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Nanoscale electronic inhomogeneity in FeSe0.4Te0.6 revealed through unsupervised machine learning
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We report on an apparent low-energy nanoscale electronic inhomogeneity in FeSe0.4Te0.6 due to the
distribution of selenium and tellurium atoms revealed through unsupervised machine learning. Through an
unsupervised clustering algorithm, characteristic spectra of selenium- and tellurium-rich regions are identified.
The inhomogeneity linked to these spectra can clearly be traced in the differential conductance and is detected
both at energy scales of a few electron volts as well as within a few millielectronvolts of the Fermi energy. By
comparison with angle-resolved photoemission spectroscopy, this inhomogeneity can be linked to an electronlike
band just above the Fermi energy. It is directly correlated with the local distribution of selenium and tellurium.
There is no clear correlation with the magnitude of the superconducting gap, however, the height of the coherence
peaks shows a significant correlation with the intensity with which this band is detected, and hence with the local
chemical composition.
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I. INTRODUCTION

The 11 iron chalcogenide superconductors have the sim-
plest crystal structure of the iron-based superconductors, con-
sisting of planar iron layers with chalcogenide (Se, Te) anions
above and below. The crystal structure provides a well-defined
and nonpolar cleavage plane between the chalcogenide layers.
Low-energy electron diffraction (LEED) and scanning tunnel-
ing microscopy (STM) studies show no indication of a surface
reconstruction [1,2]. Previous studies of the local density of
states in this material by STM have either concentrated on
the superconducting state [3–5] or not detected any electronic
inhomogeneity in the energy range investigated [6]. Interest
in the superconductivity in FeSe1−xTex has recently had a
renaissance driven largely by the existence of topologically
nontrivial surface states [7] and the detection of zero-bias
anomalies in vortex cores [7,8]. In particular, for the interpre-
tation of the latter, one of the big outstanding puzzles is why
not all vortex cores exhibit zero-bias anomalies, as would be
expected for a topologically protected state, but only some.
This hints to some influence of the chemical inhomogeneity
in the material that has hitherto not been accounted for in
analyzing the experiments.

II. METHODS

A. Experimental

To investigate the electronic inhomogeneity in the normal-
state electronic structure, we have carried out STM mea-
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surements on a single crystal of FeSe1−xTex with x = 0.61
[determined by energy-dispersive x-ray (EDX) measurement]
and with a superconducting transition temperature Tc ≈ 14 K
[9]. We have used a home-built low-temperature STM which
allows for in situ sample transfer and cleavage [10]. Sample
cleaving was performed at temperatures around 20 K. Spec-
troscopic maps in which differential tunneling conductance
dI/dV is measured as a function of bias voltage V and
position r have been acquired in the temperature range from
2 to 16 K through a lock-in amplifier with a modulation of
600 μVrms. The differential conductance in the normal state
and superconducting state is referred to as gN(V ) and gS(V ),
respectively. Bias voltages are applied to the sample, with the
tip at the virtual ground. Tunneling spectra are acquired with
an open feedback loop.

B. Cluster analysis

Here, we employ an unsupervised machine-learning ap-
proach through a cluster analysis of the tunneling spectra
measured on FeSe0.4Te0.6. The algorithm is a variant of a
k-means clustering algorithm (or Lloyd’s algorithm). It uses
a similarity analysis of spectra to categorize them, aiming to
minimize the metrics defined through �[g(x,V ), g(y,V )] =∑

i |g(x,Vi ) − g(y,Vi )|2 of spectra g(x,V ) defined on a dis-
crete lattice with voltages Vi. The algorithm compares indi-
vidual spectra in each identified cluster to the average spectra
of the cluster, and assigns them to the cluster with minimal
difference. This process is performed iteratively until the
clusters remain static in successive iterations. Apart from the
differential conductance data g(x,V ), the only input param-
eter is the threshold � above which spectra are considered
different by the algorithm and a new cluster is created. The
main difference from the k-means algorithm is that here,
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FIG. 1. (a) Topographic STM image (scale bar: 5 nm) and
(b) cluster-averaged spectra, identified through the cluster algorithm
described in the text for � = 7.5, representative of Se- and Te-rich
regions. Apart from a difference in differential conductance at −1 V,
the spectra exhibit a small shift in the minimum close to the Fermi
energy. (c) Spatial map of the cluster number spectra have been
assigned to.

the number of clusters is not predetermined, but depends on
the threshold �. Higher values of � thus lead to a smaller
number of clusters and vice versa.

III. RESULTS

A. Normal state electronic inhomogeneity

We have applied the machine-learning algorithm to two
data sets to investigate spatial inhomogeneities in the normal-
state differential conductance gN(V ) to extract information
about the normal-state electronic structure of FeSe0.4Te0.6.
The first covers a bias voltage range of ±1 V and the second
energies in the vicinity of the Fermi energy, between −20 and
10 mV, i.e., in the energy range relevant for superconduc-
tivity. Application of the machine-learning algorithm to the
high-energy scale map reveals a dichotomy of spectra. The
topography is shown in Fig. 1(a), and the cluster-averaged
spectra are plotted in Fig. 1(b). Analysis of the apparent
height of topographic images yields a concentration of Se
atoms of (37 ± 4)% and of Te atoms of (63 ± 4)% in the
surface layer, consistent with the EDX analysis. The tun-
neling spectra reveal a substantial difference in differential
conductance around −1 V (if the tip is stabilized at +1 V),
while above −0.4 V only negligible differences in the shape
of the spectra are found. The spatial distribution of the two
most abundant spectra is in Fig. 1(c). The spatial map reveals
a stunning similarity with the topographic image shown in
Fig. 1(a), demonstrating that the two spectra identified by the
machine-learning algorithm are representative of selenium-
and tellurium-rich areas of the sample surface. A possible
reason for the difference at bias voltages lower than −0.4 V
may be due to the energy of d2

z -derived bands, which occur at
different energies in FeTe compared to FeSe [1].

Having demonstrated that the algorithm can extract mean-
ingful information from spectroscopic maps, we have applied
the same algorithm to investigate the low-energy density of
states in the vicinity of the Fermi energy in the normal state
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FIG. 2. Machine-learning algorithm applied to low-energy spec-
tra. (a) Typical topography of FeSe0.4Te0.6 acquired simultane-
ously with a spectroscopic map taken in the normal state at T =
16 K (scale bar: 5 nm); the inset shows the covered area from a
higher-resolution topography on the same lateral and height scale.
(b) Cluster-averaged spectra for Te- and Se-rich regions, respectively
[obtained using � = 13, identifying in total three clusters of spectra
from the map shown in (a)]. (c) Spatial map of the two most abundant
clusters (the third cluster has only a single occurrence, black pixel).
Comparison with (a) shows that red regions tend to be Te rich,
whereas blue regions are Se rich. (d) Same spectra as in (b), but after
subtraction of a polynomial of second degree, so that the peak at
2.4 mV is more visible.

of FeSe0.4Te0.6, to understand the relation between the local
chemical composition and the electronic states in an energy
range that is relevant for superconductivity. Figure 2(a) shows
the topographic image of a differential conductance map
acquired in the normal state of FeSe0.4Te0.6 at a temperature
T = 16 K, i.e., above the superconducting transition temper-
ature of Tc ∼ 14 K. The most abundant clusters of spectra
are shown in Fig. 2(b), revealing again notable differences.
The spectra reveal two main differences: (1) There is a peak
at an energy slightly above the Fermi energy, but within the
range of the superconducting gap, that is characteristic of one
cluster of spectra, but not the other, and (2) the spectra exhibit
an asymmetry between positive and negative bias voltages
that is different between the two clusters of spectra. Similar
to the analysis performed on the large energy scale map,
inspection of the spatial prevalence of the two clusters as
shown in their distribution map in Fig. 2(c) shows a clear
correlation between the low-energy differential conductance
and the chemical nature of the atoms in the surface layer.
The strong variation of the intensity of the peak at positive
energies is more clearly seen after subtraction of a parabolic
background from the spectra [see Fig. 2(d)]. While selenium-
rich regions [blue areas in Fig. 2(b)] exhibit the peak in the
differential conductance spectra, it becomes much weaker
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FIG. 3. Properties of low-energy feature. (a) Correlation between
the amplitude of the peak in gN(V ) and the ratio z(V = 13.5 mV) =
g(V )/g(−V ), showing a clear anticorrelation (C = −0.64). (b) Cor-
relation between the peak in the normal-state differential conduc-
tance gN(V ) at V = 2.4 mV with the local apparent height as a
proxy for the chemical composition. Larger heights correspond to
tellurium-rich regions and lower heights to selenium-rich areas. An
anticorrelation with a coefficient C = −0.64 is observed.

if not undetectable in tellurium-rich regions [red areas in
Fig. 2(b)].

B. Correlation analysis

We find that not only do the normal-state spectra vary due
to the presence or absence of the peak at 2.4 mV, this is also
linked to an overall asymmetry of the tunneling spectra in the
range of +15 and −15 mV: For tunneling spectra exhibiting
a large peak at 2.4 mV, the spectrum is suppressed at positive
bias voltages compared to negative bias voltages, and vice
versa for spectra showing a small peak. This relation is seen
in the two-dimensional (2D) histogram shown in Fig. 3(a),
which shows the relation between the peak amplitude and the
asymmetry of the tunneling spectra as obtained from the ratio
z(V ) = g(V )/g(−V ) for V = 13.5 mV. Thus, the asymmetry
in that range can serve as a proxy for the amplitude of the peak
in the differential conductance.

To analyze the relation between the normal-state tunneling
spectra and the chemical composition more quantitatively, we
show a 2D histogram between the intensity of the peak found
in the normal-state spectra with the local apparent height of
topographic images in Fig. 3(b). The apparent height is known
to vary between Se and Te atoms [5,11,12] and can hence
be used as a good proxy for the local chemical composition
of the top surface layer. A clear correlation between the
two is confirmed, with higher peak amplitudes found on
selenium-rich areas, and lower height in tellurium-rich areas.
The correlation coefficient is C = −0.64. We note that this
is higher than would be expected if the local composition
would change the electronic states in the iron chalcogenide
layer, because that should only yield a correlation coefficient
of C = 0.5, given that the composition of only the top half
of the chalcogenide layer is observed, while the one of the
bottom half is expected to be random. It can be argued that
the correlation coefficient should be even lower if one assumes
that it is the four nearest-neighbor chalcogen atoms below the
iron layer that need to be considered.

C. Relation to superconductivity

The question arises how this low-energy electronic inho-
mogeneity affects superconductivity, and what is the origin

(
)

FIG. 4. Relation of the normal-state low-energy spectral feature
with superconductivity. (a) Correlation between the height of the
coherence peak at positive energy and the peak in the normal-state
differential conductance gN(V ) showing a correlation with C = 0.54.
(b) Tunneling spectra gS(V ) and gN(V ) acquired in the normal and
superconducting state, respectively, showing the definition of �,
gS(�) and gS(−�). (c) Correlation between the height of the co-
herence peak at positive energy and the local chemical composition,
showing a correlation coefficient of C = −0.67. (d) 2D histogram
between gap size as measured by the energy of the coherence peak at
positive energy and the apparent height and (e) between the ratio of
the amplitude of the coherence peaks at positive and negative energy
with the apparent height, both showing no correlation (C = −0.026
and C = −0.056, respectively).

of the peak close to the Fermi energy. To investigate this,
we can either compare a spectroscopic map obtained in the
normal state with one measured in the same location in the
superconducting state. The analysis of a combination of two
such maps is shown in Fig. 4(a), showing the correlation of the
height of the coherence peak with the height of the peak in the
normal-state tunneling conductance. The histogram reveals
again a clear correlation, with a correlation coefficient of
about 0.5. If we use the topographic height as a proxy for the
height of the peak in the normal-state conductance, we find
an even higher correlation of −0.67 [compare Fig. 4(b)]. For
comparison, no correlation is found between the size of the
superconducting gap and the topographic height [Fig. 4(c)],
consistent with previous reports [13], or the ratio in the height
of the coherence peaks at positive and negative bias voltages
[Fig. 4(d)].

IV. DISCUSSION

Our analysis of the peak in the differential conductance
spectra at 2.4 mV suggests that the existence of the peak is not
linked to the local chemical composition. If the existence of
the state was closely linked to the distribution of the selenium
and tellurium atoms in the material, the correlation coefficient
between topographic height and the peak amplitude should
be significantly lower than what we observe. This is further
supported by the complete insensitivity of the energy of this
state to the local chemical composition deduced from topo-
graphic images. Angle-resolved photoemission spectroscopy
of FeSe0.4Te0.6 shows that there is indeed a flat band just
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above the Fermi energy that could be responsible for the
feature we observe [14]. Due to the heavy character of
this band, one can expect an increase in density of states,
as detected in our spectra. We note that a similar peak is
observed in the normal state of LiFeAs, at an energy of
−3 mV [15].

Thus we interpret the spatial variation of the normal-
state feature as effectively a result of the tunneling matrix
elements between the tip and sample electronic states. This
does notably not mean that it is a pure surface effect, as this
implies that in the bulk the interlayer coupling will be spatially
modulated. The observation of this state right above the Fermi
energy, and with a similar energy as the size of the super-
conducting gap raises questions about how close the Cooper
pairs, at least on this band, are to a BEC/BCS crossover
[16]. A possible indication of the proximity to the BEC/BCS
crossover is the particle-hole asymmetry of the spectrum of
the superconducting gap, that is quite pronouncedly shifted
towards a higher coherence peak being observed at positive
bias voltages. The probability of breaking a pair at positive
energies will be higher, as the density of final states for
this process is higher compared to negative energies, because
the second electron of the pair can readily enter into the
quasiparticle band. We find a ratio of the height of the co-
herence peaks of 1.5. We note that also other unconventional
superconductors exhibit a particle-hole asymmetry in their
tunneling spectra, e.g., the cuprate superconductors, where the
asymmetry has been interpreted as due to proximity of a van
Hove singularity close to the Fermi energy [17].

Our work has potential implications for the interpretation
of a number of recent experiments. First of all, it shows
that there is a nanoscale electronic inhomogeneity, that might

impact the nature of vortex core bound states in the su-
perconducting states and might indicate one route toward
the differences in the low-energy electronic structure that is
required to explain why only a fraction of the vortex cores in
FeSe0.4Te0.6 exhibit zero-energy states [8].

The variation of the normal-state differential conduc-
tance has potential implications for the interpretation of
measurements of the critical current in Josephson STM, as
recently reported in Ref. [18]. The very narrow energy inter-
val around zero bias in which we observe variations of the
tunneling matrix element in the normal state suggests that
an extrapolation of the normal-state resistance from outside
the energy scale of the superconducting gap to estimate the
normal-state resistance of the junction RN is difficult and
subject to spatial variations. Our data indicate a strong cor-
relation of the height of the coherence peak as well as the
peak in the normal-state differential conductance with the
topographic height [see Figs. 3(b) and 4(b)], suggesting that
the same effect may contribute to spatial variations of the
critical current.

V. CONCLUSION

Our results show how unsupervised machine learning can
be used to identify trends in spectroscopic STM data that
would otherwise be difficult to discern. In our case, it has
helped us to identify the characteristic tunneling spectra of
selenium- and tellurium-rich regions in the iron chalcogenide
superconductor FeSe0.4Te0.6, and has uncovered a spectro-
scopic feature associated with the local chemical composition
that leads to an inhomogeneity in the appearance of the
superconducting gap.
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