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Besides reduction of energy consumption, which implies alternate actuation and light construction, the main research domain in
automobile development in the near future is dominated by driver assistance and natural driver-car communication. The ability
of a car to understand natural speech and provide a human-like driver assistance system can be expected to be a factor decisive
for market success on par with automatic driving systems. Emotional factors and affective states are thereby crucial for enhanced
safety and comfort. This paper gives an extensive literature overview on work related to influence of emotions on driving safety and
comfort, automatic recognition, control of emotions, and improvement of in-car interfaces by affect sensitive technology. Various
use-case scenarios are outlined as possible applications for emotion-oriented technology in the vehicle. The possible acceptance
of such future technology by drivers is assessed in a Wizard-Of-Oz user study, and feasibility of automatically recognising various
driver states is demonstrated by an example system for monitoring driver attentiveness. Thereby an accuracy of 91.3% is reported

for classifying in real-time whether the driver is attentive or distracted.

1. Introduction

More than 100 years of history of the automobile are marked
by milestones as the combustion engine and mechanical
components followed by electrical and electronic device
integration, increasing usage of control technique and
software. Apart from reduction of fuel consumption, and
thus alternative actuation and light weight construction,
the main research interest in automobile development in
the near future is dominated by driver assistance and
natural, intuitive driver-car communication. This statement
is supported by various EU-funded research projects such as
PREVENT (http://www.prevent-ip.org/), SASPENCE (sub-
project of PREVENT), and PROSPER [1], which aim at
advancing the state-of-the-art in the area of driver assistance
systems, and a body of literature on in-car signal processing,
for example, [2]. In this respect the ability of a car to talk
naturally and provide a virtual companion can be expected

to be a market success decisive factor in future automotive
systems as “next big thing” on par with automatic driving
systems and intelligent measures to improve driving safety.
Emotional factors are decisive for enhanced safety and
comfort while driving a car, as we will show in Section 2.1.
It is thus necessary for a car to sense these and by that
better understand a driver’s intention and/or state. The
aim of in-car emotion recognition should be to support
the driver in performing primary, secondary, and tertiary
driving tasks. Thereby the primary driving task, which
includes steering, accelerating, braking, and choosing the
correct lane, speed, route, and distance to other vehicles, as
well as the secondary driving task, denoting activities like
dimming, operating windscreen wipers, coupling, changing
gears, and blinking, can be seen as rather safety-related
whereas the tertiary driving task (operating air conditioner,
seat heater, radio, and phone) mainly refers to comfort

[3].



Constantly increasing provision of speech technology as
well as gaze detection and eye/head movement monitoring
mark the beginning of more natural ways of human-
machine interactions which are based on intuitive commu-
nication modalities. Recognition of emotion from vocal and
facial expression, physiological measurement, and contextual
knowledge will be the next key-factor driving improved
naturalness in many fields of Human-Computer Interaction
[4]. Next to the modalities speech, facial expression, phys-
iological measurements, and contextual knowledge, driving
parameters can be used as an important and reliable
modality for driver emotion and state recognition in a car.

This paper will give an introduction to in-car affective
computing with an extensive literature overview on studies
and existing work in Section 2. The section includes a
discussion of the influence of emotions on the driving
performance, and lists methods for recognising emotion and
control of emotion. Moreover, the concept of a “virtual
companion” will be presented. We will outline various
use-case examples which illustrate how emotion-oriented
technology can be used in a vehicle in Section 3. An open
issue is that of user acceptance of emotion aware technology.
In order to assess this acceptance, we conduct a pilot study
where we interrogate users on their experiences using a
Wizard-of-Oz (WoZ) prototype system (see Section 4). To
show the feasibility of automatic driver state recognition for
safety and infotainment-related tasks we finally and briefly
present a system for detecting driver distraction in Section 5,
based on measuring various driving style parameters and
tracking the driver’s head motion.

2. Literature Review

This section gives an extensive literature overview on the
topic of affective computing and the role of emotions and
other driver states in the car. We investigate the influence
of affective states on the driving performance in Section 2.1.
Road rage, fatigue, stress, confusion, nervousness, and
sadness are picked as main factors with respect to driving
safety. Further, we deal with techniques for recognition and
control of various driver states. The two main strategies of
countersteering negative emotions, and alternatively adapt-
ing car functionalities to the driver’s emotion are the focus
of Section 2.2. They are followed by a discussion of the
modalities used to actually recognise driver emotion in the
car. Next, we discuss the feasibility and benefits of a “socially
competent” car in Section 2.3. This type of car is supposed to
enhance the driving experience, that is, the driver’s pleasure,
as “happy drivers” were shown to be the better drivers in any
respect (e.g., [5]).

2.1. The Influence of Affective States on Driving Performance.
The role that emotions and other mental states (such as
fatigue) play while driving a car becomes evident when
considering essential driver abilities and attributes that are
affected by emotion: perception and organisation of memory
[6, 7], categorisation and preference [8], goal generation,
evaluation, decision-making [9], strategic planning [10],
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focus and attention [11], motivation and performance [12],
intention [13], communication [14-16], and learning [17].
Taking into account the great responsibility a driver has for
her or his passengers, other road users, and her- or himself,
as well as the fact that steering a car is an activity where even
the smallest disturbance potentially has grave repercussions,
keeping the driver in an emotional state that is best suited
for the driving task is of enormous importance. Of course,
similar to a simple control circuit, for an “intelligent” car
the first step towards influencing or even controlling a drivers
emotional state is to measure emotion. But what kind of
emotion would be ideal to optimally perform primary and
secondary driving tasks? Obviously the driver’s emotion
should support capabilities like attention, accurate judge-
ment of traffic situations, driving performance, compliance,
fast and correct decision making, strategic planning, and
appropriate communication with other road users.Literature
answers the question of the optimum emotional state with
the statement “happy drivers are better drivers” [5, 18, 19].
Research and experience demonstrate that being in a good
mood is the best precondition for safe driving and that happy
drivers produce fewer accidents [20]. The following sections
take a closer look at how other affective states can influence
driving performance.

2.1.1. Aggressiveness and Anger. Aggressiveness and anger are
emotional states that extremely influence driving behaviour
and increase the risk of causing an accident [21]. “Road
rage” denotes an extreme case of aggressive driving implying
specific incidents of anger intentionally directed at another
driver, vehicle or object. Approximately 16 million people
in the US might suffer from road rage disorder, as was
reported by CNN news in 2006 and is cited in [22]. Extreme
forms even involve physical attacks, confrontation with other
drivers, “tailgating” (i.e., driving too closely at a distance),
and cutting another driver off the road. Apart from these
grave misbehaviours, slightly milder forms of road rage
like provocation of other road users, obscene gestures, and
expressing anger by yelling or honking are part of day-to-
day traffic interactions and concern a significantly larger
number of traffic participants [23]. Even those comparatively
mild levels of aggressiveness disrupt the drivers attention
and preclude the driver from concentrating on the traffic,
increasing the risk of an accident [24].

On the other hand, a too low level of activation (e.g.,
resulting from emotional states like sadness or fatigue) also
leads to reduced attention as well as prolonged reaction
time and therefore lowers driving performance. As stated by
Yerkes and Dodson [25], a medium level of activation results
in the best performance, whereas the precise optimum level
of activation (OLA) varies, depending on the difficulty of the
task. This relationship is commonly known as the Yerkes-
Dodson Law.

2.1.2. Fatigue. Another example for dangerous driver states
is sleepiness, which affects all abilities that are important
for driving, in a negative way. The fact that even when
people recognise they are tired, they often force themselves
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not to take a rest but to go on driving, makes sleepiness
a severe problem in today’s car traffic [20]. According to
[26] up to 3% of all motor vehicle crashes happen due
to sleepiness whereas the main risk factors are youth, shift
work, alcohol, drugs, and sleep disorders. Since fatigue
degrades alertness as well as quick and accurate perception,
judgement, and action, tired drivers not only risk accidents
from falling asleep while driving, but also from slowing
down of reactions or loss of attention during time-critical
manoeuvres like abruptly breaking when observing the end
of a traffic jam on a highway or avoiding to hit a pedestrian.
Various surveys demonstrate that many people experienced
excessive sleepiness during driving [27-29]: 55% of 1000
interviewed individuals had driven while being sleepy during
the year preceding the survey [30], 23% had fallen asleep
while driving once or more than once in their life, and
almost 5% already had an accident due to sleepiness. Those
figures indicate that fatigue is a serious problem in traffic and
belongs to the most alarming states of a car driver.

2.1.3. Stress. As automobile driving itself can often be a
source of stress, it seems obvious that stress is an affective
state which is very likely to occur in a car. Driving closely
behind other vehicles, changing traffic lanes during rush
hour, receiving a phone call, getting to ones destination on
time, and paying attention to traffic rules are only some of
the tasks which partly have to be fulfilled simultaneously by
the driver and therefore cause mental overload. A frequently
experienced event is rush hour traffic congestion which
is interpreted as stressful by almost every automobile
driver and causes many people to use public transport
and to dismiss the private car in urban areas. Similar to
anger and aggressiveness, stress usually implies a high
level of arousal which in turn leads to a lack of focus
and attention and therefore lowers driving performance
[31]. Excessive workload during driving, for example
due to distraction caused by using the cell phone in the
car, was shown to downgrade driving style [32]: using
a cell phone causes drivers to have higher variations in
accelerator pedal position and to drive more slowly with
high variation in speed. Obviously such a decrease of
driving performance and concentration is also caused by
other in-car information and entertainment systems. (cf.
http://www.nuance.com/distracteddriving/, and Depart-
ment for Transport Project: Scoping Study of Driver
Distraction (2008), Ref. T201T, summary available at:
http://www.dft.gov.uk/rmd/project.asp?intProjectID=12560)
which suggests that with the growth of car functionality the
need for monitoring the drivers’ stress level increases.

2.1.4. Confusion. Confusion or irritation is a further state
which can lead to a loss of self-control and control over
the vehicle, increasing the probability of committing a traffic
violation or even being involved in an accident [33]. Sources
of confusion can on the one hand be nonintuitive user
interfaces or defective systems (like e.g., a badly designed
navigation system or an error prone speech recogniser; in
the latter case detected confusion could be used to increase

the speech recognisers robustness). On the other hand
irritating traffic situations like route diversions, mistakable
signs or complicated routing of a road can cause confusion.
Just like stress, irritation leads to disturbance of driver
capabilities such as decision-making, attention, perception,
and strategic planning. Particularly older people tend to
be confused by the amount of information they have to
process simultaneously during driving [34] as today neither
car information systems nor all traffic signs or routes are
designed for elderly people who often have longer reaction
times and slower perception. Supporting irritated drivers
through intelligent emotion-sensitive assistance systems will
become indispensable for future car generations as confusion
potentially increases with the number of car functionalities.

2.1.5. Nervousness. Nervousness is an affective state that
implies a level of arousal which is above the degree of
activation that is best suited for the driving task. Rea-
sonable decision-making as well as strategic planning and
concentration are affected when being nervous. Reasons
for nervousness are variable and can be related directly
to the driving task (e.g., for novice drivers) or to other
personal or physical circumstances. In [35] the nervousness
induced by the use of drugs is examined with respect to
effects on driving: nervous drivers tend to perform worse
as far as driving ability is concerned—mainly due to poorer
concentration. Also Li and Ji name nervousness as one of the
most dangerous driver states and point out the importance
to detect nervousness to provide intelligent assistance and
appropriate alerts [36].

2.1.6. Sadness. Also negative emotions with a rather low level
of arousal, like sadness or frustration can have perturbing
effects on driving ability [37]. An example is shown in [38]
where the influence of terror attacks on driving performance
was examined: in Israel an increase of traffic accidents by
35% was observed on the third day after terrorist attacks.
Sadness seriously affects the level of attention of a driver
and therefore endangers the safe operation of a vehicle.
As frustration and sadness usually coincide with a certain
degree of passiveness or resignation, reaction time in critical
situations increases.

Apart from safety aspects, when thinking of the car as a
“virtual companion”, the automatic recognition of sadness as
an emotional state maybe one day enable the system to cheer
up the driver and thus deliver also enhanced driving pleasure
besides increased safety.

2.2. Recognition and Control of Driver States. So far, we
have pointed out the enormous effect that affective states
and emotions have on driving abilities and listed the most
dangerous affective states which prevent safe driving. How-
ever, the need for automatic in-car emotion recognition and
driver state detection only becomes evident when examining
adaptation or even “countersteering” strategies that can
easily be implemented provided that the drivers emotion
is determined accurately. The aim of affect recognition is
to provide a kind of “state variable” which serves as input



for subsequent processing in emotion-sensitive accessories,
aiming to improve not only driving comfort but also safety
(5, 36, 39, 40]. Thereby secure driving can be supported by
either attempting to improve the affective state of the driver,
which would mean making the driver “happy” or at least
directing her or him into a neutral emotional state or by
adapting the car with the emotion of the driver [41, 42].
Both strategies rely on proper emotion recognition and were
shown to improve driving performance and reduce the risk
of having an accident.

2.2.1. Countersteering Negative Emotions. To reduce the
stress level of the driver, dialogue strategies can be adapted
to the current workload [43, 44]. Since voice messages
potentially distract the driver, an adaptive system would
deliver messages only when the driver’s stress level is low.
A method to avoid stress caused by traffic jams could be to
warn the driver in time as soon as he or she intends to use a
route for which congestion had been reported to the system.
This, of course, is a desirable feature regardless of affect aware
technology, but has the possible benefit of reducing negative
emotions.

A possible approach towards making, for example, an
angry driver aware of the dangerous driving style, resulting
from her or his increased level of arousal, would be to
encourage better driving via voice response [45] or to
make appropriate alerts [36] (e.g., making the driver aware
that the current traffic situation demands more thoughtful
actions than emotional actions). Calming down the driver or
increasing the consciousness of critical manoeuvres caused
by aggressive driving would be a typical method of verbal
countersteering that a “virtual companion” might perform
in the far future, thereby replacing a reasonable, observant
human codriver.

In [5] it is suggested that the car could become more
or less talkative depending on the affective state of the
driver. Sleepiness is a driver state which requires increased
communicativeness of the virtual companion in order to
involve the tired driver into a conversation and thereby
aiming to make her or him attentive again or even to prevent
her or him from falling asleep. This is equivalent to what
a good codriver would do to compensate the sleepiness
of the driver. However, according to [26], the only safe
countermeasure against driving while being sleepy is to
stop driving. This advice also counts to the useful alerts
an intelligent car could give, provided that the driver state
“fatigue” is recognised reliably.

To countersteer detected confusion, an emotion-sensitive
system could provide help or more detailed explanations
concerning the functionality which the driver is about to use.
Complicated information or entertainment systems benefit
from automatic guidance through menus. that could be
triggered by the detection of irritation. As far as confusion
or nervousness due to traffic situations is concerned, it
was shown that particularly elderly people profit by the
recognition of irritation and subsequent driving support
[46] leading to better driving performance and to higher
confidence while driving.
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2.2.2. Adapting Car Functionalities to Driver Emotion. Apart
from trying to influence the driver’s emotion in a positive
way, adapting user interfaces to the user’s affective state can
also reduce the risk of accidents and potentially leads to
higher driving pleasure. Experiments indicate that matching
the in-car voice with the driver’s state not only encourages
users to communicate with the system, but also improves
driving performance [41]. Choice of words, intonation, and
tone of voice are important aspects of communication and
should be adapted to the emotion of the conversational
partner to make the dialogue more natural. Further, it
is known that the words which are used to inform the
driver of bad driving performance are much more effective
when they ascribe the bad performance to the driving
environment rather than to the drivers themselves [47].
A voice that matches the driver’s emotion increases the
connection between the user and the voice and, like most
other adaption strategies, corresponds to what a human
codriver would do.

As an important step towards enhanced and reliable
speech recognition, adaptation of speech recognition engines
to the driver’s current emotion is a technique that has
prevailed in increasing the robustness of speech recognition
systems [48, 49]. Both the acoustic realisation of a spoken
utterance and the choice of words are highly dependent on
the speaker’s emotion [50] which makes it necessary to adapt
acoustic models (emotionally coloured speech has a different
spectral pattern than normal speech, e.g.) as well as the
language model of the speech recogniser in order to maintain
automatic speech recognition performance for emotionally
coloured speech. This again stresses the need for emotion
recognition in the car as a major component to guarantee not
only safety and comfort but also accuracy and robustness of
other functionalities like automatic speech recognition.

In this context the design of emotion dependent speech
dialogues for natural interaction with in-car systems will be
an upcoming challenge. Besides speech technology improve-
ments, new concepts regarding the interaction design with
other input and output modalities are also relevant. Flat
menu hierarchy, “one click” solution, user interfaces with
seamless multimodality and usage of handwriting recogni-
tion (for almost blind text input on a touch display without
having to look at buttons) are some examples.

2.2.3. Modalities for In-Car Emotion Recognition. As in many
pattern recognition disciplines, the best emotion recognition
results are reported for multimodal recognisers [44, 51] that
make use of more than one of the four major modalities.
These are audio (e.g., [52-54]), video (e.g., [55, 56]),
physiology (e.g., [57-59]), and driving style (Section 5).
However, not every affective state can be detected equally
well from every modality. It will, for example, be hard to
reliably recognise sleepiness from the speech signal since a
tired driver probably does not talk. Yet, visual information
(frequency and duration of twinkling as a trivial example)—
if combined with infrared illumination at night time—will
be a well-suited indicator for fatigue, and driving style is a
good indicator of distraction as we will see in Section 5.
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For the recognition of driver states like anger, irritation,
or nervousness however, the audio channel was proven to
be valuable [19, 40, 60]. This seems little surprising when
considering how strongly for example anger is correlated to
simple speech features like volume (and energy, resp.) or
pitch. The great advantages of the speech modality are low
hardware costs, relatively low apparent observation, and high
reliability. Furthermore the user is able to control how much
emotion is shown, which of course is a disadvantage for
constant and reliable driver monitoring; audio information
simply is not continuously present if the driver does not
constantly speak. Further, not all speech captured by the
microphone may be relevant in such an open microphone
scenario, which makes recognition tasks more difficult [61].

Recognisers exploiting visual information have been
applied for the detection of emotions like anger, sadness,
happiness, disgust, fear, irritation, and surprise [44, 62, 63]—
mostly from facial expressions. For interest detection, for
example, the visual modality also seems to be superior to
the audio modality [64]. In contrast to speech, video is
omnipresent, however, the use of visual information implies
slightly higher hardware costs, and increased observation
feeling.

More extensive approaches (at least from the sensory
point of view) to measure emotion also include physiology
exploiting data from electromyograms, electrocardiograms,
respiration, and electrodermal activity [65] measuring quan-
tities like heart rate or skin conductance. These methods are
at present mainly used for research and not for Human-
Machine Interaction as they require a great amount of
noncommercial hardware. Depending on the type of signal,
the hardware costs of physiological measurements can also
be marginal, however, user acceptance will still be low as the
driver—apart from the process of wearing such devices—has
a strong feeling of “being watched” and controllability is not
granted.

The use of driving style as a modality for emotion
recognition is quite self-evident and less costly although
not investigated very intensely so far. The fact that driving
style and affective state are highly correlated was outlined
in Section2.1 and can be utilised for in-car emotion
recognition. A small study on a system using this modality
is presented as an example in Section 5.

Motion of the driver in her or his seat is another
method to measure nervousness or activity [66], for example.
However, we have to be cautious not to confuse nervousness
with backache or other problems which could make the
driver move more than usual. It has to be carefully researched
if backache and nervousness produce different movement
patterns. Contextual knowledge is mostly to be seen as
additional knowledge source, yet certainly highly reasonable
to improve audio- or video-based recognition performance.

2.3. The Socially Competent Human-Like Car. Besides im-
provements in driving safety by monitoring the driver’s
emotional state, the upper class car of tomorrow will also be
“socially competent”, that is, more human-like with respect
to verbal and nonverbal communication and interaction

skills and, possibly somewhat limited, understanding of
nonverbal meaning and contextual information. The car can
be expected to be able to interact with driver and passengers
in a way quite natural to us as humans. It could be able
to serve as a virtual companion or secretary and assist the
driver in difficult situations. The car will likely be more
like a real human codriver than like the touchscreen based
interfaces found in today’s cars [67, 68], however ensuring
controllability at all times, that is, the driver will be able to
switch off the “talking interface” One might now ask the
question why cars have to be more human-like. The answer
is simple: because people want it and a more human-like
interface simplifies interaction with advanced technology.
The trend is clear, already today people driving upper
class cars demand for the latest state-of-the-art technologies
in their cars. There exist route guidance systems, finest
HiFi entertainment and integrated cell-phones including
messaging, calendar and e-mail systems, all synchronisable
with your home, work and laptop computer. Still in a
development stage are topics like real internet access, just-
in-time information about the environment, and real time
traffic alerts and warnings [69]—all functions controlled via
natural language voice interaction between driver and car. In
Section 4, we present the results of a small survey regarding
the user acceptance of such technology in the car.

A major problem arising along with the growing number
and complexity of in-car entertainment and communication
systems is the increased distraction of the driver caused by
these systems. When changing your route while driving,
for example, the display of your route guidance system will
capture your visual and cognitive attention for some time.
The same is true for changing the radio station or your music
selection in the on-board entertainment system. If these
distractions remain few, the driving safety is not affected
notably. However, if more tasks are added, especially reading
e-mails, retrieving background information about points of
interest or communication with other people over the phone,
driving safety will certainly suffer, if these systems do not
change their way of interfacing with the user [68]. State-
of-the-art in-car systems can be controlled via Automatic
Speech Recognition (ASR), however robustness is still an
issue here. Moreover the user is restricted to a well-defined
grammar, and cannot say what he would like the system to
do in his own words or even nonverbally (e.g., confirmation
or rejection only by tone of voice).

In this section we list reasons and show various sources
that indicate a demand for in-car Human-Machine Inter-
faces to become more human-like in the near future. As
mentioned in the previous paragraph, there is primarily the
issue of improving driving safety. Section 2.1, shows that
this is of major importance and Section 2.2 demonstrates
that various ways exist in which technological systems can
directly improve safety by incorporating human factors and
giving useful feedback. However, it has also been shown that
driving safety can be increased indirectly by making driving
a more pleasureful experience [19, 41, 42, 70]. Therefore, if
the pleasure of the driver is increased and the interfaces are
designed more human-like as reported by [68], safety will
automatically benefit, even though in-car systems are getting



more complex and are able to offer things not primarily
related to driving.

This is an important factor in competitive markets.
Users” demands for more technology in the car are obvious.
The literature indicates that people experience more driving
pleasure in newer, safer, and more comfortable cars, as
proven, for example, in [70].

In the following section the demand and feasibility of
enhancing users’ driving pleasure and enabling the user
to be more productive, while still focussing on driving,
is discussed in more detail. Section 2.3.1 will summarise
existing work that deals with the effects of driving pleasure on
driving performance and methods shown to enhance driving
pleasure. Section 2.3.2 shows methods that enable the driver
to be more productive without affecting the driver’s focus on
the road.

2.3.1. Enhancing Driving Pleasure. Users of in-car Human-
Machine Interaction nowadays most often get frustrated, if
a system does not understand their intentions and interface
design is complex and nonintuitive. Numerous publications
exist that try to improve the interfaces by optimising the
amount of time users spend on data input and by re-
structuring menus in order to access items more quickly, for
example, [71]. However, all of these approaches focus only
on traditional input and output modalities: haptics/touch
and speech for input and displays and speech synthesis
for output. The speech-based systems take the first step
in making the interaction easier by allowing the driver to
operate the system in a hands-free mode. However, the
dialogue structure usually follows a fixed set of rules the
user has to adapt to [68]. If communication errors occur,
due to faulty speech recognition, for example, the user can
quickly become annoyed and stressed [68, 72]. Hearing a
prerecorded response like “sorry, I did not understand you”
over and over again, is likely to provoke anger.

More human-like systems should use multiple modalities
(especially adding the visual channel) and thus be able to
detect communication problems as quickly as possible, as
pointed out by [72]. If the system shows awareness of com-
munication problems and quickly offers alternative solutions
and personalised help [73] or uses partial information to re-
request specific details that were incorrectly recognised by
the speech recognition unit, for example, general perceived
reliability and robustness of the system improves. Literature
suggests that generally, the more robust a system is, the better
the user acceptance is [74]. User studies, such as [73] further
suggest that if a driver needs help, the system should be very
sensitive to her or his needs and preferences in order to solve
the driver’s problem as easy and quickly as possible.

A “socially competent” car in the role of a virtual
companion can engage the driver into conversation and thus
will give the driver the feeling of not being alone [75]. It can
turther give helpful assistance and driving hints, assuring the
driver that there always is somebody to help. Such a form of
communication is in strong contrast to the traditional and
impersonal way of interfacing via menu structures or well
defined dialogue schemes. According to traffic statistics in
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the USA published by the US department of Transportation
(http://www.bts.gov/) for the year 2001, the overall mean
occupancy of passenger vehicles varies between 1.1 and 1.3,
indicating a large amount of single drivers. Considering this
fact, a virtual companion might be well appreciated by a
large number of drivers. According to these reports, the
mean occupancy is lowest for drives to work (1.14) and
work-related trips (1.22). The overall mean occupancy for all
observed trips not being much above the number for work-
related trips, is an indication that a large amount of traffic is
caused by commuters and work-related driving, where car-
pooling often is not possible or not appropriate.

Another way to improve the driving experience is
personalisation [76]. This trend can be observed in almost
all other user interfaces, from full-blown computers to basic
mobile phones. Practically all of these devices allow to change
settings like the background image, color of the interface
or configure favourite menu items. A “socially competent”
car should be able to detect who is currently driving,
judge emotion and behaviour based on past experiences and
automatically adapt a conversation to the preferences of the
current driver. This will give the driver the feeling that she or
he is in control and the car adapts to her or his wishes and
needs and thus also increases driving pleasure.

The car may also offer a good personalised music
selection, for example. Music is known to improve mood by
directly affecting physical brain processes [77]. Music thus
contributes to the overall driving pleasure. However, care has
to be exercised when selecting the style of music. Choosing
too relaxing music may make the driver tired, choosing
music that the driver does not like may annoy her or him,
choosing happy music if the driver is sad is also likely to lead
to opposite results. The user’s personal preferences and the
user’s current mood have to be considered in such a decision.

Modern upper class vehicles fine tune the engine sound
perceived by the driver using a considerable number of
hidden speakers throughout the passenger cabin. In some
situations the driver might be in a bad mood and bothered
by the disturbing sound of her or his engine. An emotionally
sensitive car could sense the driver’s mood and adjust the
engine (the motor of the car) sound (especially as perceived
inside the car) based on good guesses or learnt preferences.

2.3.2. Enabling the Driver to be More Productive. Since time is
precious, many drivers want to be able to use the time while
driving to communicate with other people, access informa-
tion like news and weather forecast or check reservations and
bookings, for example. Today’s in-car information systems
in combination with mobile phones practically allow drivers
to do all these tasks, however, most of these tasks cannot be
done safely while driving. Interfaces are still designed in a
traditional way like most other Human-Machine Interfaces,
using a screen to display information combined with haptic
input via buttons, knobs, and touch devices. Some systems
use speech input in certain areas such as dialling of phone
numbers. Yet, the driver has to spend some cognitive and
visual effort on communicating with the system. He or she
must learn to interact with the system—it is not the system
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that learns how to interact with the user. The latter, however,
should be the case in a user-friendly, human-like system [68].

Most users, especially elderly people or people with
less practice in interacting with computers, will experience
problems properly using an in-car driver interface and thus
will require more time to access and use various features [78].
During driving they do not have the time to deal with the
system, which leads to poorer acceptance of the system. One
could imagine situations where there is a human codriver
present in the car. Most of the time, the driver will certainly
instruct his or her codriver to enter the new route into the
route guidance system, check the weather forecast or call
somebody via the cell-phone, for example, instead of doing
these tasks on his or her own.

This is exactly where it becomes obvious that a “socially
competent” virtual companion would be indeed very helpful
for single drivers, especially those unfamiliar with computer
interfaces. As many cars are occupied only by one driver,
as pointed out in Section 2.3.1 this is an important issue.
Communicating with the virtual companion like with a
human codriver would increase user acceptance. In the
literature the term virtual codriver (VICO) [67] is often used
to refer to a human-like virtual companion. Of course a short
period of time will be required to get used to the, at first,
strange idea of an actually naturally talking car.

Besides being a helpful aid for single drivers, a “socially
competent” virtual companion can also be of great help for
drivers with passengers requiring special assistance. Children
in the back seats can significantly distract the driver if they
require too much of her or his attention. Such a virtual
companion could detect such a situation and take some load
off the driver by engaging the children in conversation or
begin telling them stories or showing them cartoons, for
example, via a rear seat entertainment system.

At this point it becomes most obvious that for a “socially
competent” car it is also necessary to estimate the interest
level of the conversation partner. If the entertainment system
detects that the children are not interested in, for example,
the film currently shown, it probably is time to change to
something different in order to keep the children’s attention.
Also, the driver should not be bored by noninteresting
information.

In Section 3 we summarise use-cases like the above
that could be handled by a “socially competent” virtual
companion, like reading and writing e-mails and making
reservations while driving.

3. Exemplary Use-Cases

In order to design human-machine communication in future
upper class cars more naturally and intuitive, the incorpo-
ration of innovative applications of pattern recognition and
machine learning into in-car dialogue interfaces becomes
more and more important. As discussed in the previous
sections, emotion recognition is an essential precondition
to create a social competent car that can talk to the driver
and provide a “virtual companion”. In this section we discuss
specific use-cases for emotion related technology in the car

for both fields, namely the safety-related tasks of driver state
monitoring and control of driver emotions, and the tasks
related to enhancement of driving pleasure and productivity,
such as multimodal and affect sensitive interfaces. We start
our use-case overview by giving a brief summary of the
state-of-the-art in in-car driver assistance and entertainment
systems.

3.1. State-of-the-Art. While affect aware technology is miss-
ing in today’s automobiles due to the lack of user adaptable
and autonomous, reliable technology, speech recognition
has started to mature in the automobile market. The most
obvious example is navigation systems where the destination
selection can be performed via speech input. This speech
recognition is based on templates which are stored during
a training phase when the user adds a new destination and
pronounces its name several times. More advanced systems,
are based on subword modelling (phonemes) and include
a universal acoustic model. They are thus able to recognise
speech input without the need of recording several templates.
Some minor voice adaptation might need to be performed in
the same way as in modern dictation systems. These systems
allow for a voice based command-like interface, where the
user can change routes by command (“fast route”, “short
route”), change the view, or have traffic information read
out aloud. Entertainment systems can be controlled in a
similar fashion by commands such as “change station”, “next
song’, or even by pronouncing a song title or artist. Yet, these
systems are restricted to a set of predefined commands and
do not allow for flexible interaction. The user has to know
the capabilities of the system, he has to know “what” he
can say. Future systems, as proposed in the use-cases in the
following sections, must be able to accept all input, filter out
information they understand, associate it with available car
functions, and “tell” the user what his options are.

3.2. Safety-Related Use Cases. For the safety-related tasks
we present three different categories of use-cases, which
are countersteering strategies, adaptation strategies, and
communicating the driver’s emotional state (e.g., anger/rage,
fatigue, and high workload, stress, or uncertainty) to other
vehicles.

3.2.1. Countersteering Strategies. This category contains use-
cases which aim to “countersteer” negative affective states in
order to guide the driver into a happy or neutral state which
is known to be best suited for safe driving [5, 18, 19], since
most other emotions (anger, fatigue, stress, confusion, ner-
vousness, sadness, etc.) negatively affect driving capabilites
like goal generation, evaluation, decision-making, strategic
planning, focus, and attention [9-11]. Depending on the
context, different voice responses for angry drivers can be
given, intending to encourage better driving, make appro-
priate alerts or calming down the driver. Further, a virtual
codriver can react to detected sleepiness—which constitutes
another dangerous driver state—by keeping the driver awake
or bringing the vehicle to a safe halt in case of danger, if the
traffic situation permits (e.g., stopping on a busy highway



is too dangerous, the car has to be directed towards the
side lane before it is stopped). Possible measures against
stress, confusion, nervousness, and sadness can also be
addressed by the virtual assistant through intelligent dialogue
strategies. Thereby the responses or actions of the intelligent
car always depend on the amount of available contextual and
background information regarding the reason for the specific
affective state. Especially in situations like stress, the virtual
codriver can actively help to reduce the driver’s workload, for
example, by offering intelligent solutions for tasks related to
the on-board entertainment and communication system or
temporarily disabling such functions if the traffic situations
require the driver’s full attention.

3.2.2. Adaptation Strategies. Adapting the personality of an
automated in-car assistant to the mood of the driver can
also be important. A badly synthesised voice or an overly
friendly, notoriously the same voice is likely to annoy the
driver which soon will lead to distraction. Therefore, as an
important adaptation strategy, matching in-car voice with
the driver’s emotion is beneficial, as has been found in,
for example, [41, 47]. Different parameter settings for the
synthesis of emotional speech for different emotions need
to be used, as given in [79-82], for example. Other use-
cases related to adaptation are emotion dependent spoken
language understanding and model adaptation for speech
recognition engines. These techniques serve the purpose of
improving the accuracy of the in-car speech recogniser, since
an inaccurate system is also likely to annoy and distract the
user, instead of assisting the driver.

3.2.3. Communicating the Driver’s Emotional State. The third
category consists of use-cases that describe how a driver’s
state can be communicated to others. Locating potentially
dangerous drivers can aid the driver assistance systems in
other vehicles to warn their drivers more timely. Methods
of car-to-car communication for preventing road rage are
developed by some automobile manufacturers, for exam-
ple. Further applications include monitoring passengers—
especially children—and other road users while driving, to
reduce the driver’s cognitive workload, logging the driver’s
emotion to derive statistics for research purposes, and
automatically triggering emergency calls in case of accidents,
severe pain or dangerous situations.

3.3. Driving Pleasure Related Use-Cases. Similar to the safety-
related applications of in-car emotion recognition, the use-
cases related to driving pleasure can also be grouped into
three different categories: enabling of a mood adequate
human-machine dialogue, adaptation of surroundings, and
increasing productivity.

3.3.1. Mood Adequate Human-Machine Dialogue. Person-
alised and “socially competent” small-talk belongs to the
first category and is a key feature of a “virtual companion”.
Thereby emotion serves as contextual knowledge that indi-
cates how the dialogue system has to interpret the output of
the automatic speech recogniser (e.g., the use of irony may
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depend on the user’s emotional state, also there seems to
be a reduced vocabulary in highly emotional speech, such
as short angry commands or comments). Such dialogues
do not only depend on the current words uttered by the
user, but depend also on contextual information like time
of day or weather. Similar use-cases are adaptive topic
suggestion and switching, dialogue grounding, and reactions
to nonlinguistic vocalisations like moaning or sneezing.
Further, multimedia content analysis methods enable the
car to deliver information from the internet which suits
the current interest and affective state of the driver (e.g.,
love poems if the driver is in love, or only allowing happy
news if the driver is in a happy state). Observing the
driver’s workload also enables the car to adapt the level of
entertainment to the current traffic situation. Incoming and
outgoing calls can be managed by a “phone guide” who takes
into account the affective state of both the driver and the
conversational partner. The latter can be determined from
speech while the system converses with the caller (i.e., asking
for the caller’s identification and purpose/importance of his
call) before putting him through to the driver.

3.3.2. Adaptation of Surroundings. Depending on the driver’s
mood, the in-car ambience can be adjusted. This can be done
by automatic selection of mood adequate music, for example.
Moreover, engine sound, ambient light, and air conditioning
can be adapted according to the driver’s affect.

3.3.3. Increasing Productivity. Finally, potential use-cases for
a virtual codriver can be derived from the goal to increase the
driver’s productivity. Thereby calendar functions, handling
of e-mails, internet access, and automatic translation are
relevant as aspects that are likely to be welcomed by car
buyers. However, the role affective computing takes in such
technological advances is not fully researched, yet. Also
increasing productivity on the other hand means higher
workload for the driver, and thus reduced focus on the
road leading to reduced safety. The aspect of increasing
productivity thus should only be addressed if it can be
ensured that these tasks do not in any major way keep the
driver from his primary task of controlling the vehicle. This
would be the case if the virtual codriver had a fully natural
speech interface and the capability to robustly understand
the driver’s intentions from minimal input.

4. User Acceptance

It is important to assess acceptance and success of any new
technology as soon as possible to determine whether efforts
in developing the technology are well spent. Since it is a
well known issue that too much technology might irritate or
confuse users or make them feel observed, we address these
issues in a user study designed for in-car affective computing.
The basic idea is to set up a car with a simulated virtual
codriver in a Wizard-of-Oz experiment. Users are asked to
perform several tasks in the simulation while being assisted
by the virtual codriver. The users’ experience with the system
is determined via multiple questionnaires which are filled out
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FIGURrE 1: Driving simulator and simulation software. (a) Setup of
the driving simulator. (b) Lane-Change-Task (the signs indicate that
a lane change is to be performed).

after the experiment. The next section describes the setup
and procedure of the Wizard-of-Oz (WoZ) experiment.
Section 4.2 presents the findings of the survey.

4.1. Wizard-of-Oz Setup. In order to create a realistic driving
scenario in a safe and controllable environment, a driving
simulator was used. It consists of half the body of a real BMW
5 series vehicle in front of a large screen (see Figure 1(a)).
The car’s controls (i.e., accelerator and brake) and the
steering wheel are used to control the simulation-software,
which renders a 3D animation of a road and scenery on to
the projected screen. The lab is equipped with two sound
systems, one outside of the car to play back the engine
and environment sounds, the other inside the car, which is
used by the operator to give instructions to the subjects, to
play music from the on-board entertainment system, and
to output the voice of the virtual in-car assistant. The Lane
Change Task [83] was used to simulate a primary driving
task. Thereby, a test person has to drive a street of three
lanes and switch to the lane, which is signalled by signs
on the side of the test track (see Figure 1(b)). Additionally,
a simple driver-information system is implemented, which
can be controlled with a multifunctional device—the iDrive
controller placed in the driving simulator. The following
functions are implemented into this system:

(i) Input of navigation destination.

(ii) Switching between three alternative options of navi-
8 P
gation routes.

(iii) Number dialling on the car phone.

(iv) Viewing and editing calender entries.

In order to simulate as much use-case customised
support by the system as possible, the supervisor was able
to fully remotely control the driver information system. The
virtual in-car assistant’s voice is simulated by the Wizard-of-
Oz operator. Therefore, the operator’s voice is recorded by
a microphone in the control room, and after applying on-
line effects, simultaneously played back via the car’s centre
speaker. Instructions are given to the test persons on what
task to perform next (it was made clear to the subjects
that these instructions did not belong to the virtual driver
assistance system). The instructions have been prerecorded
to ensure the same test conditions for all subjects. The
following instructions were used for the tasks described in
the following paragraphs.

(1) Drive straight with moderate velocity.
(ii) Drive straight with high velocity.
(iii) Enter Schrobenhausen as destination.
(iv) Scan the calender for today’s appointments.

(v) Call your office to inform them of your late arrival.

The experiment was a first-contact situation for the
test subjects, and they did not receive instructions on the
capabilities of the driver-information system. Subjects were
asked to imagine that is was an ordinary Monday morning
and they were starting their usual drive to work.

Welcome Dialogue. After taking a seat in the car, the driver is
greeted by the car with a short dialogue. Thereby the user is
asked whether he or she is driving the usual way to work, or
he or she requires navigational assistance, and whether he or
she would like to listen to music.

Driving Only. The driver is now asked to start driving a
simulated test track with low speed to get used to the
primary driving task in the simulator environment. This test
track includes the Lane Change Task (see above). Next, the
participant is asked to drive the track at a higher velocity,
which induces a higher load due to the primary driving task.
During this situation the following use-cases are simulated.

Detection and Countersteering High Workload. The operator
instructs the subject to enter a navigation destination in
parallel. Now, the system (in our WoZ case simulated by
the operator) will detect decreased attentiveness in the
primary task, ask the driver to pay more attention to his
primary driving task via speech output, inactivate the display
elements, and offer the user the option of speech-based input
of the destination.
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Assisting Confused Drivers. Next, a road congestion is sim-
ulated. The user is now instructed to inform his office of
his delay via his cell phone. The dialling does not work,
however, due to a simulated bad network. The reason is not
immediately apparent to the user, who only realises that his
call is not being connected. The system detects the induced
confusion and offers to connect the call once the network
is available again. The wizard was instructed to act once
he recognised confusion because the user was hesitating or
expressing his confusion verbally.

Obtaining Information from the Internet. The subject is
now instructed to scan his calendar for appointments. An
appointment in a distant city is scheduled for the next day.
A comment that a hotel room must be reserved is attached
to the appointment. If the subject does not ask the system for
available hotels by himself, after a defined timeout the system
will ask the user if hotel information is to be obtained from
the internet now. The system will guide the user through a
hotel reservation process.

Handling Incoming Calls. After finishing the hotel reserva-
tion, an incoming phone call is simulated. However, there is
no way apparent to the user to answer the call. Again, the
system will detect that the user is not answering the call and
will ask for the reason while at the same time offering help,
that is, to either ignore the call or to accept it.

Smalltalk. Now the system initiates a dialogue, where it
comments on the driver’s busy day, and the bad weather,
and asks the driver whether a different radio station would
be preferred. Finally, an updated traffic report is received
with the information that the congestion has not yet cleared.
This report is automatically interpreted by the system, and
the user is given the option to select three alternative routes
from the system display, which will bring him directly to the
location of his appointment, instead of his office.

Adapting to the Driver’s Behavior. All the use-cases described
so far are fixed, and thus common for all subjects. In addition
to these planned scenarios the operator was trained to react
individually to the subjects responses and comments, adapt
his output voice to the user’s state (thereby changing his tone
of voice to match the user’s tone of voice in the current
situation), and especially react to nonlinguistic behavior
such as laughing, sighing, or hesitation, where it seems
appropriate.

4.2. Evaluation and Results. After finishing the experiment,
every test subject was asked to fill out a questionnaire, which
consists of four parts: The System-Usability-Scale (SUS)
[84], and the SEA-Scale (Subjectively Experienced Effort)
[85] for rating specific scenarios, and the Attrak-Diff system
(http://www.attrakdiff.de/), a questionnaire composed of a
semantic differential, for rating the complete system. Since
Attrak-Diff is a general system for rating product attractivity,
additionally a set of extra questions concerning our specific
setup was used.
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TABLE 1: Results for the System Usability Scale (SUS) and Sub-
jectively Experienced Effort (SEA) scale for four selected tasks.
SUS: maximum score is 100 (best usability), SEA: maximum score
120 (highest workload: worst), except for results marked with *,
where the maximum score of 120 indicates the maximum perceived
decrease in workload (thus, 120 is best).

. SUS SEA

Scenario
[0-100] [0-120]

Iptelli.gent virtual agent support in stress 729 67.8*
situations
Assisting confused drivers 76.0  66.9*
Smalltalk with virtual agent 76.2 22.2
Adaption of agent speech to the driver’s 70.0 4.3

emotional state

4.2.1. Description of Participants. Thirteen subjects (twelve
male and one female) took part in the experiment. The
average age is 27.8 years with a standard deviation of 3.1
years. All of them had a driver’s license and were interested
in new and innovative technical products. The average yearly
mileage of each subject is approximatively 14 000 kilometers.

4.2.2. System Usability and Subjectively Experienced Effort
Scales. The analysis of the System Usability Scale (SUS) was
performed with the method proposed in [84]. For each use-
case, a total score was determined. This score reflects the
user’s impression of the system for the respective scenario.
The maximum assignable score is 100, which corresponds to
a completely positive evaluation of the system.

Table 1 shows results for the SUS and SEA scales for four
selected tasks. Considering the early prototypical stage of the
test system (i.e., with respect to look and feel, and range of
functionality), the obtained SUS scores are a promising basis
for further system improvements, since ratings above 50 are
generally in favour of the system in question. The best scores
were obtained for assisting confused subjects and smalltalk
with the in-car agent. While the first is to be expected, it is
not quite obvious that smalltalk does enhance the system’s
usability feeling.

The SEA scale describes the subjectively experienced
workload for each particular scenario. A high score (maxi-
mum value 120) indicates a high perceived workload. Thus,
lower values indicate better performance with respect to
reducing the driver’s workload and keeping his or her
focus on the road. For the first two scenarios, “stress”, and
“confusion”, however, a modified scale was used, where a
high value (again maximum of 120) indicates the subjectively
perceived decrease of workload. The result can also be found
in Table 1.

Concluding, every scenario is evaluated positively on
average. Both the SUS and the SEA scale show good results
regarding the use of the system in spite of the prototypical
system setup. The subjectively perceived workload decreased
noticeably, if the car gave support to the test person (“stress”,
and “confusion” scenarios on the SEA scale). This is a good
basis for further development of such driver state-aware
functionalities.
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FIGURE 2: Results Attrakdiff-Portfolio Representation.

4.2.3. Attrak-Diff Rating. With Attrak-Diff a product is eval-
uated with respect to the following four dimensions.

(i) Pragmatic Quality (PQ): usability of the product.

(ii) Hedonic Quality-Stimulation (HQ-S): support of
needs in terms of novel interesting and stimulating
functions.

(iii) Hedonic Quality-Identity (HQ-I): identification with
the product.

(iv) Attractiveness (ATT): global value of the product
based on the quality perception.

The so-called portfolio representation (the result in the
2-D space spanned by PQ and HQ) determines in which
character-zone the product can be classified. For this study,
the Attrak-Diff was evaluated for the entire system with all
its new ideas and concepts. Individual features were not
evaluated separately. The resulting portfolio presentation is
shown in Figure 2.

The system is rated as “rather desired”. However, the clas-
sification is neither clearly “pragmatic” nor “hedonic”,
because the confidence interval overlaps into other character-
zones. So there is room for improvement in terms of usability
(PQ and HQ). The small confidence rectangle indicates a
high agreement among the test subjects.

4.2.4. System Specific Questionnaire. A questionnaire com-
posed of eleven questions using a five point scale was used
(“Strongly Agree” (value = 1) to “Strongly Disagree” (value
=5)) for the custom evaluation of the system as a whole. For
each question, the mean value of the ratings and the standard
deviation (o) were calculated. The results are summarised in
Table 2 and briefly discussed in the following paragraphs.
Nearly every test one thinks that a talking car is
reasonable (mean 1.4, 0 = 0.4) and feels rather not observed
(mean 3.8, 0 = 1.1) by the car. The question, if the car was
disturbing, was evaluated as “moderate” with a light trend to
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TABLE 2: Results of system specific questionnaire composed of
eleven questions. Mean () and standard deviation (o) of ratings
on a five point scale (“Strongly Agree” (value = 1) to “Strongly
Disagree” (value = 5)).

Question U o
A talking car is reasonable 1.4 0.4
I feel observed by a talking car 3.8 1.1
I feel disturbed by a talking car 3.5 0.3
I would rely on suggestions given by the car 2.7 0.8
I.feel Fhe car helps to handle difficult driving 17 0.7
situations

A car should react to my emotion 3.2 1.1
Starting self-initiated dialogs is desired 2.8 1.3
Automatic evalu.ation. of my stress level and 28 16
emotional state is desired

Itis he%pful'if th? car can support me in 13 0.2
confusing situations

I like the ability to request information from the 15 0.8
internet via natural speech input

It should be possible to mute the car’s voice 1.3 0.4

“rather not” (mean 3.5, ¢ = 0.3). The test persons would rely
with a mean value of 2.7 (¢ = 0.8) on suggestions given by
the car. The question, whether the users felt the car would
help them to handle difficult driving situations more easily,
gave a clear positive result, with a mean value of 1.7 (o = 0.7).

Unclear are the results of the questions, whether a car
should react to the driver’s emotion (mean 3.2, ¢ = 1.1)
or should determine the stress-state of the driver (mean
2.8, 0 = 1.6), and whether the car should start talking
initiated by itself (mean 2.8, ¢ = 1.3). The high standard
deviations of the answers to these questions indicate that the
individual subjects do have quite clear preferences, thus no
unifying conclusion for all users can be drawn. Likewise, the
recommendation based on this study would be to provide
easy ways to disable such functionalities or have them
disabled by default and let the users decide to enable them.

The last four questions show all positive results. The
test subjects agreed on the fact that it would help, if the
car was able to support the driver in confusing situations
(mean 1.3, ¢ = 0.2), which is in line with the SUS and
SEA scale evaluations. Moreover, they liked the car’s ability
to request information from the internet via natural speech
input (mean 1.5, 0 = 0.8).

Overall, the test persons stated that a talking car—as
simulated via the Wizard-of-Oz—makes sense, and they do
not feel observed or disturbed. This is an indicator for a good
acceptance of such a product.

However, the driver wants to be the master of the
situation and makes her or his own decisions, because not
all test persons would rely on the car’s suggestions, and
high standard deviations were observed for the driver state
monitoring questions. Virtually all subjects wish to have a
functionality, which allows the user to mute the car’s voice
(mean 1.3, ¢ = 0.4). From this point of view, the evaluation
of the smalltalk-feature gets more comprehensible. Some
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subjects commented that this feature would be disturbing,
if it happened too many times.

The unclear results regarding the recognition of emotions
and stress-states may also relate to this as well as the fact
that these functions could not be implemented consistently
enough in this experiment (Wizard-of-Oz). Such a consistent
evaluation would require ways of reliably and reproducibly
inducing emotional and stress-states, which is a very difficult
task that can never be performed perfectly. Thus a very large
number of subjects is required for these evaluations.

5. Driver Distraction Detection

Driver inattention is one of the major factors in traffic
accidents. The US National Highway Traffic Safety Admin-
istration estimates that in 25% of all crashes some form of
inattention is involved [86]. Distraction (besides drowsiness)
as one form of driver inattention may be characterised as:
“any activity that takes a driver’s attention away from the task
of driving” [87].

In this section we show how reliably driver distraction
can be detected using adequate machine learning techniques.
The motivation for detecting whether a driver is distracted or
not could be adaptive driver assistant systems, for example,
lane keeping assistance systems. These systems track the lane
markings in front of the vehicle and compute the time until
the vehicle will cross the marking. If the driver does not show
an intended lane change by using the indicator to signal the
change, the systems will use directed steering torques on the
steering wheel to guide the car to the middle of the lane.

One problem with lane keeping assistance systems is that
they can be annoying in some circumstances [88] since they
do not yet respond to the driver’s state or her or his intent
but to lane markings and the car’s speed. If it was possible to
recognise a driver’s state reliably, the system would give just
as much assistance as the driver needed. This would allow
for a greater safety margin without annoying the driver with
false alarms in normal driving situations.

Our system for online driver distraction detection is
based on modeling long-range contextual information in
driving and head tracking data. It applies Long Short-Term
Memory (LSTM) recurrent neural networks [89, 90] which
are able to capture the temporal evolution of low-level
data sequences via so-called memory blocks. Long Short-
Term Memory networks have shown excellent performance
in a variety of pattern recognition tasks including emotion
recognition from speech [91].

5.1. Database. In order to train and evaluate our system we
used data that was recorded during an experiment in which
drivers had to fulfil certain “distracting” tasks while driving.
The resulting database consists of 32 participants (13 female
and 19 male). The car (an Audi A6) was equipped with
the “Audi Multimedia System” and an interface to measure
CAN-Bus data. Additionally, a head tracking system was
installed, which was able to measure head position and head
rotation. Head-tracking systems are not common in vehicles
today, but the promising research in such cameras for driver
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state detection will lead to a higher installation rate in serial
cars in the near future. So we decided to use head-tracking
information in our approach as well.

Eight typical tasks (performed haptically) on the Multi-
media Interface were chosen as distraction conditions:

(i) adjusting the radio sound settings,

(ii) skipping to a specific song,
(iii) searching for a name in the phone book,
(iv) searching for a nearby gas station,

(v) dialling a specific phone number,
(vi) entering a city in the navigation device,
(vii) switching the TV mode,

(viii) adjusting the volume of navigation announcements.

The procedure for the experiment was as follows: after
a training to become familiar with the car, each participant
drove down the same road eight times while performing
secondary tasks on the in-vehicle information system. On
another two runs the drivers had to drive down the road
with full attention on the roadway. In order to account for
sequential effects, the order in which the conditions were
presented was randomised for each participant. Overall, 53
runs while driving attentively and 314 runs while the drivers
were distracted could be measured. The “attentive” runs
lasted 3 134.6 seconds altogether, while 9 145.8 seconds of
“distracted” driving were logged (see Table 3 for experimen-
tal conditions).

An analysis of the influence on lane keeping of the
different in-vehicle information system tasks [92] confirmed
the tasks to be distracting. Thus, all these tasks were labeled
as “distracted” compared to driving down the road with
full attention (ground truth: “attentive”). Thereby we labeled
runs during which a task had to be completed as completely
“distracted” since the drivers were engaged with the task
during the complete run.

Six signals were chosen for a first analysis:

(i) steering wheel angle,
(ii) throttle position,
(iii) speed,
(iv) heading angle,

(v) lateral deviation,

(vi) head rotation.

Steering wheel angle, throttle position, and speed are
direct indicators of the driver behavior. Many studies prove
the fact that visually distracted drivers steer their car in a
different way than do attentive drivers. The same applies
for throttle use and speed (an overview can be found in
[93]). The car’s heading angle and its lateral deviation in the
lane rely on the amount of attention the driver is allocating
to the roadway and may hence give useful information
about distraction. Head rotation of the driver is an indicator
of the driver’s visual focus. While using the Multimedia
Interface, which is located in the middle console just below
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TaBLE 3: Experimental conditions for driving data collection.

Experimental conditions
32 (13f, 19 m)

Num. participants

Age of participants 29 to 59
Driving experience >10,000 km per year
Car Audi A6 quattro 2.6 TDI
Road Ayinger Str.

Num. “attentive” runs 53

Num. “distracted” runs 314

the dashboard, the main rotation of the head is to the
right. So the head rotation is the most promising indicator
of the head-tracking signals. Note that a trivial way of
determining driver distraction due to the operation of the
Multimedia Interface would be to simply detect, for example,
the touching of the Multimedia Interface buttons. However,
we decided to use signals that serve as general indicators of
driver distraction in order to be able to also detect distraction
which is not caused by the operation of the Multimedia
Interface.

5.2. Experiments and Results. The database collected as
described above was split into a training, a validation, and a
test set. For training we randomly chose 21 drivers. The vali-
dation set consists of three randomly chosen drivers, while
the system was evaluated on the remaining eight drivers.
Thus, our evaluations are completely driver independent,
that is, the results indicate the performance of the system
for a driver which is not known to the system (the system
was not optimised for a specific driver’s style). The training
set consists of 35 baseline runs (i.e., runs during which the
driver was attentive) and 146 runs during which the driver
was distracted. The test set contains 13 baseline and 51
“distracted” runs.

We evaluated the performance for different numbers of
memory blocks (70 to 150) in the hidden layer of the LSTM
neural network. The number of memory blocks is correlated
to the complexity of the network, that is, the number of
parameters which are used to describe the relation between
inputs and outputs (see, e.g., [94] for a detailed description
of the LSTM memory block principle).

Table 4 shows the results for sample-wise classification
(i.e., quasi-time-continuous prediction every 10ms) of
driver distraction using the two classes “attentive” (baseline
runs) and “distracted” (runs during which the driver was
involved in a task at the Multimedia System). A total of
286000 such samples (frames) is contained in the test set.
The best Fl-measure could be achieved with an LSTM
network consisting of 110 memory blocks. Note that due to
the imbalance in the class distribution, the F1-measure is a
more adequate performance measure than accuracy. Thereby
F1-measure is the harmonic mean of unweighted recall and
unweighted precision. For the two-class problem, LSTM
networks achieve an Fl1-measure of up to 88.7%. In Table 5
the classification of complete runs is evaluated by averaging
the sample-wise LSTM predictions over an entire run. With
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the best LSTM configuration, an accuracy of 92.9% can be
obtained.

By analysing the obtainable classification performance
when using only single signals, we can get an impression of
the relevance of the individual data streams. The best “single
stream” performance can be obtained when using exclusively
head rotation, followed by exclusive usage of steering wheel
angle, heading angle, throttle position, speed, and lateral
deviation, respectively.

Trying to get an impression of the accuracy of distraction
detection when driver distraction is not caused by the
Multimedia Interface, we tested the system on data that was
recorded while the driver had to fulfil tasks like eating a
chocolate bar or reading a letter. We found that the obtained
Fl-measure is only slightly worse for this scenario (83.2%).

Tables 4 and 5 reveal that driver distraction can be
detected with relatively high reliability by modeling the
temporal evolution of driving and head tracking data. Thus,
an adaption of lane-keeping assistance systems which is
based on sensor data already available in modern vehicles
seems to be a viable and promising approach.

6. Conclusion and Outlook

Summarising all aspects discussed in the past sections, it
becomes clear that emotions will be a key issue not only in
general oncoming human-computer interaction, but also in
the in-car communication.

As we have discussed, emotions affect many cognitive
processes, highly relevant to driving, such as categorisation,
goal generation, evaluation and decision-making, focus and
attention, motivation and performance, intention, commu-
nication and learning. There is a need for controlling the
driver’s emotional state: the high relevance of an emotion-
ally high valence was documented by a substantial body
of literature—“happy drivers are the better drivers”. This
control of the emotional state will thus ensure a safer and
more pleasant driving experience. At the same time too high
arousal may lead to aggressive driving behaviour. For optimal
driving performance, a compromise between too high and
too low arousal must therefore be found.

Apart from externally induced states of intoxication
(alcohol, drugs, medication) or pain, we had found anger,
aggressiveness, fatigue, stress, confusion, nervousness, sad-
ness, and boredom as main negative emotions and mental
driver states of interest, and happiness as positive factor.

As basic strategies to control emotion, countersteering
emotions was found next to adapting car functionalities
to driver emotion. The in-car driver interface can thereby
influence users’ emotional states in several ways. To provide
only few examples, angry drivers could be calmed down and
could be made aware of their state, fatigued drivers could be
stopped from falling asleep by engagement in a discussion
with control of potential boredom for topic-switching, and
confused drivers could be offered assistance regarding the
current traffic situation.

The growing complexity of in-car electronics demands
for new interfaces that do not disturb the drivers’ focus on
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TABLE 4: Sample-wise classification of driver distraction (attentive vs. distracted) using LSTM networks: accuracy, unweighted recall,
unweighted precision, and F1-measure for different numbers of memory blocks.

# Memory blocks Accuracy (%) Recall (%) Precision (%) F1 (%)
70 87.2 78.8 85.6 82.1
90 89.0 82.6 87.0 84.8
100 91.1 88.7 88.0 88.4
110 91.3 89.5 87.9 88.7
130 89.0 83.3 86.4 84.9
150 86.2 77.2 84.2 80.6

TaBLE 5: Classification of driver distraction (attentive vs. distracted) for complete runs using LSTM networks: correctly classified runs,
baseline runs correctly classified as “attentive”, runs with task correctly classified as “distracted” (in percent) for different numbers of memory

blocks.
# Memory blocks Correctly Accu.racy Accura.cy
class. runs (%) baseline runs (%) runs with task (%)

70 88.4 62.6 98.0

90 90.9 72.3 97.8

100 92.9 84.5 96.0

110 92.9 86.7 95.2

130 90.7 74.1 96.9

150 87.8 61.8 97.6

the road or annoy the driver because they are so difficult
to use. Natural, human-like interfaces that quickly and
tolerantly comprehend drivers’ intentions are the key. In
Section 4 we evaluated an intelligent driver assistance system,
with which users were able to communicate naturally via
speech. The evaluation suggests that such a system will
generally be accepted by users, as long as they have full
control over the system and can mute the system at any time.
The driver will expectantly feel more comfortable and safe in
such a car because he or she does not need to worry about
not knowing how to use the system. The car can also serve
as virtual codriver for single drivers, engaging the drivers
in conversation and making them feel like having company
and not being alone. Further possibilities of increasing
driving pleasure are to offer personal settings, personalised
conversation (greetings, small talk, etc.) and personalised in-
car entertainment and environment customisation. Drivers
simply prefer cars where they experience greater pleasure
while driving and will therefore likely want to have “socially
competent” interfaces in their cars. Further, drivers in the
future are expected even more to use the time while driving
productively, for example, listen to e-mails (with speech
synthesis), make reservations or obtain information about
the destination. In order to not interfere with the main task
of driving, the driver interface must be operable in hands-
free mode and quickly understand the user’s intentions,
without the user having to utter predefined commands.
In this respect, future cars have to become more “socially
competent’, that is, be able to better understand their drivers’
intentions adding the increasingly mandatory intelligent
interpretation of multiple modalities such as speech, face

and driving behaviour by incorporation of judgement of
emotional and affective states.

As an example for the feasibility of driver state recog-
nition, we presented an automated system for detection
of driver distraction, which can be implemented in a car
with the technology available today. Using Long Short-Term
Memory recurrent neural nets, it is possible to continuously
predict the driver’s state based on driving and head tracking
data. The strategy is able to detect inattention with an
accuracy of up to 91.3% not dependt of the driver, and can
be seen as a basis for adaptive lane-keeping assistance.

The presented paper shows the need, the acceptance,
the feasibility and doability of intelligent and affective in-
car interfaces. Yet, substantially more work is required to
develop products which can be manufactured in series and
which are robust enough for the end-user market. In this
respect, more usability studies with a broader range of
users in even more realistic driving situations (e.g., “out in
the wild”) are required. Further, implementations of actual
prototype systems—instead of the presented Wizard-of-Oz
approach—must be built and evaluated by drivers under
realistic conditions. Therefore, before implementing such
prototypes, more evaluations of, for example, the vocal and
visual modalities are required with respect to robustness in
the in-car environment and user acceptance.

Naturally, people talk, they talk different from today’s
command and control-oriented and in the near future
oncoming rudimentary natural language-based in-car inter-
action, and engineers will have to listen [95]. At the same
time, engines might soon observe our affective behaviour
patterns—for our safety, comfort, and pleasure.
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