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Abstract
This is a survey of complex analytic implications of recent development in symplectic
topology.

Keywords Stein manifolds · Weinstein manifolds · Polynomial convexity · Rational
convexity

The interplay between symplectic geometry and complex analysis was explored in
our book [10] and since then was further developed, e.g., in [13,42]. Meanwhile,
the symplectic side of the story was greatly developed. This, in turn, yields new
consequences for complex analysis which we discuss in this survey.

1 Recollections on Symplectic Geometry and Complex Analysis

In this section we recall some basic facts about Stein and Weinstein structures and
their relationship from [10] (see also the survey articles [11,12]), as well as symplectic
criteria for rational and polynomial convexity from [13].

1.1 Stein Structures and Their Homotopies

We denote a complex manifold by (V , J ), where J is the integrable almost complex
structure. A smooth function φ : V → R is called J -convex (or strictly plurisubhar-
monic) if −ddCφ(v, Jv) > 0 for all v �= 0, where dCφ = dφ ◦ J , and exhausting if
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it is proper and bounded from below. Stein manifolds are complex manifolds which
properly holomorphically embed into some CN . Equivalently, they can be character-
ized by the existence of an exhausting J -convex function φ : V → R. The proof of the
equivalence of these two characterizations was the result of many years of develop-
ment of the theory of functions of several complex variables culminating in the work
of Hans Grauert (see [10] for a brief survey and further references).

The notion of J -convexity (or strict pseudoconvexity) for hypersurfaces in a com-
plex manifold (V , J ) is tightly related to the corresponding notion for functions. A
J -convex hypersurface � can be defined as a regular level set of a J -convex func-
tion defined on a neighborhood of �. Conversely, a function φ without critical points
and with compact J -convex level sets can be made J -convex by composing it with a
sufficiently convex increasing function R → R, see [10] for details.

Since J -convexity is a C2-open condition, a J -convex function can always be
perturbed to make it Morse (keeping it J -convex), and a 1-parametric family of J -
convex functions can be perturbed to make them generalized Morse, i.e., all critical
points are nondegenerate or of birth–death type (see [10]). Moreover, the gradient
vector field∇φ (with respect to the Kähler metric defined by φ) can be made complete
(i.e., its flow exists for all times) by composing φ with a sufficiently convex function
R → R. A Stein manifold structure (V , J , φ) is a Stein manifold (V , J ) together with
an exhausting J -convex generalized Morse function φ such that ∇φ is complete.

By a Stein domain we mean a regular sublevel set W = {φ ≤ c} of a J -convex
function1. Equivalently, this is a compact complex manifold with J -convex boundary
whose interior contains no compact analytic subsets of dimension> 0. A Stein domain
structure (W , J , φ) is a Stein domain (W , J ) together with a defining (i.e., having the
boundary as its maximal regular level set) J -convex function φ : W → R/

A Stein homotopy on a domainW is a smooth family (Jt , φt )t∈[0,1] of Stein domain
structures, where we relax the Morse condition on φt to allow birth–death critical
points. Note that, in particular, ∂W is required to be a regular level set of φt for all t ∈
[0, 1]. For example, each family of domains in Cn with smooth strictly pseudoconvex
boundary gives a homotopyofStein domains. In the case of amanifold V we impose the
following condition preventing critical points from escaping to infinity: there exists
a partition 0 = t0 < t1 < · · · < tn = 1 and sequences of smooth functions cik :
[ti−1, ti ] → R for i = 1, . . . , N and k ∈ N such that ci1(t) < ci2(t) < · · · are regular
values of φt and lim

k→∞ cik(t) = +∞ for each t ∈ [ti−1, ti ] and i = 1, . . . , N (see [10]

for further discussion). By [10, Proposition 11.22], two exhausting J -convex functions
φ0, φ1 on the same manifold (V , J ) can always be connected by a Stein homotopy
(J , φt ), so we can speak of two Stein complex structures being homotopic without
explicit reference to J -convex functions.

A diffeomorphism f : (W , J , φ) → (W ′, J ′, φ′) between Stein domains (or mani-
folds) is called a deformation equivalence if the pullback Stein structure ( f ∗ J ′, f ∗φ′)
is homotopic to (J , φ).

On a manifold V , we say that a Stein structure (J , φ) is of finite type if φ has
only finitely many critical points. A Stein homotopy (Jt , φt ) on V is of finite type
if the union of all critical points of all the φt is compact. Note that this condition

1 Note that our domains are always compact rather than open.

   



                            

is stronger than requiring that each (Jt , φt ) is of finite type. The interior of a Stein
domain (W , J , φ) becomes naturally a finite-type Stein manifold (IntW , J , g ◦ φ)

for a sufficiently convex diffeomorphism g : (−∞,max φ) → R, and conversely a
sufficiently large sublevel set in a finite-type Stein manifold is a Stein domain. Under
these operations, finite-type homotopies of Stein manifolds correspond to homotopies
of Stein domains.

The following result from [10] shows that Morse theoretic properties for J -convex
functions are preserved under Stein homotopy. Here and throughout this paper, by a
diffeotopy we mean a smooth family of diffeomorphisms ht , t ∈ [0, 1], with h0 = id.

Theorem 1.1 Let (Jt , φt ) be a Stein homotopy on a manifold V . Then there exist
diffeotopies ht : V → V and gt : R → R such that gt ◦ φt ◦ ht is J0-convex for each
t.

For finite-type homotopies one can prove the following stronger result.

Theorem 1.2 Let J0 and J1 be two homotopic Stein structures on a manifold V . Then
for any exhausting J0-convex function φ : V → R there exists a target equivalent J0-
convex functionψ = g◦φ, a Stein homotopy Jt connecting J0 and J1, and a diffeotopy
ht : V → V beginning with h0 = Id such that the function ψt := ψ0 ◦ h−1

t is Jt -
convex for each t ∈ [0, 1]. If J0 (and hence J1) is of finite type, then the exhausting
J0-convex function ψ0 can be chosen in such a way that ψ0 has no critical values
≥ 0 and ht : (Op {ψ0 ≤ 0}, J0) → (Op {ψt ≤ 0}, Jt ) is a biholomorphism for all
t ∈ [0, 1].

As far as we know this result did not appear in the literature and we sketch its proof
in Sect. 1.3 below.

1.2 Weinstein Structures and Their Homotopies

Now we turn to the symplectic cousins of Stein structures. AWeinstein manifold is an
exact symplectic manifold (V , ω = dλ) such that the corresponding Liouville field X ,
defined by ιXω = λ, is complete and gradient-like for an exhausting generalizedMorse
function φ : V → R. We refer to a regular sublevel set W = {φ ≤ c} as a Weinstein
domain. A Weinstein (manifold or domain) structure will be denoted by (λ, φ). The
notions ofWeinstein homotopy (λt , φt ),Weinstein deformation equivalence, and finite-
typeWeinstein manifold/homotopy are defined as in the Stein case, see [10] for further
discussion. Weinstein structures were originally introduced in [21] formalizing the
work of Weinstein [50].

The Liouville form λ induces a contact structure ker(λ|∂W ) on the boundary of a
Weinstein domain (W , λ, φ). Similarly, a sufficiently high level set of φ in a finite-type
Weinstein manifold carries a well-defined contact structure which is sometimes called
its contact structure at infinity.

It is an important basic fact that a Weinstein homotopy changes the underlying
symplectic structure only by a diffeotopy.

Proposition 1.3 ([10], Proposition 11.8) Given a Weinstein homotopy (λt , φt ) on a
manifold V , there exists a diffeotopy ht : V → V such that h∗

t λt − λ0 is exact for

   



                                                                

all t . If the homotopy has finite type, then one can also arrange that h∗
t λt − λ0 = 0

outside a compact set, so h∗
t ξt = ξ0 for the contact structures ξt at infinity.

Hence, after pulling back by a diffeotopy, a Weinstein homotopy can always be
viewed as a deformation of structures on a fixed symplectic manifold (V , ω). It is
unknown whether two Weinstein manifold structures with the same symplectic form
are always Weinstein homotopic.

A Weinstein domain (W , λ, φ) has a canonical completion ( ̂W ,̂λ, ̂φ) where ̂W =
W∪([0,∞)×∂W ),̂λ equals λ onW and erα on [0,∞)×∂W withα = λ|∂W and r the
coordinate on [0,∞), and̂φ equals φ onW = {φ ≤ c} and r+c on [0,∞)×∂W . The
completion of aWeinstein domain is a finite-typeWeinsteinmanifold, and conversely a
sufficiently large sublevel set in afinite-typeWeinsteinmanifold is aWeinstein domain.
Under these operations, finite-type homotopies of Weinstein manifolds correspond to
homotopies of Weinstein domains.

Every Stein structure (J , φ) has an associated Weinstein structure

W(J , φ) := (−dCφ, φ), dCφ = dφ ◦ J .

It is an easy consequence of the definitions that taking the interior of a Stein domain
corresponds to taking the completion of a Weinstein domain in the sense that the
following diagram commutes up to canonical Weinstein deformation equivalence:

{Stein domains} interior

W

{Stein manifolds}
W

{Weinstein domains} completion {Weinstein manifolds}.

1.3 Stein VersusWeinstein

The following theorem summarizes the results in [10] on the relation between Stein
and Weinstein structures. Here by a target reparametrization of a function V → R

we mean the composition with an increasing diffeomorphism R → R. Two functions
which differ only by a target reparametrization are called target equivalent.

Theorem 1.4 (Stein versus Weinstein) For Stein/Weinstein structures on a fixed man-
ifold or domain V , after target reparametrization of the functions φ, φt the following
hold.

(a) (Existence)Given aWeinstein structure (λ, φ), there exists a Stein structure (J , φ)

such that W(J , φ) is Weinstein homotopic to (λ, φ) with fixed function φ.
(b) (Homotopy) Given a Weinstein homotopy (λt , φt ), t ∈ [0, 1], connecting

W(J0, φ0) and W(J1, φ1) with φt = φ1 for t ∈ [ 12 , 1], there exists a Stein
homotopy (Jt , φt ) connecting (J0, φ0) and (J1, φ1) such that the pathsW(Jt , φt )

and (λt , φt ) are homotopic with fixed functions φt and fixed at t = 0, 1.
(c) (Morse–Smale theory) Given aWeinstein homotopy (λt , φt ), t ∈ [0, 1], beginning

withW(J , φ), there exists a diffeotopy ht : V → V such that φt ◦ ht is J -convex

   



                            

for all t ∈ [0, 1]. Moreover, the paths W(ht∗ J , φt ) and (λt , φt ) are homotopic
with fixed functions φt and fixed at t = 0.

Parts (a) and (b) reduce the existence and homotopy questions for Stein structures
to the corresponding questions for Weinstein structures. The term “Morse–Smale the-
ory” refers to Smale’s proof of the generalized Poincaré conjecture [47] by studying
the space of Morse functions on a given manifold (in particular reducing the number
of critical points as much as possible). Part (c) characterizes the equivalence classes
(modulo domain and target reparametrization) of Morse functions which can be real-
ized by J -convex functions for a given Stein complex structure J : these are precisely
the Morse functions appearing in Weinstein deformations of J .

Sketch of proof of Theorem 1.2 Step 1. AStein homotopy ˜Jt between J0 and J1 yields a
Weinstein homotopyWt := W(˜Jt , ψt ) for a family of exhausting ˜Jt -convex functions
˜ψt : V → R.Hence byTheorem1.4(c)wefind target equivalent functionsψt = gt◦˜ψt

and a diffeotopy ˜ht : V → V such that ψt ◦ ˜ht is J0-convex for all t ∈ [0, 1].
Moreover, there exists a Weinstein homotopy Wt,s between Wt,0 := W(˜ht∗ J , ψt )

and Wt,1 := W(Jt , ψt ) such that the corresponding family of Lyupunov functions
φt,s is independent of s, i.e., φt,s ≡ ψt . In particular, we get a Weinstein, and hence
according to Theorem 1.4(b) Stein homotopy (Js, ψ1) connecting ((h1)∗ J0, ψ1) and
(J1, ψ1).

Step 2. After Step 1 and renaming, we may assume that J0 and J1 are connected by
a Stein homotopy (Jt , ψ) with fixed function ψ . Suppose now that ψ has only finitely
many critical points pi of values ψ(pi ) = ci , i = 0, . . . , k. Pick regular values di
satisfying c0 < d0 < c1 < · · · < ck < dk . Nowwe argue similarly to the proof of [10,
Theorem 8.43], see also [25].

We begin by picking a family of biholomorphisms αt : (U0, J0) → (Ut , Jt )
between neighborhoods of p0 such that α0 = idU0 . Thus for each t , both functions
ψ and ψ ◦ α−1

t are Jt -convex on Ut . By [10, Proposition 3.26] there exists a family
of Jt -convex functions ψt : V → R such that ψ0 = ψ , ψt = ψ outside Ut , and
ψt = ψ ◦ α−1

t on a smaller neighborhood ˜Ut ⊂ Ut of p0. Moreover, ψt = ψ ◦ h−1
t

for a family of diffeomorphisms ht : V → V such that h0 = id, ht = id out-
side U0, and ht = αt on ˜U0. After decreasing the regular value d0 we may assume
that {ψ ≤ d0} ⊂ ˜U0, so that ht : (Op {ψ ≤ d0}, J0) → (Op {ψt ≤ d0}, Jt ) is a
biholomorphism for all t ∈ [0, 1].

Now we consider the next critical point p1. After a similar adjustment as above we
may assume that the ht are (J0, Jt )-holomorphic near p1. SetWt := {ψt ≤ d0}. Using
[10, Proposition 10.1] we can further arrange that ht (L0) = L t for the descending
disks L t ⊂ V \Wt of p1 with respect to the gradient ofψt . Note that Jt (T L t ) is tangent
to the level sets ofψt , and hencewe can further adjust ht tomake dht : (T V |L0 , J0) →
(T V |L t , Jt ) complex linear. By [10, Theorem 8.33], we can C2-approximate ht near
W0∪ L0 by a holomorphic map gt : (Op (W0∪ L0), J0) → (V , Jt ) such that g0 = id.
Since gt |L0 is a totally real embedding, and after thickening L0 wemay assume L0 has
half the dimension of V , the gt restrict to biholomorphisms gt : (V0, J0) → (Vt , Jt )
between neighborhoods Vt ofWt ∪L t . Thus for each t , both functionsψt andψ0 ◦g−1

t
are Jt -convex on Vt . By [10, Proposition 3.26] there exists a family of Jt -convex
functions ˜ψt : V → R such that ˜ψ0 = ψ0, ˜ψt = ψt outside Vt , and ˜ψt = ψ0 ◦ g−1

t on

   



                                                                

a smaller neighborhood ˜Vt ⊂ Vt of Wt ∪ L t . Moreover, ˜ψt = ψ0 ◦ ˜h−1
t for a family

of diffeomorphisms˜ht : V → V such that˜h0 = id,˜ht = ht outside V0, and˜ht = gt
on ˜V0. After applying [10, Theorem 8.5] on J -convex surroundings we may assume
that {ψ0 ≤ d1} ⊂ ˜V0, so that ˜ht : (Op {ψ0 ≤ d1}, J0) → (Op {˜ψt ≤ d1}, Jt ) is a
biholomorphism for all t ∈ [0, 1]. Inductively continuing this process, we conclude
the proof of Theorem 1.2. ��

It turns out that, in real dimension �= 4, the existence question has a complete
answer in terms of smooth topology, see [10,18].

Theorem 1.5 (Existence of Stein structures) Let (V , J ) be an almost complex man-
ifold of dimension 2n �= 4 and φ : V → R an exhausting Morse function without
critical points of index > n. Then there exists an integrable complex structure ˜J on V
homotopic to J for which the function φ is target equivalent to a ˜J -convex function.
In particular, (V , ˜J ) is Stein.

By contrast, Stein homotopies encounter obstructions from symplectic topology.
For example, for each n ≥ 3 there are infinitelymany Stein structures onR2n which are
pairwise not Stein homotopic (but of course homotopic as almost complex structures),
see [3,37,46].

1.4 Symplectic Criteria for Rational and Polynomial Convexity

Here we recall from [13] the symplectic characterizations of rationally and polyno-
mially convex subsets of Cn . For the purpose of later discussion, we state them in the
context of general Stein manifolds.

Given a Stein manifold (V , J ), we denote by O := O(V , J ) the algebra of holo-
morphic functions on (V , J ) and by M := M(V , J ) its field of fractions, i.e., the
algebra of meromorphic functions on V . We call a compact set K ⊂ V polynomi-
ally (resp. rationally) convex if it equals its O-hull (resp. M-hull). Equivalently, this
means that every holomorphic function on a neighborhood of K can be approximated,
uniformly on K , by functions fromO (resp.M). Given a proper holomorphic embed-
ding (V , J ) ↪→ (CN , i), a compact subset K ⊂ V is polynomially (resp. rationally)
convex in V if and only its image in C

N is polynomially (resp. rationally) convex in
C

N . This follows from the standard corollary of Cartan’s Theorem B (see, e.g., [10,
Corollary 5.37]) that any holomorphic (resp.meromorphic) function on V ⊂ C

N is the
restriction of a holomorphic (resp. meromorphic) function on C

N , together with the
fact that any holomorphic (resp. meromorphic) function on C

N can be approximated
uniformly on compact sets by polynomials (resp. rational functions). In particular, for
(V , J ) = (Cn, i), the notions polynomial and rational convexity reduce to the usual
notions on C

n .
J -ConvexDomainsBya J -convex domainW ⊂ (V , J )wemean a compact domain

with smooth strictly pseudoconvex boundary. Recall that this is equivalent to the
existence of a J -convex function φ : W → R such that W = {φ ≤ 0}. The following
criterion for rational convexitywas proved byNemirovski [40] as a corollary of a result
of Duval and Sibony [16, Theorem 1.1] (see also Criterion 3.1 in [13]), while the one

   



                            

for polynomial convexity goes back toOka’s paper [44] (see also [49, Theorem 1.3.8]).

Criterion 1.6 Let W ⊂ V be a J-convex domain in a Stein manifold (V , J ).

(a) W is rationally convex if and only if there exists a J -convex function φ : W → R

such that W = {φ ≤ 0}, and the form −ddCφ on W extends to a Kähler form ω

on the whole (V , J ).
(b) W is polynomially convex if and only if there exists an exhausting J -convex

function φ : V → R such that W = {φ ≤ 0}.
Here by a Kähler form we mean a symplectic form compatible with J , i.e., the

imaginary part of a Kähler metric on (V , J ). In part b) the form ωφ := −ddCφ has
this property.

In the following, by a polynomially (resp. rationally) convex domain2 we will
mean a J -convex domain which is polynomially (resp. rationally) convex. Natural
questions concern the possible topological types of such domains in a given Stein
manifold, e.g., inCn . Since a J -convex domainW ⊂ V inherits a Stein structure from
V , Theorem 1.5 yields necessary conditions on the topology on W and we wish to
understand to what extent these are sufficient.

In order to address these questions, we first consider the following more sophis-
ticated questions: Given a Stein structure on W , is it deformation equivalent to the
induced Stein structure on a J-, rationally, or polynomially convex domain in V? The
following result from [13] reduces these questions to questions in symplectic topology.
In Sect. 3.5 we will explain how to solve these questions and thus answer the original
questions concerning the topologies of polynomially and rationally convex domains.

Theorem 1.7 Let (V , JV , φV ) be a Stein manifold, (W , JW , φW ) a Stein domain, and
f : W ↪→ V a smooth embedding. Then f is isotopic to an embedding ˜f which is a
deformation equivalence onto

(a) a JV -convex domain ˜f (W ) if and only if the pullback complex structure f ∗ JV is
homotopic to JW through almost complex structures;

(b) a rationally convex domain ˜f (W ) if and only if f is isotopic to a symplectic
embedding ˜f : (W ,−ddCφW ) ↪→ (V ,−ddCφV );

(c) a polynomially convex domain ˜f (W ) if and only if the pushforward Weinstein
structure f∗W(JW , φW ) on f (W ) extends to a Weinstein structure on the whole
V which is Weinstein homotopic to W(JV , φV ).

TotallyReal SubmanifoldsBelowwewill also use the following criterion for rational
and polynomial convexity of a totally real submanifold.

Criterion 1.8 ([41]) Let L ⊂ V be a closed totally real submanifold in a Stein manifold
(V , J ).

(a) L is rationally convex if and only there exists a Kähler form ω on V such that
ω|L = 0.

(b) L is polynomially convex if and only if there exists an exhausting J -convex function
φ : V → [0,∞) such that L = φ−1(0).

2 Thus our polynomially or rationally convex domains always have strictly pseudoconvex smooth boundary.

   



                                                                

By the ∂∂̄-lemma (applied on C
N for some proper holomorphic embedding

V ⊂ C
N ), the Kähler form ω in (a) can be taken to be ω = −ddCφ for some

function φ : V → R, in particular ω = dλ can be taken to be exact. Let us call L
exact rationally convex if there exists a Kähler form ω = dλ on V such that λ|L is
exact. This corresponds to the notion of an exact Lagrangian submanifold which plays
an important role in symplectic topology. For example, a fundamental theorem of
Gromov asserts that there are no exact closed Lagrangian submanifolds in (Cn, ωst)

(whereas non-exact ones abound). Of course, exact rational convexity agrees with
rational convexity if H1(L;R) = 0, so in the sequel the word “exact” can be ignored
when we restrict to such manifolds L (e.g., simply connected ones).

2 Recent Developments in Symplectic Topology

In this section we review some recent developments in symplectic topology. Their
implications in complex analysis via the Stein–Weinstein correspondence will be dis-
cussed in Sect. 3.

2.1 FlexibleWeinstein Structures

Each Weinstein domain (W , λ, φ) with φ Morse comes equipped with a canonical
handle decomposition W = W1 ∪ · · · ∪ Wm , where Wi = φ−1([ci−1, ci ]) for regular
values ci of φ separating the critical values ai , i.e., c0 < a0 < c1 < . . . < am−1 <

cm = max φ. Each Wi deformation retracts onto the union of the stable disks (with
respect to the Liouville field X ) of its critical points, where the stable disk of an index k
critical point of valueai intersects the level setMi = φ−1(ci ) in the (k−1)-dimensional
attaching sphere.

The Liouville form λ restricts to a contact form αi on Mi and the attaching spheres
in Mi are isotropic, i.e., tangent to the contact structure ker αi . Let dimW = 2n,
so that dim Mi = 2n − 1. Now isotropic submanifolds in a (2n − 1)-dimensional
contact manifold of dimension k − 1 < n − 1 satisfy an h-principle (see [22,26]).
As a result, Weinstein structures exhibit a lot of flexibility if they are subcritical, i.e.,
all critical points of φ have index < n. By contrast, the h-principle fails for isotropic
submanifolds of dimension n − 1, a.k.a. Legendrian submanifolds.

The theory of Weinstein structures took a new turn with Murphy’s discovery [38]
of a class of loose Legendrian submanifolds in contact manifolds of dimension > 3
which do satisfy an h-principle. Let us call a submanifold a knot if it is connected,
and a link otherwise. Then a loose Legendrian knot is characterized by the presence
of a particular local configuration called a loose chart (somewhat analogous to an
overtwisted disk for contact structures), and a Legendrian link is called loose if each
component is loose in the complement of all the others. Any Legendrian link can
be made loose by a C0-small (non-Legendrian!) smooth isotopy preserving its formal
Legendrian isotopy class, and loose Legendrian links satisfy the following h-principle.

   



                            

Theorem 2.1 (Murphy [38]) Any two loose Legendrian links in a contact manifold of
dimension> 3which are formally Legendrian isotopic can be connected by a genuine
Legendrian isotopy.

A Weinstein structure (λ, φ) (on a domain or manifold) of dimension 2n ≥ 6 is
called flexible3 if on each level set Mi = φ−1(ci ) of its canonical handle decom-
position the attaching spheres of dimension n − 1 form a loose Legendrian link. In
particular, subcritical Weinstein manifolds are flexible. The terminology is justified
by the following h-principle type result (which should be compared to Theorem 1.4).

Theorem 2.2 (Flexible Weinstein structures [10]) For Weinstein structures on a fixed
manifold or domain V of dimension 2n ≥ 6 the following hold.

(a) (Existence) Given a Weinstein structure (λ, φ), there exists a flexible Weinstein
structure (˜λ, φ) (with the same function φ) such that d˜λ and dλ are homotopic
as nondegenerate 2-forms.

(b) (Homotopy) Two flexible Weinstein structures (λ0, φ0) and (λ1, φ1) are Weinstein
homotopic if and only if dλ0 and dλ1 are homotopic as nondegenerate 2-forms.

(c) (Morse–Smale theory) Given a flexible Weinstein structure (λ, φ) and any Morse
function ψ : V → R without critical points of index > n, there exists a Weinstein
homotopy (λt , φt ) with (λ0, φ0) = (λ, φ) and φ1 = ψ .

Let us denote the flexible Weinstein structure associated to (λ, φ) by part (a) by
Flex(λ, φ); by part (b) it is unique up to Weinstein homotopy.

2.2 SubflexibleWeinstein Domains

When we wrote our book [10] it was unknown whether the flexibility property of a
Weistein structure is invariant underWeinstein homotopy.Theproblem is the following
possible scenario: a Weinstein cobordism with exactly two Morse critical points on
the same level is flexible if and only if the attaching spheres form a loose link, while
after moving the points to different levels, flexibility becomes equivalent to the weaker
condition that the attaching spheres are loose knots on their respective (different) level
sets. In the meantime, Murphy and Siegel [39] have shown that this actually happens:
Every flexible Weinstein manifold is Weinstein homotopic to one which is nonflexible!

Since we are mainly interested in properties up to Weinstein homotopy, we will
follow the suggestion in [39] and redefine the notion of flexibility: referring to our
original notion as explicit flexibility, we now call a Weinstein structure flexible if it
is Weinstein homotopic to an explicitly flexible one. Theorem 2.2 clearly continues
to hold with this new definition of flexibility, which is now invariant under Weinstein
homotopy. In this terminology, the main result in [39] takes the following form.

Theorem 2.3 (Murphy and Siegel [39]) Every flexible Weinstein manifold has, after a
Weinstein homotopy, a nonflexible sublevel set.

AWeinstein domain is called subflexible if it is deformation equivalent to a sublevel
set of a flexibleWeinstein manifold. It follows that each subflexibleWeinstein domain

3 This definition will be slightly modified in the next subsection.

   



                                                                

has vanishing symplectic homology [37]. Nonflexibility of a subflexible Weinstein
domain is detected in [39] by nonvanishing of a suitably twisted version of symplectic
homology.

2.3 Weinstein Cobordisms with Few Critical Points

Following [31], let us introduce the following notations for a Weinstein domain W =
(W , λ, φ) of dimension 2n. We call W smoothly subcritical if it admits a defining
Morse function without critical points of index ≥ n, and smoothly critical otherwise.
We call W Weinstein subcritical if there exists a Weinstein structure homotopic to
(λ, φ)whoseMorse function has no critical points of index≥ n, andWeinstein critical
otherwise. We denote by Crit(W ), the minimal number of critical points of a Morse
function on W , and by WCrit(W ), the minimal number of critical points of a Morse
function appearing in a Weinstein structure homotopic to (λ, φ).

Clearly WCrit(W ) ≥ Crit(W ), and it follows from Theorem 2.2 that equality
holds if W is flexible. On the other hand, each exotic Weinstein structure on R

2n

must have an index n critical point, so the inequality is strict in this case. Moreover,
McLean’s infinitelymanyWeinstein structures onR2n are distinguished by the number
of idempotent elements in their symplectic homology, so one might expect the number
WCrit to become arbitrarily large in this family of examples. Surprisingly, this is not
the case:

Theorem 2.4 (Lazarev [31]) For eachWeinstein domain W = (W , λ, φ) of dimension
2n ≥ 6 we have WCrit(W ) ≤ Crit(W ) + 2. More precisely,

WCrit(W ) =

⎧

⎪

⎨

⎪

⎩

Crit(W ) if W isWeinstein subcritical,

Crit(W ) if W is smoothly critical,

Crit(W ) + 2 otherwise.

Lazarev derives this result from the following one which is of independent interest
(and which may be viewed as a kind of converse to Theorem 2.3).

Theorem 2.5 (Lazarev [31]) Each Weinstein domain (W , λ, φ) of dimension 2n ≥ 6
is homotopic to some (W ,˜λ, ˜φ) for which theWeinstein subdomain {˜φ ≤ 0} is flexible,
and the cobordism {˜φ ≥ 0} has exactly two smoothly canceling critical points of index
n − 1 and n.

It follows that C := {˜φ ≥ 0} is diffeomorphic to [0, 1] × ∂W and {˜φ ≤ 0} is the
flexibilization Flex(W ) of W = (W , λ, φ), so we can state Theorem 2.5 concisely as

W ∼ Flex(W ) ∪ C .

Note that the first case in Theorem 2.4 follows from Theorem 2.2 and the third case
from Theorem 2.5, while the second case requires additional arguments.

   



                            

2.4 Flexible h-Cobordisms

A cobordism from M to M ′ is a triple (C; M, M ′), where C is a compact oriented
manifold together with a decomposition ∂C = ∂+C � ∂−C of its boundary and
orientation preserving diffeomorphisms ∂−C → −M and ∂+C → M ′. It is called an
h-cobordism if both inclusions ∂±C ↪→ C are homotopy equivalences.

Theorem 2.6 (Courte [14]) Let (M, ξ) be a contact manifold of dimension ≥ 5. Then
for each h-cobordism (C; M, M ′) there exists a contact structure ξ ′ on M ′ with the
following properties.

(a) The symplectizations of the contact manifolds (M, ξ) and (M ′, ξ ′) are exact sym-
plectomorphic.

(b) For every Weinstein domain (W , λ, φ) with contact boundary (M, ξ) there exists
a Weinstein domain (W ′ = W ∪ C, λ′, φ′) with contact boundary (M ′, ξ ′) such
that the completions ( ̂W ,̂λ, ̂φ) and ( ̂W ′,̂λ′, ̂φ′) are deformation equivalent as
Weinstein manifolds.

For the proof, Courte observes that C can be given the structure of a flexible Wein-
stein cobordismwith negative contact boundary (M, ξ). Then ξ ′ is the induced contact
structure on the positive boundary of C , and assertions (a) and (b) follow from Theo-
rem 2.2 and a telescope construction.

Remark 2.7 (i) By Proposition 1.3, the manifolds ( ̂W , d̂λ) and ( ̂W ′, d̂λ′) in Theo-
rem 2.6 (b) are exact symplectomorphic.

(ii) There exist h-cobordisms (C; M, M ′) for which M and M ′ are not diffeomorphic
(explicit examples are constructed in [14]).

2.5 Weinstein Fillings of Contact Manifolds

A Weinstein filling of a contact manifold (M, ξ) is a Weinstein domain (W , λ, φ)

together with a contactomorphism (∂W , ker(λ|∂W ) → (M, ξ). Since the book [10]
was published, many new results about contact structures on high-dimensional man-
ifolds and their symplectic and Weinstein fillings have been proven. Here we collect
some of these results which are relevant to complex analysis. The collection is by no
means complete, in particular we have omitted all results concerning non-Weinstein
symplectic fillings.

In [6] it was shown that every almost contact structure on an odd-dimensional mani-
fold is homotopic to a contact structure, generalizing a classical result of Martinet [35]
and Lutz [33] in dimension three. Moreover, these structures can be made overtwisted,
in particular they do not admit any Weinstein (or more generally symplectic) fillings.

In [7] Bowden et al. found a necessary and sufficient condition for a smooth odd-
dimensional manifold of dimension≥ 5 endowed with an almost complex structure to
admit a Weinstein fillable contact structure. Without formulating their general result,
we state here some of its consequences.

   



                                                                

Theorem 2.8 (Bowden et al. [7,8])

(a) Let M be a closed simply connected 7-manifoldwith torsion free second homotopy
group π2(M). Then M admits an almost contact structure, and every almost
contact structure is homotopic to a Weinstein fillable contact structure.

(b) Every homotopy sphere carries a contact structure, and there exist homotopy
spheres which carry no Weinstein fillable contact structure.

(c) For k ≥ 2, the standard sphere S8k−1 carries an almost contact structure which
is not homotopic to a Weinstein fillable contact structure.

In a somewhat different direction, Lazarev proved the following result.

Theorem 2.9 (Lazarev [30]) For every Weinstein fillable contact manifold (M, ξ) of
dimension ≥ 5 with vanishing first Chern class, there are infinitely many pairwise
non-isomorphic contact structures on M in the same homotopy class of almost contact
structures having flexible Weinstein fillings.

Next we turn to the question of uniqueness of Weinstein filings of a given contact
manifold. In dimension three, the followingmanifolds (eachwith their standard contact
structure) are known to have unique Weinstein fillings up to deformation equivalence:
S3, S2×S1, the lens spaces L(p, 1) for p �= 4, and connected sums of these [10,19,27].
(We will not discuss here uniqueness results in dimension 3 up to diffeomorphism or
symplectomorphism such as [32,51].) In higher dimensions, no uniqueness results up
to deformation equivalence are known. However, uniqueness of Weinstein fillings up
to diffeomorphism has been established for (S2n−1, ξst) by Eliashberg et al. [36], and
more generally for contact manifolds admitting a subcriticalWeinstein filling by Barth
et al. [5].

As for nonuniqueness, Smith [48] and Ozbagci and Stipsicz [45] found contact
3-manifolds with infinitely many pairwise homotopy inequivalent Weinstein fillings.
Akhmedov et al. [4] found contact 3-manifolds with infinitely many simply connected
Weinstein fillings which are all homeomorphic but pairwise non-diffeomorphic. In
higher dimension, Oba proved the following result.

Theorem 2.10 (Oba [43]) In any dimension 4k − 1 ≥ 7 there exist contact manifolds
which admit infinitely many pairwise homotopy inequivalent Weinstein fillings.

In dimension 4k+1 there are no known analogs of Theorem 2.10, though Oba com-
municated to us that he constructed examples of contact 5-manifolds having distinct
Weinstein fillings.

2.6 The Nearby Lagrangian Conjecture

The so-called Nearby Lagrangian Conjecture, usually attributed to V.I.Arnold, states
that any closed exact Lagrangian submanifold of a cotangent bundle T ∗M (with its
standard symplectic structure) is Hamiltonian isotopic to the zero section. While the
problem is still wide open, there are some strong results towards its positive resolution.

Theorem 2.11 (a) The Nearby Lagrangian Conjecture holds for M = S2 (Hind [28])
and M = T 2 (Dimitroglou-Rizell et al. [15]).

   



                            

(b) Given a closed exact Lagrangian L ⊂ T ∗M, the restriction π |L : L → M of
the cotangent bundle projection is a simple homotopy equivalence (Abouzaid and
Kragh [2]).

Theorem 2.11(b) implies that if M is a homotopy sphere, then L is a homotopy
sphere as well. A theorem ofAbouzaid with an improvement by Ekholm et al. provides
in this case the following refinement.

Theorem 2.12 (Abouzaid [1]; Ekholm et al. [17]) Suppose M is a homotopy n-sphere
and L ⊂ T ∗M is a closed exact Lagrangian submanifold. Let 
n denote the group
of oriented homotopy n-spheres and bPn+1 ⊂ 
n the subgroup of oriented homotopy
n-spheres bounding parallelizable (n + 1)-manifolds. Then for suitable orientations
the classes of M and L in 
n/bPn+1 coincide.

We finish this section by quoting another related result in the paper [15].

Theorem 2.13 (Dimitroglou-Rizell et al. [15])Any twoLagrangian tori in the standard
symplectic R4 are Lagrangian isotopic.

We stress the point that here tori are considered as submanifolds, and not as
parametrized Lagrangian embeddings. We also remark that the torus is the only closed
oriented surface which admits a Lagrangian embedding into the standard symplectic
R
4, hence Theorem 2.13 can be equivalently formulated by saying that any two ori-

entable closed Lagrangian submanifolds in the standard symplecticR4 are Lagrangian
isotopic.

3 New Applications to Complex Analysis

3.1 Morse Theoretic Properties of Plurisubharmonic Functions

For a Stein domain (W , J ) we denote by SCrit(W , J ) the minimal number of critical
points of a defining J -convex Morse function W → R. Theorem 2.4 immediately
implies

Corollary 3.1 (Lazarev [31]) For each Stein domain (W , J ) of dimension 2n ≥ 6 we
have SCrit(W , J ) ≤ Crit(W ) + 2. More precisely,

SCrit(W , J ) =

⎧

⎪

⎨

⎪

⎩

Crit(W ) if (W , J ) is Stein subcritical,

Crit(W ) if W is smoothly critical,

Crit(W ) + 2 otherwise.

For example, on the standard ball B2n of dimension2n ≥ 6wehaveSCrit(B2n, i) =
1, and SCrit(B2n, Jk) = 3 for all of McLean’s infinitely many exotic Stein structures
Jk in [37].

   



                                                                

3.2 Boundaries of Stein Domains

It is well known that the biholomorphism type of the interior of a Stein domain
determines the diffeomorphism type of its boundary [24]. The following immedi-
ate consequence of Theorem 2.6 together with Remark 2.7 implies that this is not the
case for the Stein deformation class of the interior.

Corollary 3.2 (Courte [14], Corollary 4.7) Let (W , J ) be a Stein domain of dimension
2n ≥ 6 with boundary M = ∂W. Then for every h-cobordism (C; M, M ′) there
exists an exhausting J -convex function ψ : IntW → R such that all critical points
are contained in {ψ < 0} and ψ−1(0) is diffeomorphic to M ′ (which may be non-
diffeomorphic to M).

Proof Let φ : W → (−∞, 0] be a defining J -convex function with ∂W = φ
−1

(0).
Let g : (−∞, 0) → R be a convex increasing diffeomorphism such that φ = g ◦ φ :
IntW → R is J -convex, so (V = IntW , J , φ) is a finite-type Stein manifold. By
Theorem 2.6 there exists a homotopy of Weinstein manifold structures (λt , φt ) on V
with (λ0, φ0) = W(J , φ) such that all critical points of φ1 have value< 0 and φ−1

1 (0)
is diffeomorphic to M ′. By Theorem 1.4(c), there exist diffeotopies ht : V → V and
gt : R → R such that ψt = gt ◦ φt ◦ ht : V → R is J -convex for all t . Choosing
gt such that g1(0) = 0, the J -convex function ψ1 : V = IntW → R has the desired
properties. ��
Remark 3.3 In Corollary 3.2 consider the Stein subdomain W ′ = {ψ ≤ 0} of (W , J ).
Its interior (IntW ′, J ) is Stein deformation equivalent (via the sublevel sets {ψ <

c}) to (IntW , J ). However, the Stein homotopy (J , ψt ) on IntW provided by [10,
Proposition 11.22] connecting the function ψ0 = φ in the proof to ψ1 = ψ cannot be
of finite type because the diffeomorphism type of high level sets changes.

3.3 Stein Fillings of J-Convex CR-Manifolds

By a CR structure on an odd-dimensional manifold M we mean a germ of a complex
structure J on an open neighborhood of 0 × M in R × M . The maximal J -invariant
distribution on 0×M defines a hyperplane distribution ξ on M with complex structure
J |ξ . The CR structure is called J -convex (or strictly pseudoconvex) if 0 × M is a J -
convex hypersurface. In this case ξ is a contact structure. A CR structure induces a
complex structure on the bundle T M ⊕ ε1, where ε1 is a trivial R-bundle over M . We
will refer to such a structure as an almost contact structure. Sometimes it is also called
a “stable complex structure”. One should, however, be warned that usually the term
“stable complex structure” refers to a complex structure on T M ⊕ εk for sufficiently
large k. While an individual stable complex structure in this sense always descends to
T M ⊕ ε1, the homotopy classes of these two structures are different.

Theorem 1.4 allows us to translate results about Weinstein fillings of contact man-
ifolds to Stein fillings of CR structures. In particular, Theorems 2.8, 2.9 and 2.10
imply

   



                            

Theorem 3.4 (a) Each closed simply connected 7-manifold M with torsion free sec-
ond homotopy groupπ2(M) appears as the boundary of a Stein domain.Moreover,
one can prescribe the homotopy class of the induced CR-structure on M as an
almost contact structure.

(b) There exist homotopy spheres which cannot appear as boundaries of Stein
domains.

(c) Let W be a Stein domain of complex dimension n > 2. Then ∂W admits
infinitely many Stein fillable strictly pseudoconvex CR-structures which are pair-
wise non-homotopic as strictly pseudoconvex CR-structures, but homotopic as
almost contact structures.

(d) In every dimension 4� ≥ 8 there exists an infinite sequence of pairwise homotopy

non-equivalent Stein domains (Wk, Jk), k ∈ N, and diffeomorphisms fk : ∂Wk
∼=→

∂W1 such that the pushforward strictly pseudoconvex CR-structures ( fk)∗ Jk on
∂W1 have the same underlying contact structure.

3.4 Koras–Russel Cubics

Seidel and Smith’s original example in [46] of a Stein manifold diffeomorphic but
not symplectomorphic to C

4 was in fact an affine algebraic 4-fold (the product of
Ramanujam’s surfacewith itself), and before their proof itwas not even knownwhether
it was biholomorphic to C

4. There is a class of other examples of this kind. One of
them is the so-called Koras–Russel cubic (see [29])

C := {x + x2y + w3 + z2 = 0} ⊂ C
4.

Makar-Limanov [34] has proved that the cubic C is not algebraically isomorphic to
C
3, but it is unknown whether it is biholomorphic toC3. In view of Seidel and Smith’s

success there were many attempts to prove that C is not even symplectomorphic to C3

by computing various symplectic invariants. However, it recently turned out that

Theorem 3.5 (Casals and Murphy [9]) The Koras–Russel cubic is flexible, and hence
Stein deformation equivalent (in particular symplectomorphic) to the standard C

3.

3.5 Topology of Rationally and Polynomially Convex Domains

Nowwe address the question about the possible topological types of polynomially and
rationally convex domains in a given Stein manifold (V , J ). The following theorem
was stated without proof in [13], so we include the proof here.

Theorem 3.6 Let (V , J ) be a Stein manifold of complex dimension n ≥ 3 and W ⊂ V
be a compact domain.

(a) W is smoothly isotopic to a rationally convex domain if and only if it admits a
defining Morse function without critical points of index > n.

(b) W is smoothly isotopic to a polynomially convex domain if and only if it satisfies,
in addition, the following topological condition:

   



                                                                

(T) The inclusion homomorphism Hn(W ;G) → Hn(V ;G) is injective for every
abelian group G.

Proof Note first that we may assume without loss of generality that (V , J ) is of
finite type. For this, simply choose a Stein subdomain W0 ⊂ V containing W in its
interior and apply the result to the finite-type Stein manifold (IntW0, J ), noting that
rational/polynomial convexity of W in IntW0 implies rational/polynomial convexity
of W in V . Now the proof of part (a) is identical with that of Theorem 1.7 in [13].

For part (b), suppose first that (V , J , φ) is flexible. By an argument analogous to
the proof of [13, Lemma 2.1], the hypothesis of part (a) together with condition (T)
imply the existence an exhausting Morse function ψ : V → R without critical points
of index > n such that W = {ψ ≤ 0}, where 0 is a regular value. By Theorem 2.2(c),
the flexible Weinstein structure W(J , φ) on V is homotopic to a Weinstein structure
(λ, ψ) with the given function ψ . Thus W = {ψ ≤ 0} is a Weinstein subdomain of
(V , λ, ψ) and the result follows from Theorem 1.7(c) above. If (V , J ) is not flexible
we use the splitting V = Flex(V ) ∪ C from Theorem 2.5 (transferred to the Stein
setting) and apply the previous argument to the flexible Stein manifold Flex(V ). ��

In the case (V , J ) = (Cn, i), condition (T) in Theorem 3.6(b) reads Hn(W ;G) = 0
for every abelian group G. By the universal coefficient theorem, this is equivalent to
Hn(W ;Z) = 0 and Hn−1(W ;Z) having no torsion. We constructed in [13] a domain
W satisfying this condition which is smoothly critical, i.e., it admits no definingMorse
functions without critical points of index ≥ n.

Stein Deformation Types of Polynomially Convex Domains In [13] we had con-
jectured that every Stein domain which is deformation equivalent to a polynomially
convex domain inCn , n ≥ 3, must be flexible. This conjecture is disproved byMurphy
and Siegel’s discovery of subflexible Weinstein domains: By Theorem 2.3 there exists
a nonflexible Stein domain (W , J ) which is deformation equivalent to a Weinstein
subdomain of (Cn, i), hence to a polynomially convex domain by Theorem 1.7(c).

The Case of Complex Dimension 2 Theorem 3.6 completely answers the question
about the possible topological types of rationally and polynomially convex domains in
C
n for n ≥ 3. In complex dimension 2 these questions are wide open. Nemirovski and

Siegel recently answered the question on rational convexity in C
2 for a special class

of domains, disk bundles over surfaces. For integers χ, e let D(χ, e) (resp. ˜D(χ, e))
denote the disk bundle of Euler number e over the closed orientable (resp. nonori-
entable) surface of Euler characteristic χ (see [42] for the definition of e in the
nonorientable case).

Theorem 3.7 (Nemirovski and Siegel [42])

(a) Precisely the following disk bundles over surfaces can be realized as i-convex
domains in C2:

• D(χ, 0) for χ �= 2;
• ˜D(χ, e) for e ∈ {2χ − 4, 2χ, 2χ + 4, . . . ,−2χ − 4 + 4[χ/4 + 1]}.

(b) All the disk bundles in (a) can also be realized as rationally convex domains in
C
2, except for ˜D(0, 0) and ˜D(1,−2) which cannot.

   



                            

Note that, in contrast to the case of complex dimension n ≥ 3, not every i-convex
domain in C

2 can be realized as a rationally convex domain. According to Theo-
rem 1.7(b), the obstructions come from symplectic topology: ˜D(0, 0) and ˜D(1,−2)
do not admit symplectic embeddings into (R4, ωst). Nemirovski and Siegel derive this
from the classification of tight contact structures on the boundaries of ˜D(0, 0) and
˜D(1,−2) and the nonexistence of a Lagrangian embedding of the Klein bottle into
(R4, ωst). (Note that ˜D(0, 0) is the unit disk cotangent bundle of the Klein bottle).

3.6 Topology of Rationally Convex Totally Real Submanifolds

Here we discuss some consequences of the results in Sect. 2.6 for the topology of ratio-
nally convex totally real submanifolds. We will need the following easy consequence
of Criterion 1.8.

Lemma 3.8 Let (V , J , φ) be a Stein manifold of complex dimension n and L ⊂ V a
closed n-dimensional totally real submanifold. If L is (exact) rationally convex, then it
is isotopic through (exact) rationally convex totally real submanifolds to a submanifold
L1 ⊂ V such that −dCφ|L1 is closed (resp. exact).

Proof If L is (exact) rationally convex, then by Criterion 1.8 there exists an exact
Kähler form dλ on (V , J ) with λ = −dCφ outside a compact set such that λ|L is
closed (exact). The 1-formλt := (1−t)λ−t dCφ agreeswith−dCφ outside a compact
set and dλt is a Kähler form on (V , J ) for all t ∈ [0, 1]. By Moser’s theorem (see [10,
Theorem 6.8]), there exists a diffeotopy ht : V → V such that h∗

t λt − λ is exact for
all t . Then λt |L t is closed (exact) for L t := ht (L), so L t ⊂ (V , J ) is (exact) rationally
convex by Criterion 1.8. Moreover, L0 = L and −dCφ|L1 is closed (exact). ��

Consider now a closed smooth manifold M . A Grauert tube structure for M is a
Stein structure (J , φ) on its tangent bundle T M such that φ : T M → [0,∞) has
a Morse–Bott minimum along the zero section M = φ−1(0) and no other critical
points. Every manifold possesses a Grauert tube structure, and any two Grauert tube
structures on T M are Stein homotopic through Grauert tube structures. The pushfor-
ward of the Weinstein structure W(T M, J , φ) associated to a Grauert tube under a
bundle isomorphism T M ∼= T ∗M is Weinstein homotopic to the canonical Weinstein
structure on T ∗M .

For example, let Qn = {z21+· · ·+z2n+1 = 1} ⊂ C
n+1 be the complex n-dimensional

affine quadric, equipped with the restriction of the standard complex structure i and
the function φst(z) = |z|2. Then (Qn, i, φst) is a Grauert tube of the sphere Sn . In
fact, in this case one can directly find a diffeomorphism h : Qn ∼= T ∗Sn identifying
Qn ∩ R

n+1 with the zero section and −dCφ with the canonical 1-form λst = p dq.
Now we can state the complex geometric versions of Theorems 2.11 and 2.12.

Theorem 3.9 (a) Every rationally convex totally real 2-sphere L in the quadric Q2 is
isotopic through rationally convex totally real spheres to the real sphere Q2 ∩R

3.
(b) Let V be a Grauert tube of a closed manifold M. Then every exact rationally

convex totally real closed n-dimensional submanifold L ⊂ V is simply homotopy
equivalent to M.

   



                                                                

(c) Every exact rationally convex totally real closed n-dimensional submanifold of
the quadric Qn is homeomorphic to the sphere Sn and bounds a parallelizable
(n + 1)-manifold.

Proof (a) By Lemma 3.8, L is isotopic through rationally convex totally real spheres
to a sphere L1 ⊂ V such that −dCφst|L1 is exact (exactness is automatic because
L is simply connected). Via the above identification Q2 ∼= T ∗S2, Theorem 2.11(a)
provides a Hamiltonian isotopy L t ⊂ Q2, t ∈ [1, 2], from L1 to L2 = Q2 ∩ R

3. The
Hamiltonian property means that−dCφ|L t is exact for all t ∈ [1, 2], so L t is rationally
convex by Criterion 1.8.
By the same argument, part (b) follows from Theorem 2.11(b) and the fact that the
Grauert tube of M is Weinstein deformation equivalent to T ∗M with its canonical
Weinstein structure, and part (c) follows from Theorem 2.12. ��

An analogous proof yields the following complex geometric version of Theo-
rem 2.13.

Theorem 3.10 Any two orientable rationally convex totally real surfaces in C
2 are

isotopic as rationally convex totally real surfaces.

In view of Theorem 3.9, we can ask more generally

Question 3.11 Let (V , J , φ) be a Stein manifold of complex dimension n and L ⊂
V an exact rationally convex totally real n-dimensional submanifold. Is L isotopic
through (exact) rationally convex totally real submanifolds to a polynomially convex
one? In particular, is [L] ⊂ Hn(V ) indivisible for L orientable?

Theorem 3.9(a) gives an affirmative answer to this question for V = Q2 = T ∗S2,
and Theorem 3.9(b) gives indivisibility of [L] for V = T ∗M . More generally, the
Nearby Lagrangian Conjecture would imply an affirmative answer for V = T ∗M .
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