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Abstract
Model-based speech feature enhancement techniques were
shown to be a promising approach towards increasing the
robustness of automatic speech recognition in noisy en-
vironments. Strategies that model speech with a Switch-
ing Linear Dynamic Model (SLDM) have been success-
fully applied to noisy speech recognition tasks, since they
overcome the limitations of GMM- or HMM-based ap-
proaches. However, SLDM-based feature enhancement
has so far only been investigated for the recognition of iso-
lated words or relatively friendly scenarios such as con-
nected digit recognition under the presence of additive
noise using whole word models (e. g. the AURORA task).
In order to give an impression of the effectiveness of
SLDM speech modeling for more challenging ASR appli-
cations, we evaluate SLDM feature enhancement for con-
tinuous recognition of spontaneous and emotionally col-
ored speech in the noise. As backend we use tied-state
triphone models trained and evaluated on the SAL Corpus.
Applying SLDM-based feature enhancement, we achieve
an average relative performance gain of almost 20 % when
considering diverse noise settings.

1 Introduction
Applying Automatic Speech Recognition (ASR) systems
in noisy surroundings usually leads to a lower recognition
accuracy when compared to ASR performance in clean
conditions. In order to maintain an acceptable performance
in noisy environments, many different strategies have been
proposed [12, 8, 10]. Approaches to increase noise robust-
ness can be roughly categorized in speech preprocessing,
model adaptation, and feature enhancement. Speech pre-
processing techniques are applied before feature extraction
and comprise methods like Wiener filtering or spectral sub-
traction [9], whereas model adaptation approaches aim at
adapting e. g. phoneme models to the noisy environment
or use models trained on noisy speech. Feature enhance-
ment operates in the feature domain, meaning that it tries
to determine the clean speech features from the observed
noisy features. This can be done by either using a priori
knowledge about how noise affects speech features (Cep-
stral Mean Normalization, Histogram Equalization [2]) or
by building general models for speech and noise (model-
based feature enhancement). Recently, extensive evalua-
tions of different noisy speech recognition scenarios led
to the finding that modeling speech with a Switching Lin-
ear Dynamic Model (SLDM) for model-based feature en-
hancement as introduced in [5] leads to good results. Fea-
ture enhancement algorithms that use an SLDM for speech
modeling overcome some of the drawbacks of techniques
using e. g. Gaussian Mixture Models (GMM) or Hidden
Markov Models (HMM), since the dynamics of the SLDM

capture the smooth time evolution of speech and do not
produce artifacts such as sharp single frame transitions.

So far, experiments on SLDM-based feature enhance-
ment have focused on evaluations using a whole word
model backend for the recognition of isolated or connected
digits [12, 5, 13] or letters [11]. In this paper we want to
give an impression of the effectiveness of SLDM feature
enhancement for a more challenging ASR scenario. There-
fore we evaluate the impact of noise on the recognition per-
formance when testing a continuous speech recognition en-
gine on spontaneous and emotionally colored speech. Us-
ing feature enhancement based on a global SLDM that is
trained on clean speech and on a Linear Dynamic Model
(LDM) for noise, we investigate the performance gain that
can be obtained for different noise conditions. All exper-
iments are conducted on the Sensitive Artificial Listener
(SAL) corpus [4] which was recorded during natural, spon-
taneous, and emotional human-machine interactions.

The structure of this paper is as follows: Section 2
briefly reviews the principle of SLDM feature enhance-
ment as it will be applied in our experiments. Section 3
describes the SAL database, as well as our experiments
and results. Section 4 contains a discussion of the obtained
results and concluding remarks.

2 SLDM Feature Enhancement
Model based speech enhancement techniques are based
on modeling speech and noise. Together with a model
of how speech and noise produce the noisy observations,
these models are used to enhance the noisy speech fea-
tures. As in [5] we use a Switching Linear Dynamic Model
to capture the dynamics of clean speech. Similar to Hid-
den Markov Model (HMM) based approaches to model
clean speech, the SLDM assumes that the signal passes
through various states. Conditioned on the state sequence
the SLDM furthermore enforces a continuous state transi-
tion in the feature space.

2.1 Modeling of Noise
Unlike speech, which is modeled applying an SLDM, the
modeling of noise is done by using a simple Linear Dy-
namic Model (LDM) obeying the following system equa-
tion:

xt = Axt−1 +b+ vt (1)

Thereby the matrix A and the vector b simulate how the
noise process evolves over time, vt represents a Gaussian
noise source, and xt denotes the feature vector. A graphical
representation of this LDM can be seen in Figure 1. As
LDM are time-invariant, they are suited to model signals

ITG-Fachtagung Sprachkommunikation  ·  06. – 08.10.2010 in Bochum Paper 18

ISBN 978-3-8007-3300-2    © VDE VERLAG GMBH ∙  Berlin ∙  Offenbach



like colored stationary Gaussian noise. Alternatively to the
graphical model in Figure 1 the following equations can be
used to express the LDM:

p(xt |xt−1) = N (xt ;Axt−1 +b,C) (2)

p(x1:T ) = p(x1)∏
T
t=2 p(xt |xt−1) (3)

Here, N (xt ;Axt−1 + b,C) is a multivariate Gaussian
with mean vector Axt−1 + b and covariance matrix C,
whereas T denotes the length of the input sequence.
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Figure 1: Linear Dynamic Model for noise

2.2 Modeling of Speech
The modeling of speech is realized by a more complex dy-
namic model which also includes a hidden state variable st
at each time t. Now A and b depend on the state variable
st :

xt = A(st)xt−1 +b(st)+ vt (4)

Consequently every possible state sequence s1:T de-
scribes an LDM which is non-stationary due to A and b
changing over time. Time-varying systems like the evo-
lution of speech features over time can be described ade-
quately by such models. As can be seen in Figure 2, it is as-
sumed that there are time dependencies among the contin-
uous variables xt , but not among the discrete state variables
st . This is the major difference between the SLDM shown
in Figure 2 and the models used in [3] where time depen-
dencies among the hidden state variables are included. A
modification like this can be seen as analogous to extend-
ing a Gaussian Mixture Model (GMM) to an HMM. The
SLDM corresponding to Figure 2 can be described as fol-
lows:

p(xt ,st |xt−1) = (5)
N (xt ;A(st)xt−1 +b(st),C(st)) · p(st)

p(x1:T ,s1:T ) = p(x1,s1)
T

∏
t=2

p(xt ,st |xt−1) (6)
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Figure 2: Switching Linear Dynamic Model for speech

To train the parameters A(s), b(s) and C(s) of the
SLDM conventional EM techniques are used. Setting the
number of states to one corresponds to training a Linear
Dynamic Model instead of an SLDM to obtain the param-
eters A, b and C needed for the LDM which is used to
model noise.

2.3 Observation Model
In order to obtain a relationship between the noisy ob-
servation and the hidden speech and noise features, an
observation model has to be defined. Figure 3 illustrates
the graphical representation of the zero variance observa-
tion model with SNR inference introduced in [6]. Thereby
it is assumed that speech xt and noise nt mix linearly in
the time domain corresponding to a non-linear mixing in
the cepstral domain.

x
t

y
t

n
t

Figure 3: Observation model for noisy speech yt

2.4 Posterior Estimation and Enhancement
A possible approximation to reduce the computational
complexity of posterior estimation is to restrict the size of
the search space applying the generalized pseudo-Bayesian
(GPB) algorithm [1]. The GPB algorithm is based on the
assumption that the distinct state histories whose differ-
ences occur more than r frames in the past can be ne-
glected. Consequently, if T denotes the length of the se-
quence and S represents the number of hidden states, the
inference complexity is reduced from ST to Sr whereas
r � T . Using the GPB algorithm, the three steps col-
lapse, predict and observe are conducted for each speech
frame [5]. During the collapse step the posterior for xt−1
is marginalized over the states that occur r frames in the
past by approximating each Gaussian mixture by a single
Gaussian component via moment matching (meaning that
Gaussians which share a history of r− 1 frames are col-
lapsed together). In the prediction step each of the hypoth-
esis that remain after collapsing are branched out once for
each of the S possible states st in order to obtain a posterior
for xt . Finally, in the observation step the observed noisy
speech frame yt is incorporated (see [5] for more details).

The Gaussian posterior q(xt ,y1:t) obtained in the ob-
servation step of the GPB algorithm is used to obtain es-
timates of the moments of xt . Those estimates represent
the de-noised speech features and can be used for speech
recognition in noisy environments. Thereby the the clean
features are assumed to be the Minimum Mean Square Er-
ror (MMSE) estimate E[xt |y1:t ]:

E[xt |y1:t ]∼=
∫

xtq(xt ,y1:t)dxt∫
q(xt ,y1:t)dxt

(7)

3 Experiments and Results
For all experiments we use the SAL corpus, which is a
sub-set of the HUMAINE database [4]. In order to in-
duce spontaneous, emotional speech, the four speakers
(two male, two female) were interrogated separately by
four virtual characters: Poppy (who is happy), Obadiah
(who is gloomy), Spike (who is angry), and Prudence (who
is pragmatic). The database was recorded using a Wizard-
of-Oz scenario in which the four virtual characters were
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imitated by a human operator. The goal of the operator
was to induce emotions in the speaker. Thereby the in-
duced emotions should correspond to the personality of the
respective character.

The corpus consists of 25 recordings with an average
length of 20 minutes. The recordings were split into 1 692
speech turns with an average length of 3.5 seconds per turn.
80 % of the speech turns were randomly selected as train-
ing set, while the remaining 20 % were used for testing. All
utterances of the test set were superposed with four differ-
ent noises from the NOISEX database (babble, car, pink,
and white noise) using different SNR levels (20, 15, 10, 5,
and 0 dB).

Recognition performance with and without SLDM-
based feature enhancement was evaluated for every noise
condition and for the clean case. As features we used cep-
stral mean normalized MFCCs 0 to 12 with their first and
second order delta coefficients. A global SLDM consisting
of 16 states was trained on the clean training fraction of the
SAL database. The utterance-specific LDM for noise was
computed from the first and last ten frames of each noisy
utterance. Thereby the noise model consisted of a single
Gaussian mixture component. For feature enhancement we
used a history parameter r = 1 (see Section 2.4).

As backend recognizer, we used left-to-right tied-state
word internal triphone HMMs consisting of three hidden
states per phoneme, whereas we used 16 Gaussian mix-
tures per state. All HMMs as well as a bigram language
model were trained on the clean SAL training set. For non-
verbal vocalizations (such as laughing, sighing, coughing,
etc.) we trained monophone HMMs with 9 hidden states.
The HMMs were trained and optimized using HTK [17].
Thereby the initial monophone models consisted of one
Gaussian mixture per state. All initial means and vari-
ances were set to the global means and variances of all
feature vector components (flat start initialization). The
monophone models were then trained using four itera-
tions of embedded Baum-Welch re-estimation. After that,
the monophones were mapped to tied-state word inter-
nal triphone models with shared state transition probabil-
ities. Two Baum-Welch iterations were performed for re-
estimation of the triphone models. Finally, the number of
mixture components of the triphone models was increased
to 16 in four successive rounds of mixture doubling and re-
estimation (four iterations in every round). In each round
the newly created mixture components are copied from the
existing ones, mixture weights are divided by two, and the
means are shifted by plus and minus 0.2 times the standard
deviation.

WA [%] baseline SLDM rel. gain
clean 55.01 53.84 -2.17
car 50.38 52.74 4.48
babble 25.14 29.41 14.51
pink 14.68 22.98 36.11
white 8.43 15.60 45.93
mean 30.73 34.91 19.77

Table 1: Word accuracies on the SAL test set for different
noise types, with and without SLDM feature enhancement
(results averaged over 20 to 0 dB SNR conditions)

Table 1 shows the obtained word accuracies for the
baseline HMM recognizer using standard MFCC features
as well as for the HMM recognizer processing features en-

hanced using the SLDM approach. In clean conditions
SLDM enhancement leads to a slight but hardly significant
degradation of the recognition performance. In noisy con-
ditions we can observe relative gains of between 4.48 %
and 45.93 %. Note that the results for noisy test data as
shown in Table 1 are averaged over 20 to 0 dB SNR con-
ditions. When considering a potential Sensitive Artifi-
cial Listener application which presumes the recognition
of emotional speech in noisy surroundings, the most inter-
esting noise scenario is the babble noise type (e. g. when
using a SAL system while other people talk in the back-
ground). In this case SLDM enhancement leads to an accu-
racy of between 47.98 % (20 dB SNR) and 10.70 % (0 dB
SNR), corresponding to baseline MFCC results of 43.96 %
and 7.71 %, respectively (see Table 2). Superposing speech
with car noise leads to the lowest ASR performance degra-
dation since this noise type is rather stationary, and due to
the low-pass characteristics of car noise, there is no full
spectral overlap of speech and noise. Applying SLDM en-
hancement, a word accuracy of over 50 % can be main-
tained even at an SNR level of 0 dB. White noise causes the
highest performance loss when using the baseline recogni-
tion system and leads to comparably large relative gains
through SLDM feature enhancement.

On average, we achieve a relative performance gain of
19.77 % which illustrates that SLDM feature enhancement
is an effective approach to improve the accuracy of contin-
uous ASR systems trained and evaluated on spontaneous
and emotional speech.

WA [%] SNR baseline SLDM rel. gain
car 20 dB 54.31 53.70 -1.14

15 dB 54.11 53.61 -0.93
10 dB 52.52 53.17 1.22
5 dB 48.12 52.55 8.43
0 dB 42.82 50.65 15.46

babble 20 dB 43.96 47.98 8.38
15 dB 36.19 40.23 10.04
10 dB 24.40 29.35 16.87
5 dB 13.43 18.77 28.45
0 dB 7.71 10.70 27.94

pink 20 dB 37.65 46.30 18.68
15 dB 22.17 33.81 34.43
10 dB 9.47 20.67 54.18
5 dB 3.23 9.94 67.51
0 dB 0.88 4.16 78.85

white 20 dB 24.13 35.01 31.08
15 dB 11.29 22.29 49.35
10 dB 4.31 11.73 63.26
5 dB 1.70 6.69 74.59
0 dB 0.73 2.26 67.70

Table 2: Word accuracies on the SAL test set for differ-
ent noise types and SNR levels, with and without SLDM
feature enhancement

4 Discussion and Conclusion
In contrast to previous experiments on SLDM feature en-
hancement which focus on comparably easy ASR tasks
such as recognizing digit sequences (e. g. the AURORA 2
task [7]), we investigated the effect of model-based feature
enhancement on ASR performance in a challenging real-
life application. Since virtual agents such as the ‘Sensitive
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Artificial Listener’ are often applied in noisy surroundings,
it is important to evaluate the effectiveness of feature pre-
processing algorithms off-line before implementing real-
time versions of the enhancement techniques. This paper
shows that for the task of recognizing spontaneous emo-
tionally colored speech, SLDM feature enhancement leads
to an average relative performance gain of almost 20 %,
which motivates potential real-time implementations of the
SLDM approach. Of course the absolute accuracies of
about 50 % as reported in this paper are far lower than
typical accuracies obtained for read and well-articulated
speech, however, for the SAL scenario it is sufficient to
parse the recognition output for specific keywords (e. g. as
in [15]) rather than to obtain the fully correct transcription.
Moreover, when evaluating noise robustness, we are pre-
dominantly interested in relative improvements.

In future experiments we plan to compare SLDM fea-
ture enhancement to other popular techniques such as His-
togram Equalization and to combine it with Long Short-
Term Memory [14, 16] phoneme modeling. A promising
step towards improving SLDM-based feature enhancement
is a more accurate estimation of the posterior distribution
by increasing the history parameter r. Furthermore, the in-
troduction of discrete SLDM state transition probabilities
might result in better feature enhancement.
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