value of overlap
has been fixed to 15% of the speech frames for the overall dataset. For each
sentence the amount of overlap is obtained as a random value drown from the
uniform distribution on the interval [12, 18]. This assumption allows the artificial
database to reflect the frequency of overlapped speech in real-life scenarios such
as two-party telephone conversation or meeting [10].

4.1 Experimental Results

The focus is on the recognition capabilities of the ASR engine fed by speech
signals coming from the multichannel DSP front-end and therefore the quality
index employed to evaluate the effectiveness of the approach is the word recog-
nition accuracy. Other indexes, suitable to assess the performances of the sole
multi-channel DSP front-end, have been already considered in [3]. Fig. 4 reports
the word accuracy values attained in low and high reverberant conditions. The
word accuracy obtained assuming ideal source separation and dereverberation is
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93.60%. This situation will be denoted as “Reference” in the remainder of the
section. Three different setups have been addressed: In the first (Unprocessed),
the recognition is performed on the reverberant speech mixture acquired from
Micg (see Fig. 3); in the second (ASR w/o SD), the ASR engine does not exploit
the speaker diarization output; in the last one (ASR w/ SD) the ASR engine
exploits the speaker diarization output.

The word accuracy has been evaluated in two different condition: Ouverall,
where the complete test file is processed by the multi-channel DSP front-end
and recognition is performed on the separated and dereverberated streams and
Convergence, where the recognition is performed starting from the first silence
frame after the BCI and dereverberation stages converge. Additional experiments
have demonstrated that this is reached after 20 — 25 s of speech activity. Ob-
serving the reported results, it can be immediately stated that feeding the ASR
engine with unprocessed audio files leads to very poor performances. The miss-
ing source separation and the related wrong matching between the speaker and
the corresponding word transcriptions result in a significant amount of insertions
which justify the occurrence of negative word accuracy values.

Conversely, when the audio streams are processed, the ASRs are able to
recognize most of the spoken words, specially once the front-end algorithms
have reached the convergence. The usage of speaker diarization information to
drive the ASR activity significantly increases the performance. In the Conver-
gence evaluation case study, when Tgo = 120 ms, a word accuracy of 86.49%
is obtained, which is about 7% less than the result attainable in the “Refer-
ence” conditions. As expected, the reverberation effect has a negative impact
on the recognition performances especially in presence of high reverberation,
i.e. Tso = 240 ms. However, it must be observed that the convergence margin is
even more significant w.r.t. the low-reverberant scenario, further highlighting the
effectiveness of the proposed algorithmic framework as multichannel front-end.
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5 Conclusions

In this paper, an ASR system was successfully enhanced by an advanced multi-
channel DSP front-end to recognize the speech content coming from multiple
speakers in reverberated acoustic conditions. The overall architecture is able to
blindly identify the impulse responses, to separate the existing multiple overlap-
ping sources, to dereverberate them and to recognize the information contained
within the original speeches. A speaker diarization oracle to pilot the BCI stage
and the ASR engine has been also included in the overall framework. All the
algorithms work in real-time and a PC-based implementation of them has been
discussed in this contribution. Performed simulations, based on a existing large
vocabulary database , have shown the effectiveness of the developed system, mak-
ing it appeal in real-life human-machine interaction scenarios. As future works,
a real speaker-diarization system will be integrated in the overall framework and
its impact in terms of final recognition accuracy will be evaluated: the authors
have already developed some interesting real-time solutions on purpose [11].
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