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1. Introduction

Frustrated magnets entail competing exchange interactions 
and behave differently from their non-frustrated counterparts, 
where all couplings act to stabilize a magnetic order. It is then 
natural that in the presence of frustration any ordering effects 
are impeded, and a non-ordered, paramagnetic-like state sur-
vives down to much lower temperatures than in conventional 
magnets. Eventually, frustrated spin systems may not show 
any long-range magnetic order at all, and enter instead a pecu-
liar low-temperature state known as spin liquid. On the most 
basic level, this state can be matched with ordinary liquids 
in the sense that spins develop short-range correlations but 
lack any long-range magnetic order, and the system does not 
undergo symmetry breaking upon cooling.

An exact definition of a spin liquid is, however, more 
complex than that and involves a fair amount of ambiguity 
or even contention. Key ingredients of the spin-liquid state 
are the absence of long-range magnetic order and the pres-
ence of persistent spin dynamics down to zero temperature. 
These two aspects essentially distinguish the spin liquid from 
magn etically ordered states with symmetry breaking, and 
from spin glasses, where spin fluctuations slow down upon 

cooling, so that spins eventually become static. On the other 
hand, without postulating any microscopic aspects of this 
dis ordered and dynamic (liquid-like) state, such a definition 
allows fundamentally different systems with similar phenom-
enology to be classified as spin liquids.

Microscopically, one distinguishes between quantum spin 
liquids where spins are quantum-mechanically entangled, 
and classical spin liquids that can be naively seen as a ‘soup’ 
of different magnetic orders, all having the same energy. 
This classical scenario leaves spins to fluctuate as long as 
the temperature is high enough to overcome transition bar-
riers between different ordered states. At very low temper-
atures, classical spin liquid is expected to freeze, whereas its 
quantum counterpart remains dynamic by virtue of quantum 
fluctuations. Experimentally, this presence or absence of spin 
freezing serves as a useful diagnostic tool along with magnetic 
excitations that bear signatures of many-body entanglement in 
quantum spin liquids although may be exotic in classical spin 
liquids too [1, 2].

The gap between these two definitions—phenomenolog-
ical and microscopic—has led, and still leads to a common 
confusion of whether a given material should be interpreted 
as a spin liquid. If it is, how to juxtapose the experimental 
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Figure 1. Spin states in triangular antiferromagnets. (a) Valence-bond solid with valence bonds between nearest neighbors; a superposition 
of all such states makes the nearest-neighbor RVB state. (b) 120◦ and stripe orders. (c) Magnetic phase diagram [10] with lines 
corresponding to different ∆ values in equation (2); SL stands for the spin liquid. Panel (c) is a reprinted figure with permission from [10]. 
Copyright 2018 by the American Physical Society.

magnetic response with theory, and if it is not, is there still a 
room for the spin-liquid physics? It is exactly these controver-
sial but pertinent issues that we seek to address in the present 
brief review using triangular antiferromagnets as an example. 
For a more detailed introduction into the physics of spin liq-
uids beyond the triangular systems we refer readers to excel-
lent summaries [3, 4], as well as more technical and elaborate 
overviews of the field [5, 6] that were recently published.

Historically, triangular antiferromagnets were the first 
systems where magnetic frustration was encountered, and 
early ideas of quantum spin liquid state were established [7]. 
On the experimental side, the field has seen several revivals 
related to active studies of organic charge-transfer salts and, 
more recently, Co2+ and Yb3+ oxide compounds that are the 
main topic of our present review. For practical purposes, we 
restrict this review to geometrically perfect spin-1

2 triangular 
antiferromagnets, where magnetic ions form regular trian-
gular frameworks, and exclude systems with higher spin as 
well as systems with three-fold frustrated loops comprising 
non-equivalent exchange pathways (an excellent overview of 
all those can be found in [8]). In particular, organic charge-
transfer salts that are often discussed in the context of spin-
liquid physics [9] are beyond the scope of our present review, 
because their spin lattices entail distorted triangles, and low-
temperature structural instabilities abound.

As simple and natural as it seems, the definition of the geo-
metrically perfect material also appears to be controversial—
perhaps even more controversial than the definition of the spin 
liquid itself. The natural development of the field requires that 
every new spin-liquid candidate is claimed to be more perfect 
and ideal than its predecessors, which raises a sensible ques-
tion of whether any material is truly ‘geometrically perfect’. We 
shall discuss this issue at some length to show non-trivial depar-
tures from the ‘perfection’, and argue that they may strongly 
influence the physics, sometimes in a very interesting way.

2. Theory

2.1. Resonating valence bonds

Early ideas of the quantum spin liquid appeared in the con-
text of Heisenberg spins on the triangular lattice. Anderson 

and Fazekas [7, 11] conjectured that long-range-ordered 120◦ 
Néel state (figure 1(b)) obtained by classical minimization is 
not the lowest-energy state of a quantum system, where spins 
gain additional energy by forming pairs, quantum-mechanical 
singlets. These singlet pairs were termed valence bonds and 
treated using formalism initially developed by Rumer for 
molecules [12–14]. The intuitive chemical analogy was fur-
ther backed by the fact that valence bonds not only occur as 
spin-pairs but can also form resonant configurations akin to 
Pauling’s idea of resonating bonds in molecules [15]. The 
presence or absence of the resonance effect distinguishes 
valence-bond solid (VBS), the combination of static and non-
resonating valence bonds on a lattice, from the resonating-
valence-bond (RVB) states obtained by a superposition of 
different VBS states. It is this RVB state with singlet pairs 
restricted to nearest neighbors (figure 1(a)), that was proposed 
as the lowest-energy, liquid-like ground state of triangular 
antiferromagnets [7, 11].

Both VBS and RVB states would fall under the most gen-
eral definition of a spin liquid in the sense that they lack long-
range magnetic order and show persistent spin dynamics. 
However, the VBS state involves in fact some symmetry 
breaking, although it now relates to singlet pairs and not to 
individual spins. In real materials, this order becomes even 
more tangible, because VBS states are intertwined with lattice 
distortions that stabilize singlet pairs on bonds with stronger 
exchange interactions [9].

Another, and more crucial difference is that only the RVB 
states show fractional, fermionic (spin-1

2) statistics of magnetic 
excitations that can be contrasted with the bosonic (spin-1) sta-
tistics of magnons in long-range-ordered (anti)ferromagnets. 
Excitation brings spin dimer into a triplet state, which can be 
thought as a superposition of classical states with two parallel 
spins. In the RVB states, these spins can separate from each 
other and move through the crystal independently, because the 
ground-state wavefunction embraces all possible configura-
tions of valence bonds. In this case, the spin-1 excitations break 
down (fractionalize) into two spinons (figure 2) that become 
elementary excitations of an RVB state [16, 17]. Emergent 
spinon excitations reflect the highly non-trivial, entangled 
nature of RVB quantum spin liquids and bear direct relation 
to charge fractionalization of fractional quantum Hall state 
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in electronic systems with quantum entanglement [18–20]. 
Topological aspects behind this relation are elaborated in a 
recent review article [21].

The possibility of spinons and other fractionalized excita-
tions triggered major interest in theories of quantum spin liq-
uids. Experimental work inspired by their predictions initially 
focused on the search for materials that evade magnetic order 
as best candidates for real-world hosts of spinon excitations, 
although some of the recent results suggest that even long-
range-ordered magnets may show non-trivial spectral features 
[22, 23] potentially related to fractionalization. The question 
of whether these complex excitations are truly fractionalized 
is, however, much more subtle [24], and we shall see this 
below.

Different types of spin liquids exist under the umbrella 
of RVB physics. In triangular systems, short-ranged valence 
bonds like those shown in figure 1(a) give rise to a gapped 
Z2 quantum spin liquid [25, 26] characterized by a topo-
logical order [27] with two types of excitations. Those at 
higher energies are spinons due to the breaking of valence 
bonds, whereas low-energy excitations are visons related to 
the mutual arrangement of the valence bonds and topological 
order therein [27, 28]. Among many peculiar properties of 
these excitations, we note their potential usage in topological 
quantum computing [29].

When valence bonds occur between all atoms in the crystal, 
including distant neighbors, gapless spin liquid characterized 
by purely spinon excitations is formed [17]. Spinons develop 
a Fermi surface and interact with the U(1) gauge field [30]. 
The main lure of this U(1) or, colloquially, ‘spinon-metal’ 
state is associated with high-temperature superconductivity, 
because fractionalization separates spin and charge and may 
allow charge propagate unhindered by magnetic effects. A 
comparatively recent review of this topic can be found in 
[31].

Experimentally, both gapless and gapped quantum spin 
liquids are characterized by a continuum of spinon excita-
tions conveniently probed by inelastic neutron scattering. 
Thermodynamic and transport measurements offer additional 
diagnostic tools. The ‘short-ranged’ RVB states are gapped 
and should give rise to an exponential behavior of the magn-
etic susceptibility and specific heat. In contrast, the gapless 
U(1) quantum spin liquid in a triangular system is identified 
by the sub-linear T

2
3  power-law behavior of the specific heat 

[32], although linear or even exponential (gapped) behavior 
may occur too when spinons interact, eventually reducing the 
gauge symmetry to Z2 [33, 34].

Predictions for the magnetic susceptibility [35] as well as 
optical [36] and thermal [37] conductivities of spin liquids 
with spinon Fermi surfaces are available too. However, one 
has to be aware that by no means these predictions exhaust 
all possible experimental responses, nor the family of RVB 
states embraces all possible instances of quantum spin liquids. 
Many other types of spin-liquid phases have been envisaged 
by theory [5, 6], and their experimental identification should 
be taken pragmatically. Any unconventional behavior, such 
as linear or sublinear evolution of the magnetic specific heat, 
coupled with the absence of magnetic order and presence of 
an excitation continuum may be a strong, if not compelling 
signature of the spin-liquid physics.

2.2. Spin Hamiltonians

Further evidence for the spin-liquid behavior may come from 
the fact that material in question lies close to the interaction 
regime where theory predicts breakdown of magnetic order 
with the formation of a spin liquid. For the purpose of the 
current review, we restrict ourselves to spin models with pair-
wise interactions typical for insulating systems. Materials like 
organic charge-transfer salts approach or even undergo metal-
insulator transitions and require more complex spin models 
that also include multi-spin terms, most notably ring exchange, 
on top of the pair-wise interactions. These additional terms 
play crucial role in stabilizing quantum spin liquids [9].

Anisotropic spin Hamiltonian of triangular antiferromag-
nets comprises several terms,

H =
∑

m

[
HXXZ

m +H±±
m +Hz±

m

]
, (1)

where m  =  1 describes nearest-neighbor interactions, m  =  2 
describes second-neighbor interactions, etc. The first term of 
equation (1) stands for the XXZ Hamiltonian3,

Figure 2. Spinon excitation in the nearest-neighbor RVB state of triangular antiferromagnets. The excitation is created by breaking one of 
the valence bonds. Two unpaired spins can propagate independently and constitute spin-1

2 (spinon) excitations.

3 Same interaction terms are often written as Jz
mSz

i S
z
j  and J±m (S+

i S−
j + S−

i S+
j ) 

[2], where in the isotropic case (∆ = 1) J±m  is twice smaller than Jz
m. This 

difference should be taken into account when comparing exchange param-
eters reported in different publications.
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HXXZ
m = Jm

∑
〈ij〉

(Sx
i Sx

j + Sy
i Sy

j +∆Sz
i S

z
j ), (2)

and ∆ is the extent of the XXZ anisotropy in the notation of 
[10, 38].

The second term describes diagonal components of the 
exchange beyond the XXZ model,

H±±
m =

∑
〈ij〉

2J±±
m [(Sx

i Sx
j − Sy

i Sy
j ) cosϕα−

− (Sx
i Sy

j + Sy
i Sx

j ) sinϕα], (3)

whereas the third term stands for the off-diagonal anisotropy,

Hz±
m =

∑
〈ij〉

Jz±
m [(Sy

i Sz
j + Sz

i S
y
j )] cosϕα−

− (Sx
i Sz

j + Sz
i S

x
j ) sinϕα]. (4)

Here, ϕα = 0,±2π/3 is the bond-dependent pre-factor that 
reflects the rotation of the local coordinate frame under three-
fold symmetry of the lattice.

The ∆ = 1 and J±±
m = Jz±

m = 0 regime implies isotropic 
(Heisenberg) interactions. In systems of our interest, depar-
tures from this regime can be caused by the easy-plane aniso-
tropy (∆ < 1), anisotropy in the xy plane (J±±

m �=0), or the 
off-diagonal anisotropy (Jz±

m �= 0).

2.3. Survey of magnetic ground states

Contrary to Anderson’s conjecture, Heisenberg antiferro-
magnets with purely nearest-neighbor interactions feature the 
long-range-ordered 120◦ ground state [39, 40] that also sur-
vives (sometimes with weak modifications) in the presence of 
easy-axis (∆ > 1) or easy-plane (∆ < 1) anisotropies [41–43]. 
Only in the pure Ising limit will a partially dis ordered state 
occur [44]. This state is, however, not a quantum spin liquid, 
because Ising spins are classical. Large residual entropy indic-
ative of a classical spin liquid is found indeed [44].

Quantum spin liquid can be stabilized by interactions 
beyond nearest neighbors. The J1 − J2 model of Heisenberg 
spins on the triangular lattice received ample attention and 
was shown to host a spin-liquid phase at J2/J1 � 0.07 − 0.15 
[45–49], although the nature of this phase remains vividly
debated, with both gapless [50–53] and gapped [45, 54] sce-
narios being likely proposals. At higher J2/J1, a collinear 
stripe order (figure 1(b)) becomes stable [55–57].

Exchange anisotropy offers another route to the spin-liquid 
state(s). The effect of the J±±

1  and Jz±
1  terms of equations (3) 

and (4) largely resembles that of J2, because they stabilize 
stripe order too [58, 59]. A region of the quantum spin liquid 
phase separates these stripe states from the 120◦ order [10, 60] 
and may thus appear even in the absence of interactions 
beyond nearest neighbors (figure 1(c)). Interestingly, this 
quantum spin liquid of the anisotropic J1-only model is con-
nected to the corresponding regime of the isotropic J1 − J2 
model [10, 60], indicating the same (conceivably, Dirac 
[53, 60]) type of a quantum spin liquid anticipated in triangular 
antiferromagnets if either of the J2, J±±

1 , or Jz±
1  are properly 

tuned—a positive message for the experiment. Another (dual) 
spin-liquid region has been identified in the limit of large Jz±

1  
[38] but may be harder to reach in real materials, where J±±

1  
and J±z  are usually smaller than J1. It is also worth noting that 
none of these putative spin-liquid phases are directly related 
to the RVB states discussed previously.

3. Co-based materials

Many triangular antiferromagnets were studied over the years, 
but only a handful of them show close relation to the aforemen-
tioned physics, while others entail different types of structural 
deformations. We first discuss Co-compounds that fulfill our 
criterion of geometrical perfection, do not yet enter the spin-
liquid state, but can be described by model Hamiltonians in the 
vein of equation (1) and reveal highly non-trivial excitations.

3.1. Single-ion physics

Co2+ proved convenient for studying spin-1
2 antiferromagnets 

and especially triangular systems. In the octahedral environ-
ment, Co2+ (3d7) features S = 3

2 , but its orbital moment 
remains unquenched. Spin–orbit coupling then splits this 
manifold and separates the lower-lying Kramers doublet that 
becomes predominantly occupied at low temperatures, acting 
as an effective spin-1

2 [61]. Orbital degeneracy is thus lifted by 
the spin–orbit coupling without lowering the symmetry, and a 
regular atomic arrangement with the strong geometrical frus-
tration can be preserved, in stark contrast to other spin-1

2 ions. 
For example, Cu2+ , Ti3+ , and V4+ are all subject to strong 
Jahn–Teller effects that distort triangular frameworks or even 
lead to their defragmentation [62, 63].

The typical splitting between the ground-state 
( jeff =

1
2) Kramers doublet and lowest excited state is of the 

order of 10–20 meV [64], suggesting that at least below 50 K 

Table 1. Microscopic parameters of Co-based triangular antiferromagnets. All Néel temperatures TN and exchange constants J are given in 
Kelvin. Two parameter sets for Ba3CoSb2O9 are obtained from fits to the magnetization data [76] and to the inelastic neutron scattering data 
in the 13-plateau phase [101], respectively.

J1 ∆ TN TN/Jz g‖ g⊥ Reference

Ba3CoSb2O9 19.5 0.95 3.8 0.21 3.87 3.84 [76]
20.3 0.86 3.8 0.22 3.95 [101]

Ba2La2CoTe2O12 22.0 3.8 0.17 3.5 4.5 [102]
Ba8CoNb6O24 1.7 1.0 0.1? —              3.84 [103]
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the magnetism is purely spin-1
2. In the trigonal and hexagonal 

symmetries typical for triangular antiferromagnets, Co2+ acts 
as an anisotropic magnetic ion with different g-values and dif-
ferent exchange interactions for the in-plane and out-of-plane 
directions [61]. The extent of this XXZ exchange anisotropy 
is relatively weak, though (table 1).

Many of the Co2+ -based triangular materials are non-
frustrated, because closely spaced Co2+ ions feature ferro-
magnetic interactions arising from nearly 90◦ superexchange 
pathways, as in CoCl2 and CoBr2 [65] or β-Co(OH)2 [66]. 
Robust antiferromagnetism is only possible in materials with 
large Co–Co separations that naturally eliminate any cou-
plings beyond J1, because second-neighbor Co–Co distances 
of at least 10 Å  are prohibitively large for the superexchange. 
With negligible J±± and Jz± terms, Co2+ triangular antifer-
romagnets are doomed to remain in the 120◦-ordered state, but 
can be used to probe its interesting dynamics.

3.2. Hexagonal perovskites and magnetic excitations

Best material prototypes of Co-based triangular antifer-
romagnets are found among hexagonal perovskites of the 
6H-Ba3CoX2O9 family with X  =  Sb [67–69], Nb [70, 71], 
and Ta [72, 73] (figure 3(a)). They share many similarities, but 
only the Sb compound was so far studied in detail thanks to the 
availability of large single crystals [74]. It behaves as a typical 
easy-plane triangular antiferromagnet with the 120◦ magnetic 
order in zero field [67, 69, 75] and anisotropic magnetiza-
tion process revealing the 1

3-plateau at 10–15 T for in-plane 
fields, but no plateau when the field is applied perpend icular 
to the easy plane [76–78]. High-field behavior of Ba3CoSb2O9 
was of significant interest, because the coplanar V-phase sta-
bilized by quantum fluctuations [79, 80] could be detected 
exper imentally for the first time in a spin-1

2 magnet [81, 82]. 
However, the main draw of this material relates to its non-
trivial magnetic excitations that were recently juxtaposed with 
theoretical predictions for triangular antiferromagnets.

Already the first theoretical studies of spin dynamics 
exposed salient deviations from non-interacting magnon sce-
nario of linear spin-wave theory. Not only the spin waves are 
renormalized, sometimes changing their shape to produce 
roton minima4 around the M-points [86–88], but also the 
spectrum is washed out into a broad continuum at energies 
�ω > J1 [88–91]. These findings were initially interpreted as 
signatures of spinon excitations—an idea inspired by the work 
on square-lattice Heisenberg antiferromagnets.

Spin-1
2 antiferromagnets, especially in 2D, show reduced 

ordered moments indicative of spin fluctuations in the ordered 
state. This fluctuating component can be represented by an 
RVB state and held responsible for various spectral features 
[92], including the broadening of spectral lines at high ener-
gies interpreted as a spinon continuum [22, 93]. While a sim-
ilar physics could be envisaged in the triangular case [87], and 
spinons may indeed account for a large part of the calculated 
spectral weight [90], non-linear spin-wave theory offered an 
alternative explanation in terms of interacting magnons. The 
roton minima can be reproduced by including the 1/S correc-
tions [94, 95] that are crucial in this case, given the nearly 
60% reduction of the ordered moment with respect to its clas-
sical value [96, 97]. Moreover, non-collinear spin arrangement 
facilitates magnon decays [98, 99] that eventually account for 
the continuum at �ω > J1 [100].

Two aforementioned scenarios—exotic fractionalized exci-
tations versus interacting magnons—are in fact encountered 
in several materials of current interest, such as the Kitaev can-
didate α-RuCl3 [23, 24]. On the experimental side this leads 
to a large deal of ambiguity, because even the observation of 
an excitation continuum, the main fingerprint and ultimate 
signature of the spin-liquid physics, appears to be inconclu-
sive when it comes to the question of whether spinons occur 
or magnons decay.

Figure 3. Excitations of the 120◦ ordered state. (a) Crystal structure of 6H-Ba3CoSb2O9 with the triangular layers of Co2+ ions in the ab 
plane. (b) Excitation spectrum probed by inelastic neutron scattering, with the white lines showing one-magnon dispersion from linear spin-
wave theory [83]. Note the excitation continuum that appears above 1 meV at the K-point and above 1.8 meV at the M-point, while at lower 
energies quasiparticle bands repelled by the continuum [84] are observed [75, 83]. Panel (a) was prepared using the VESTA software [85], 
and Ba atoms were omitted for clarity. Panel (b) is reproduced from [83]. CC-BY-4.0.

4 These roton minima strongly influence thermodynamic properties of 
triangular antiferromagnets. Their relation to rotons in superfluid 4He is 
discussed in [87].
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Experiments on Ba3CoSb2O9 confirmed that only at low 
energies, �ω = J1 � 1.6 meV, do the excitations resemble 
magnons (figure 3(b)). At higher energies, a broad continuum 
is observed [69, 75, 83]. Magnons are strongly renormalized 
and damped [75], in agreement with non-linear spin-wave 
calcul ations. As for the continuum part of the spectrum, the 
bulk of the spectral weight is observed below 4 meV [83] 
corre sponding to �ω < 2.5J1 in fair agreement with both 
spinon [90] and magnon [100] scenarios. The aspect missing 
in both is the double-band structure around the M-point at 
1.3–1.6 meV, (figure 3(b)) the energy range where excita-
tion continuum already appears in other parts of the Brillouin 
zone [83]. Recent theory work ascribed this feature, avoided 
quasi particle decay, to an interaction between the one-magnon 
band and continuum [84]. Instead of smearing out the former, 
strong interaction separates the two. The continuum shifts 
to higher energies, while the ‘one-magnon’ (quasiparticle) 
band is pushed down in agreement with the experimental 
observations.

This strong-interaction scenario relies on the presence 
of an excitation continuum, while making no assumptions 
regarding its magnon or spinon origin. Indeed, whereas mag-
nons are a good starting point for understanding all spectral 
features of large-spin triangular antiferromagnets [104], the 
spin-1

2 case of Ba3CoSb2O9 is more involved. First, vestiges of 
the continuum are seen up to much higher energies (�ω � 6J1) 
than any theory would predict. Second, exact parametrization 
obtained by inelastic neutron scattering in the 13-plateau phase 
of Ba3CoSb2O9 does not allow an adequate quantitative 
description of the zero-field spectra even on the level of non-
linear spin-wave theory [101]. This leaves the problem of 
calculating spectral properties of 120◦-ordered quantum anti-
ferromagnet largely open, and the magnon-spinon dichotomy 
unresolved.

3.3. New materials

Zero-field 120◦ magnetic order generic to the 6H-Ba3CoX2O9 
materials appears to be one obstacle in the realization of a 
spin-liquid phase. This motivated several attempts to suppress 
magnetic order by increasing the distance between the Co2+ 
layers.

From the structural standpoint, triangular layers of Co2+ 
are separated by perovskite-type slabs with non-magnetic 
ions. The thickness of these slabs can be increased (in theory, 
arbitrarily) leading to compounds like Ba2La2CoX2O12 
(X  =  Te, W) with the interlayer Co–Co distance of about 
9.8 Å  and, eventually, to Ba8CoNb6O24, where the triangular 
planes of Co2+ are as far as 19 Å  apart (figure 4). With the 
exception of the latter, these compounds still develop long-
range magnetic order [102, 105]. In fact, even the Mn-based 
(spin-5

2) analog of Ba8CoNb6O24 reveals the 120◦ order [106], 
whereas Ba8CoNb6O24 itself also shows a characteristic peak 
in the spin-lattice relaxation rate at 0.1 K reminiscent of the 
magnetic ordering transition, although the NQR line does not 
broaden below this temperature [107]. These observations 
suggest that residual interlayer couplings (likely of dipolar 
nature) always remain in place and tend to induce magnetic 
order with a sizable TN/J = 0.1 − 0.2.

Despite the increased interlayer spacing and reduced TN, 
even the most 2D materials show the same dynamics as their 
less 2D analogs [103]. They can be most naturally understood 
as systems approaching eventual long-range order, which is 
indeed anticipated in any J1-only XXZ antiferromagnet. An 
important lesson from these materials is that not only the inter-
layer couplings but also J1 can become very small (table 1), 
thus shifting the onset of spin-spin correlations and TN to very 
low temperatures. Recently reported materials like glaserite-
type Na2BaCo(PO4)2 lacking magnetic order down to 50 mK 
[108] should also be scrutinized from this perspective and do 

Figure 4. Crystal structures of triangular Co-based antiferromagnets. The c axis is along the vertical direction, whereas triangular layers 
are in the ab plane. VESTA software [85] was used for crystal structure visualization.
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not necessarily feature spin-liquid behavior of any kind. Co2+ 
vanadates of the same glaserite family entail ferromagnetic 
J1 [109–111], suggesting the presence of a ferromagnetic 
exchange component that in phosphates may nearly cancel the 
antiferromagnetic one leading to a material with a very weak 
J1 and only a weak frustration.

4. YbMgGaO4

The Co2+ compounds give access to only a limited part of the 
general parameter space of triangular antiferromagnets and 
remain in the region of the 120◦ magnetic order. Other phases 
should be probed by systems with larger second-neighbor cou-
plings and/or with a more pronounced exchange anisotropy. 
Anisotropic exchange interactions with sizable off-diagonal 
terms occur between 4f  ions [112], for example in spin-ice 
compounds with the three-dimensional pyrochlore lattice 
[113]. The work on 4f  magnets in 2D remained scarce until 
2015 when synthesis and investigation of YbMgGaO4 [114] 
suggested the possibility of a spin-liquid state and spurred 
interest in 4f -based triangular antiferromagnets. In contrast 
to the Co2+ compounds, where XXZ interaction regime is 
known with all certainty, the 4f  ions with their different elec-
tronic configurations and crystal-field ground states offer (at 
least potentially) a much broader diversity of microscopic sce-
narios. An inevitable drawback is that each material features 
many exchange parameters leaving the microscopic param-
etrization ambiguous and the physical scenario controversial.

Most of the 4f -based triangular antiferromagnets reported 
to date utilize Yb3+ as the magnetic ion. We shall discuss 
its behavior in greater detail using the best studied material 
YbMgGaO4 as an example. A more detailed and technical 
overview of this material can be found in a recent progress 
report [115].

4.1. Nature of the Yb3+ magnetism

The central part of YbMgGaO4 are Yb3+ ions with their 
valence electrons residing in the 4f  shell, which is subject 
to a strong spin–orbit coupling. While formally a J = 7

2 ion, 
Yb3+ reveals an effective spin-1

2 physics at low temperatures, 
because crystal electric fields (CEFs) split the J = 7

2 multiplet 

into four Kramers doublets, similar to the effect of spin–orbit 
coupling on Co2+ (section 3.1). Only the lowest CEF level is 
relevant to cooperative magnetism observed at low temper-
atures. This level is a Kramers doublet and can be directly 
mapped onto a spin-1

2 problem. More precisely, one refers to 
the magnetic moment of Yb3+ associated with this doublet as 
a pseudospin-1

2, because it combines strongly intertwined spin 
and orbital moments. Its principal feature is magnetic aniso-
tropy caused by the complex nature of the ground-state wave-
function and by the influence of the higher-lying CEF levels 
on the exchange.

Another crucial feature of Yb3+ is the strong localization 
of its 4f  electrons. Despite this ultimate localization, magn-
etic interactions between the pseudospins are not of purely 
dipolar nature and involve orbital overlap. For example, in 
YbMgGaO4 with the Yb–Yb distance of 3.85 Å , the dipolar 
interaction of 0.25 K makes only 14% of the total interaction 
J1 � 1.8 K determined experimentally from the Curie–Weiss 
temperature [116]. This puts forward superexchange as the 
main mechanism of magnetic couplings in Yb-based trian-
gular antiferromagnets and even allows a microscopic evalu-
ation of magnetic interactions based on superexchange theory 
[117].

The superexchange is weak, though, so Yb3+ oxides do not 
reveal their interesting cooperative magnetism unless cooled 
down to temperatures of the order of 1 K. Many of these com-
pounds were known since decades but traditionally described 
as simple paramagnets until measured at low enough temper-
atures. This naturally sets a question of the relevant temper-
ature scale. Which temperature is low enough, and how to 
decide whether the absence of magnetic order down to a cer-
tain temperature is a signature of the spin-liquid behavior, or 
simply a feature of very weak magnetic interactions that are 
easily overridden by thermal fluctuations within the selected 
temperature range? 

4.2. Low-temperature behavior

YbMgGaO4 serves as a good illustration of how this temper-
ature scale can be determined experimentally. The strength of 
magnetic interactions is gauged by the Curie–Weiss temper-
ature θ, but the Curie–Weiss fit, χ = C/(T − θ) + χ0, must 
be done in a prudently chosen temperature range. At high 

Figure 5. Determination of the exchange parameters in YbMgGaO4 [114]. The Curie–Weiss fitting of the inverse susceptibility, χ−1 (a), 
is performed in the temperature range of the R ln 2 plateau in the magnetic entropy, Smag (b), whereas the temperature-independent van 
Vleck contribution χ0 can be cross-checked by the slope of the magnetization isotherm, M(H), above the saturation field (c). The saturated 
magnetization is Ms = ḡµBS � 1.6 µB/Yb3+ compatible with S = 1

2  and ḡ � 3.29, the powder-averaged g-value determined from electron 
spin resonance (ESR) [116].
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temperatures (above 30–50 K in Yb3+ oxides), 1/χ deviates 
from the linear behavior due to CEF excitations (figure 5(a)), 
while at low temperatures, typically below 10  K, magnetic 
interactions come into play. Therefore, both upper and lower 
limits of the fit require a careful consideration.

Magnetic entropy guides the choice. Between 10 and about 
30 K, it shows a plateau at R ln 2 corresponding to the ground-
state doublet (figure 5(b)). The plateau implies that, on one 
hand, magnetic interactions have been overridden by thermal 
fluctuations and, on the other hand, the temperature is not high 
enough to trigger CEF excitations, although the very pres-
ence of the higher-lying CEF levels causes the non-zero van 
Vleck term χ0 in the susceptibility. Fitting three parameters 
(χ0, θ, and the Curie constant C) in such a narrow temperature 
window certainly becomes ambiguous, but the estimate of χ0 
can be cross-checked by measuring field dependence of the 
magnetization, because above saturation M(H) still shows a 
small linear slope caused by the χ0H contribution due to the 
CEF excitations (figure 5(c)). As for the Curie constant C, it 
is proportional to the square of the g-factor that, in turn, can 
be independently determined from electron spin resonance 
(ESR). This leaves θ as the only independent fitting param-
eter and eventually leads to the estimates of J1 � 1.8 K and 
∆ � 0.55 from the inverse susceptibility measured for dif-
ferent field directions [116].

The interaction strength of about 2 K also manifests itself in 
other physical quantities. Magnetic specific heat (figure 6(a)) 
shows a maximum at 2.5 K due to short-range order [114], 
whereas muon relaxation rate gradually increases around the 
same temperature, indicating the onset of spin-spin correla-
tions [119]. At temperatures well below 2 K, one expects that 
spin-spin correlations dominate over thermal fluctuations, and 
experimental response of the magnetic ground state can be 
probed. Only via measurements in this low-temperature range 
can one assure that the given material hosts a spin-liquid state 
or at least bears relation to the spin-liquid physics.

In YbMgGaO4, several experimental techniques probed 
the nature of the ground state. First, magnetic specific heat 
shows no anomalies down to at least 50 mK [114], whereas 
muons reveal persistent spin dynamics [119]: two necessary 
conditions of the spin-liquid behavior. Below 0.4  K, magn-
etic specific heat follows the Cm(T) ∼ Tγ  power law with 

γ � 0.7 [114], indicating gapless spin excitations (figure 6). 
Moreover, the γ  value is compatible with 2

3 expected for the 
U(1) quantum spin liquid in triangular antiferromagnets (sec-
tion 2.1).

Fractionalized (spinon) excitations of the U(1) state should 
also manifest themselves in the magnetic response and thermal 
transport. These experiments did not arrive at a consistent pic-
ture, though. YbMgGaO4 shows no thermal transport due to 
spinons (figure 6(b)). Moreover, its thermal conductivity is sup-
pressed with respect to the non-magnetic Lu-based analog sug-
gesting the absence of mobile spinons [118]. AC-susceptibility 
measurements even revealed signatures of spin freezing 
around 100 mK [121], but with only a small magnitude of 
the cusp and without any associated peak in the specific heat, 
although in spin glasses entropy change at the freezing point is 
usually detectable [122]. Moreover, no splitting between field-
cooled and zero-field-cooled curves measured in dc-field has 
been observed [123]. Magnetic response of YbMgGaO4 is thus 
very different from that of a canonical spin glass—perhaps not 
surprising, given persistent spin dynamics probed by muons 
even below the alleged freezing point [119]. All these obser-
vations suggest that YbMgGaO4 does show dynamic spins 
and hosts a spin liquid of some kind, whereas the peak in the 
AC-susceptibility may reflect only a minor frozen component.

4.3. Spin dynamics

Magnetic excitations of YbMgGaO4 do not contribute to heat 
transport. Nevertheless, they do form a continuum that has 
been extensively studied by neutron scattering [120, 123–126]. 
It extends to about 2 meV corresponding to energies as high as 
�ω � 13J1. With a very similar momentum dependence of the 
spectral weight at low (0.3 meV) and high (1.5 meV) energies 
[120], this spectrum (figure 7) is drastically different from the 
typical response of 120◦-ordered Co-based antiferromagnets 
(section 3.2), where the spectral weight is restricted to much 
lower energies and shows different momentum dependence at 
different energies, even inside the continuum.

In YbMgGaO4, the spectral weight accumulates at the 
zone boundary and appears to be nearly absent at the zone 
center, similar to the kagome spin liquid pinpointed exper-
imentally in herbertsmithite [127]. Gapless spinon excitations 

Figure 6. Low-temperature properties of YbMgGaO4. (a) Power-law scaling of the magnetic specific heat Cmag measured in zero field 
[114], and (b) thermal conductivity κ suppressed with respect to the non-magnetic reference compound LuMgGaO4 [118]. Dotted lines are 
extrapolations that highlight the absence of the linear contribution, which would be expected in a gapless quantum spin liquid.
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of the U(1) quantum spin liquid can explain this distribution 
of the spectral weight down to at least 0.3 meV [120]. This 
scenario was further supported by a V-shaped band splitting 
in the applied magnetic field [124] predicted theoretically for 
non-interacting spinons [128], although interactions between 
spinons change the scenario qualitatively [129].

An alternative scenario was offered in [123, 126] that inter-
pret the same broad continuum as excitations out of a generic 
valence-bond state. Neutron scattering experiments down to 
0.07 meV [123], about four times lower energy than in [120], 
suggest a change in the width of the continuum with the 
threshold value around 0.2 meV, which is comparable to the 
interaction strength J1 (figure 8). Above this energy, the exci-
tations can be assigned to the breaking of nearest-neighbor 
valence bonds, while below 0.2 meV the spectral weight is 
described by processes that involve a re-arrangement of 
valence bonds and orphan spins, with valence bonds up to 
third neighbors included in the model [123].

Interestingly, both pictures entail spin-1
2 excitations albeit 

with a very different physics behind them. The spinon-metal 

scenario of [120] postulates the fractionalized nature of the 
excitations without explicating their microscopic origin. It can 
be better traced in the valence-bond scenario, although here 
not all spin-1

2 excitations are fractionalized. The continuum 
of high-energy excitations indicates that, upon breaking a 
valence bond, two unpaired spins can separate, similar to 
spinon excitations of an RVB state. These spinon-like excita-
tions show a gap of about 0.2 meV, which is on the order of 
J1 and in agreement with theory (section 2.1). On the other 
hand, lower-energy excitations caused by the re-arrangement 
of valence bonds fill this gap, extend to lowest energies, and 
stem from the presence of orphan spins in the ground state. 
These excitations are fractional but not fractionalized. Their 
presence—or, more precisely, the inelastic nature of the re-
arrangement process—further indicates a departure from the 
simple RVB state, where interchanging of unpaired spins and 
valence bonds should cost no energy. The finite energy cost 
of this process may stem from a local non-equivalence of dif-
ferent lattice bonds that, in turn, has to be caused by structural 
inhomogeneities.

Figure 7. Excitation continuum in YbMgGaO4 at energies of 0.3 meV (�ω = 2J1) and 1.5 meV (�ω = 10J1) [120]. Right panel shows the 
calculation based on the spinon-metal scenario. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer 
Nature, Nature, [120], Copyright 2016.

Figure 8. Valence-bond model of the YbMgGaO4 excitations [123, 126]. (a) Cartoon representation of the excitation continuum comprising 
two types of processes: (b) breaking of nearest-neighbor valence bonds, and (c) re-arrangement of valence bonds and orphan spins, where 
only nearest-neighbor valence bonds are shown for the sake of clarity, but valence bonds up to third neighbors are included in the actual 
model. (d) Momentum dependence of the spectral weight at two energies in different parts of the continuum [123].
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4.4. Structural randomness

Whether or not YbMgGaO4 is prone to structural inhomogene-
ities has been a matter of significant discussion. On one hand, 
this material was put forward as a geometrically perfect trian-
gular antiferromagnet based on its robust trigonal symmetry 
that renders all nearest-neighbor Yb–Yb distances as well as 
relevant superexchange pathways equal [114]. The absence of 
any detectable magnetic impurities [116] and the lack of spin 
freezing (beyond the effects discussed in section 4.2) would 
also imply that this material is less likely to suffer from inho-
mogeneities and disorder than other spin-liquid candidates, 
such as herbertsmithite [130]. On the other hand, YbMgGaO4 
is still imperfect in the sense that Mg and Ga are randomly 
distributed in the non-magnetic slabs that separate the trian-
gular planes of Yb3+ (figure 11). Although such a mixture of 
non-magnetic atoms between the magnetic places would nor-
mally have little effect on the magnetism within these planes, 
the YbMgGaO4 case appears to be different.

Unequal charges of Mg2+ and Ga3+ prove to be crucial. 
Depending on the local arrangement of these non-magnetic spe-
cies, the Yb3+ ions experience different CEFs. Inelastic neutron 
scattering reveals three CEF-related peaks, each of them being 
much broader than the instrumental resolution (figure 9(a)). 
Moreover, a shoulder around 87 meV would indicate a ‘fourth’ 
CEF excitation forbidden for Yb3+ , since only three Kramers 
doublets are available for excitations. [131] offered an atomistic 
interpretation of this strange CEF spectrum. The local arrange-
ment of Mg2+ and Ga3+ creates an uneven charge distribution 
and causes local displacements of both Yb3+ and surrounding 
oxygens (figure 9(c)). The magnitude of these displacements 
being as large as 0.1 ̊A implies that the CEF energies may change 
compared to the undistorted scenario. A superposition of several 
local configurations obtained within this approach leads to a 
decent description of the experimental spectrum (figure 9(b)).

Whereas CEF excitation energies do not determine magn etic 
interactions per se, they influence the g-values that are spread 
over finite ranges ∆g⊥/g⊥ � 0.1 and ∆g‖/g‖ � 0.3, respec-
tively. Moreover, local displacements change the Yb–O–Yb 

angles that may not affect relative values of the exchange 
parameters, but do change their absolute values. For example, 
from the superexchange theory of [117] one expects that the 
absolute value of J1 varies by about 50% throughout the crystal.

Other experiments support not only the presence of this 
structural randomness, but also its tangible effect on the mag-
netism. First, absent magnetic contribution to the thermal con-
ductivity [118] is naturally explained by the random exchange 
couplings that will cause localization of magnetic excitations 
regardless of their exact origin. Second, inelastic scattering 
in the fully polarized state above 7.5 T shows an abnormally 
broad distribution of the spectral weight and hardly resembles 
spin wave of a ferromagnet [125, 131]. Third, the spin-liquid 
state of YbMgGaO4 is remarkably insensitive to pressure 
[132], suggesting that structural inhomogeneities may be 
instrumental in destabilizing magnetic order and facilitating 
spin dynamics. All these observations serve as the most direct 
evidence that structural randomness is central to the mag-
netism of YbMgGaO4.

4.5. Possible scenarios

Several microscopic parameterizations reported for 
YbMgGaO4 are summarized in table 2. Whereas all studies 

Figure 9. CEF excitations of YbMgGaO4 [131]. (a) Inelastic neutron scattering reveals an additional feature around 87 meV incompatible 
with four Kramers doublets of Yb3+ (momentum dependence and the data for LuMgGaO4, the non-magnetic reference compound, exclude 
possible phonon origin of this excitation). (b) Simulation of the experimental spectrum combined from several local configurations obtained 
with different distributions of Mg2+ and Ga3+ around Yb3+ ; note that the 87 meV feature appears as the side peak of the highest CEF 
excitation. (c) Sample local configuration with opposite displacements of Yb3+ and O2− caused by the uneven charge distribution.

Table 2. Exchange parameters for YbMgGaO4 estimated by fitting 
different sets of the experimental data: (i) Curie–Weiss temperatures 
and ESR linewidths [116]; (ii) inelastic neutron scattering in the 
fully polarized state and diffuse scattering in zero field modeled 
with [125] and without [133] J2; (iii) inelastic neutron scattering 
and THz spectra [134]. The exchange parameters are introduced in 
section 2.2 and given in Kelvin with error bars where available.

I [116] II [125] III [134] IV [133]

J1 1.8(2) 2.54(5) 1.98(7) 2.5
∆ 0.54(5) 0.58(2) 0.88(3) 0.76

J±±
1 /J1

0.09(1) 0.06 0.4(3) 0.26

Jz±
1 /J1

0.02(4) 0 0.6(6) 0.45

J2/J1 0 0.22 0.18(7) 0
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agree on the presence of easy-plane anisotropy (∆ < 1), more 
subtle (but crucial) details of the second-neighbor interactions 
and off-diagonal anisotropy remain controversial and illustrate 
challenges in the experimental determination of the exchange 
parameters for 4f  magnetic ions. As many as four independent 
parameters have to be used for nearest-neighbor interactions, 
another four parameters can be envisaged for second-neighbor 
interactions, etc.

By disregarding J2, the authors of [116] used Curie–Weiss 
temperatures and ESR linewidths to determine all four com-
ponents of the nearest-neighbor exchange tensor. This leads 
to a sizable XXZ anisotropy with the relatively weak but non-
negligible additional terms J±±

1  and Jz±
1  (table 2, set I). Fits 

to the inelastic neutron data [125] suggest a roughly similar 
interaction regime5, but with a sizable second-neighbor cou-
pling J2/J1 � 0.2 that is assumed to be isotropic (set II). 
The primary reason for including J2 is the peak of the neu-
tron spectral weight at the M-points (figure 10(b)), as typical 
for the stripe phase at J2/J1 > 0.15. Alternatively, this stripe 
phase can be stabilized by the J±±

1  and Jz±
1  terms (set IV) that 

describe the neutron data even in the absence of J2 [133]. On 
the other hand, it was argued that these terms induce a large 
magnon gap [135] that is incompatible with the apparent gap-
less behavior [114].

The accuracy of the neutron-based parametrization was 
improved by adding THz data that probe excitations at the 
zone center, as opposed to neutron scattering that is more sen-
sitive to the zone boundary. This combined approach [134] 

hardly improves estimates of the J±±
1  and Jz±

1  terms, but 
lends additional confidence in the finite-J2 scenario (set III). 
The estimated value of J2  =  0.3  −  0.4 K largely exceeds the 
dipolar coupling of 0.07 K and serves as the first experimental 
evidence of the long-range superexchange in Yb3+ magnets.

With J2/J1 � 0.2, YbMgGaO4 may not be far from the 
quantum spin liquid region of J1 − J2 triangular antiferro-
magnets (section 2.3). An optimistic scenario would deem 
YbMgGaO4 the first material prototype of this quantum spin 
liquid, but several experimental observations speak against 
such an interpretation. First, low-energy spectral weight 
peaks at the M-point [125], while theory expects the peak at K 
[10] (figure 10). Second, absent magnetic contribution to the 
thermal transport [118] leaves little room for a genuine, mac-
roscopically entangled quantum state. Third, the randomness 
effect explicated in section  4.4 raises serious doubts about 
interpreting YbMgGaO4 within the framework of any model 
having uniform exchange parameters.

The peak of the spectral weight at the M-point led to an 
idea that the ground state of YbMgGaO4 may be a melted 
stripe order, where stripes are stabilized by the sizable J2, but 
their directions are random under a change in the sign of J±±

1  
[135] or a variation of all exchange parameters throughout 
the crystal [136], the latter scenario being consistent with the 
predictions of the superexchange theory [117]. Both types 
of diso rder lead to a liquid-like classical phase, although it 
remains unclear whether excitations of this random stripe 
state [135] may be responsible for the peculiar spin dynamics 
observed experimentally (section 4.3).

In fact, all ordered phases of triangular antiferromagnets 
are rather unstable toward randomness effects. Models with 
random distribution of nearest-neighbor exchange couplings 

Figure 10. Neutron scattering from Yb-based triangular antiferromagnets. (a) Static structure factor obtained theoretically (DMRG) for the 
spin-liquid phase of the anisotropic spin Hamiltonian, equation (1) [10]. (b) Momentum dependence of the spectral weight for YbMgGaO4 
(single crystal) with peaks at the M-points [125]. (c) Momentum dependence of the spectral weight for NaYbO2 (powder sample) with the 
highest intensity at the K-point [137]. Here, K stands for the zone corner and M for the midpoint of the zone edge. Panel (a) is a reprinted 
figure with permission from  [10]. Copyright 2018 by the American Physical Society.

5 Note that the data of [125] were rather insensitive to the J±±
1  and Jz±

1  
terms, so the values of [116] were employed there without further refine-
ment.
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were considered in the literature [138, 139] even before 
YbMgGaO4 made a compelling experimental case for their rel-
evance. Already weak randomness transforms the 120◦ order 
into a glassy state [140], but the most interesting behavior is 
found in the limit of strong randomness and/or finite J2, where 
a gapless spin-liquid-like phase distinct from either spin glass 
or valence-bond glass appears [141]. This phase can be repre-
sented as a valence-bond state with short-range spin singlets and 
a small fraction of unpaired (orphan) spins [142]. Alternatively, 
by analyzing a valence-bond state with random bond strengths, 
one can show that it is intrinsically unstable toward nucleation 
of spin-1

2 topological defects, orphan or unpaired spins [143].
The above scenario is remarkably similar to the phenom-

enological model developed for the interpretation of magnetic 
excitations in [123]. Indeed, a suitable parameterization of 
the valence-bond state with orphan spins allows quantita-
tive description of the low-temperature thermodynamics, 
including the peculiar T

2
3  power law of the specific heat [143] 

that was initially ascribed to the U(1) quantum spin liquid. 
[142] describes this new, randomness-induced phase as a 
‘many-body localized RVB state’, but it clearly deviates from 
the conventional RVB scenario, because gapped vison excita-
tions are preempted by the gapless low-energy dynamics of 
orphan spins. An interesting question is whether the mixed 
state of orphan spins and valence bonds, while not being an 
RVB state in the original sense, still shows quantum entan-
glement. First numerical results suggest that this may be the 
case [141], and give certain hope that the randomness-induced 
spin-liquid-like phase is not yet another case of the spin-liquid 
mimicry, but on a longer run may disengage itself from the 
precautionary ‘-like’ ending.

5. Other 4f  materials

The complexity of YbMgGaO4 arises from the intricate com-
bination of magnetic frustration and structural randomness. 

The former is essential, and the latter unavoidable, but a cru-
cial problem on the materials side is whether this structural 
randomness can be reduced to the level that it does not change 
the physics qualitatively, leaving room for the ‘genuine’ 
behavior of regular triangular antiferromagnets described in 
section 2.3.

Close-packed layers of Yb3+ , the main building block of 
YbMgGaO4, are common for many structure types, including 
the abundant family of delafossites, where the presence 
of only one sort of non-magnetic species should eliminate 
the randomness effect (figure 11). The absence of random-
ness was indeed confirmed in NaYbO2 [137, 144, 145] by 
the observation of three resolution-limited peaks of the CEF 
excitations and the absence of extra features in high-energy 
inelastic neutron spectra [137]. No significant randomness 
is expected in the isostructural materials NaYbS2 [146], 
NaYbSe2 [147, 148], and CsYbSe2 [149] as well. Interestingly, 
all these compounds reveal main signatures of the spin-liquid 
behavior, absent magnetic order [137, 147–149] and persis-
tent spin dynamics [137, 146, 150] down to low temperatures. 
Moreover, in NaYbO2 the spectral weight of the excitation con-
tinuum peaks at the K-point of the Brillouin zone [137, 145] 
(figure 10(c)) in agreement with theoretical results for the 
quantum-spin-liquid phase of triangular antiferromagnets 
[10]. These promising observations suggest that the Yb3+ 
delafossites may give experimental access to the spin-liquid 
phase in the absence of structural disorder.

So far little is known about the microscopic regime of the 
Yb3+ delafossites. Average exchange couplings gauged by 
their Curie–Weiss temperatures and saturation fields are at 
least two to three times stronger than in YbMgGaO4 (table 3), 
which shifts the relevant temperature scale toward higher tem-
peratures, but simultaneously pushes the fully polarized phase 
above 14 −16 T [148], the feasibility limit of neutron-scattering 
experiments. The g-tensors determined by ESR are indicative 
of an easy-plane anisotropy (table 3) that may be even more 
pronounced than in the case of YbMgGaO4.

Figure 11. Crystal structures of Yb-based triangular antiferromagnets: YbMgGaO4, NaYbO2 as representative of the Yb3+ delafossites, and 
KBaYb(BO3)2 as representative of the Yb3+ borates. All structures are trigonal, with c chosen as the vertical direction, whereas triangular 
layers are in the ab plane. VESTA software [85] was used for crystal structure visualization.
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Another generic property of the Yb3+ delafossites is their 
field-induced phase transition between the putative spin-
liquid phase in zero field and one or several states with long-
range magnetic order. In-plane magnetic fields trigger the 
transition already around 2  T accompanied by the 1

3 mag-
netization plateau [148, 149], which is compatible with the 
up-up-down magnetic order confirmed experimentally for 
NaYbO2 [145]. In contrast, out-of-plane fields cause magnetic 
order only above 8 T with no plateau feature in the magneti-
zation. This drastic difference in the transition fields reflects 
the sizable easy-plane anisotropy (table 3), whereas the pres-
ence (absence) of the magnetization plateau for the in-plane 
(out-of-plane) fields resembles the response of Co-based XXZ 
triangular antiferromagnets [76, 77], where interactions are 
restricted to nearest neighbors. Indeed, in the fully isotropic 
(Heisenberg) case, the up-up-down phase and associated 
1
3-plateau occur only at J2/J1 < 0.125 [152, 153], suggesting 
that in the Yb3+ delafossites the J2/J1 ratio should be lower 
than in YbMgGaO4, in agreement with the fact that the abso-
lute value of J1 increases.

Other Yb-based triangular materials include the family of 
borate compounds ABaYb(BO3)2 (A  =  Na, K) [154–156], 
where YbO6 octahedra are not directly linked to each other, 
but connected via BO3 triangles, with the nearest-neighbor 
Yb–Yb distance increasing to 5.3–5.4 Å  (figure 11). These 
materials may serve as interesting reference systems, where 
J2 is effectively suppressed, giving way to the purely nearest-
neighbor triangular model. The main question at this juncture 
is whether at least J1 can be strong enough to produce any tan-
gible magnetism. The Curie–Weiss temperatures well below 
0.3 K [155, 156] suggest that an extremely cold environment 
would be needed to access frustrated behavior of these tri-
angular antiferromagnets. With the shortest interlayer Yb–Yb 
distance (5.3–5.4 Å) approaching the intralayer one (6.6–6.7 
Å), the 2D nature of the magnetism also comes into question, 
whereas mixing of A+ and Ba2+ in the same crystallographic 
site creates random electric fields acting on Yb3+ , similar to 
the YbMgGaO4 case (section 4.4).

Both delafossites [157], YbMgGaO4-type [158], and 
mixed-cation borate [155, 159] compounds exist for many if 
not all 4f  ions. The properties of these materials remain to 
be explored, but a few literature cases suggest that at least 
Ce-based compounds will likely reveal an ultimate XY aniso-
tropy reported for Ce3+ in the trigonal CEF [160]. Only a 

moderate easy-plane anisotropy has been observed in Er3+ 
selenides, AErSe2 (A  =  Na, K, Cs) [161, 162], but in this 
case the first crystal-field excitation lies below 1 meV in the 
selenides [162] or around 2 meV in the isostructural sulphide 
[163] and is likely to impact the low-energy physics.

Triangular magnetic layers are also featured by some of 
the non-chalcogenide 4f  compounds. Most notably, CeCd3P3 
shows signatures of quasi-2D magnetism and a long-range-
ordering transition around 0.4  K, although it undergoes a 
structural phase transition already at 127 K [164]. YbAl3C3 
belongs to the same structural family and is known to develop 
singlet ground state [165, 166] as a consequence of a similar 
structural phase transition [167, 168]. Metallicity of these 
compounds [164] may be another important ingredient. 
Itinerant electrons will generally mediate long-range inter-
actions, both within and between the triangular planes, thus 
rendering the mapping onto simple short-ranged spin models 
impossible or at least ambiguous.

Non-Kramers ions can be accommodated in the triangular 
geometry too, although they are known to produce Ising spins 
[169] that are quite interesting on their own right but leave 
little room for quantum fluctuations and spin-liquid behavior, 
at least in zero field. TmMgGaO4 is an example of a triangular 
Ising antiferromagnet, where structural randomness plays a 
role as crucial as in the Yb3+ analog, and the nature of mag-
netism remains controversial [170, 171].

6. Summary and outlook

Triangular antiferromagnets are no longer a land of static 
non-collinear magnetic structures of ever-increasing com-
plexity [8]. Recent theory work charted stability regions of 
the quantum spin liquid (section 2.3) and identified unusual 
quantum features in the excitation spectra of the 120◦-ordered 
state (section 3.2). Structural randomness brought yet another 
dimension into this already rich phase diagram by making 
unexpected connections to valence-bond states that were his-
torically proposed for triangular antiferromagnets and led to 
important conceptual developments but have been discarded 
as possible ground states of any realistic spin Hamiltonian.

On the experimental side, the research reviewed in this 
article leads us to reconsider the notion of the geometrically 
perfect spin-liquid material and the role that randomness or 
structural disorder play therein. The YbMgGaO4 case shows 
that neither lattice symmetry nor complete site occupations 
are sufficient conditions of a ‘perfect material’, because even 
subtle structural effects far away from the magnetic planes 
can strongly affect magnetic interactions and spin dynamics. 
This imposes very hard requirements for the material charac-
terization, and renders probes like CEF excitations central to 
deciding whether a given material is ‘perfect’ or not. On the 
more positive side, it also offers a convenient experimental 
knob for tuning the material toward a dynamically disordered 
state, potentially a spin liquid.

The quest for ‘structurally perfect’ spin-liquid materials 
was largely motivated by the common notion of imperfec-
tions being detrimental for the genuine spin-liquid state. A 

Table 3. g-values and exchange parameters of the Yb3+ 
delafossites. The g-values are estimated by ESR [151], whereas J 
and ∆ are calculated from Curie–Weiss temperatures obtained for 
two different field directions and represented as θ = 3

2 J , where 
J is the cumulative (nearest-neighbor and next-nearest-neighbor) 
coupling between spins pointing along this direction. Only the J 
value is given for NaYbO2 due to the lack of single crystals for this 
compound.

g‖ g⊥ J ∆ Reference

NaYbO2 1.75 3.28 6.0 — [144]
NaYbS2 0.57 3.19 9.0 0.13 [146]
NaYbSe2 1.01 3.13 4.7 0.49 [148]
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material with imperfections and without magnetic order was 
supposed to be a classical spin liquid that will freeze at low 
enough temperatures and show mundane spin dynamics. 
YbMgGaO4 reveals this may not be the case, and even signa-
tures of spin freezing (section 4.2) do not preclude dynamic 
behavior for the majority of spins that, in fact, show highly 
unusual excitations. Taken together, these ideas suggest that 
structural imperfections should not always be avoided, but can 
be congenially used to facilitate spin dynamics. The general 
questions of which structural imperfections can be used in this 
way, and how to identify their influence on magnetic interac-
tions, remain interesting avenues for future research in spin-
liquid materials.

With the phase diagram of anisotropic J1 − J2 triangular 
antiferromagnets fully charted and disorder-free materials like 
Yb3+ delafossites already available, experimental access to 
the quantum spin liquid phase outlined in section 2.3 becomes 
imminent. It makes, however, only one out of many inter-
esting questions in the field. We outline a few others below.

First, with the exception of Ba3CoSb2O9 field-induced 
behavior is largely unknown, and even theory studies of the 
anisotropic J1 − J2 Hamiltonians in the applied field remain 
scarce [152, 153]. NaYbO2 shows a quite unusual transition 
between the spin-liquid phase in zero field and the collinear up-
up-down phase in the applied field [144, 145] (a similar trans-
formation was claimed in randomness-influenced YbMgGaO4 
too [172]). Both phases may be quantum in nature, and their 
evolution is opposite to the typical scenario of Kitaev mat-
erials, where magnetic order is suppressed by the applied field 
giving way to a disordered state, possibly a spin liquid [173]. 
A quantum critical point separating the spin-liquid and up-
up-down phases can be envisaged, with the Yb3+ delafossites 
offering direct experimental access to it.

Second, structural randomness could be tuned. YbMgGaO4 
lies in the limit of strong randomness, where valence 
bonds coexist with a significant fraction of orphan spins. 
Ramifications of this coexistence remain to be fully under-
stood, but the most clear one is that abundant disorder ren-
ders magnetic excitations localized. An opposite limit of weak 
randomness, with valence bonds and only a minute fraction 
of orphan spins, may be, in contrast, the closest experimental 
realization of an RVB state. It can be conceived in Yb-based 
delafossites or other disorder-free triangular compounds that 
are suitably doped to induce weak randomness.

Third, all Yb-based triangular antiferromagnets studied 
so far are not magnetically ordered, which is even surprising 
because in other classes of materials finding an ordered state is 
by far easier than achieving a spin liquid. Tuning one of these 
materials toward an ordered state (or finding another Yb-based 
triangular compound with long-range magnetic order) may 
be an interesting endeavor. The primary goal here will be to 
probe magnetic excitations at different energy scales, keeping 
in mind the experience with Co-based compounds, where 
exact nature of the excitation continuum remains controver-
sial. The proclivity of Yb3+ and other 4f  ions to the anisotropic 
exchange implies strong tendency to magnon breakdown with 

unusual spectral features that will benchmark theoretical 
studies of quantum spin-1

2 triangular antiferromagnets.
Using a theoretical map chart and appreciating the two-

faced role of structural randomness will undoubtedly lead 
to new discoveries in the field of spin liquids and triangular 
antiferromagnets.
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