
openSMILE – The Munich Versatile and Fast Open-Source
Audio Feature Extractor

Florian Eyben
Institute for Human-Machine

Communication
Technische Universität

München
80290 München, Germany

eyben@tum.de

Martin Wöllmer
Institute for Human-Machine

Communication
Technische Universität

München
80290 München, Germany

woellmer@tum.de

Björn Schuller
Institute for Human-Machine

Communication
Technische Universität

München
80290 München, Germany

schuller@tum.de

ABSTRACT
We introduce the openSMILE feature extraction toolkit,
which unites feature extraction algorithms from the speech
processing and the Music Information Retrieval communi-
ties. Audio low-level descriptors such as CHROMA and
CENS features, loudness, Mel-frequency cepstral coefficients,
perceptual linear predictive cepstral coefficients, linear pre-
dictive coefficients, line spectral frequencies, fundamental
frequency, and formant frequencies are supported. Delta
regression and various statistical functionals can be applied
to the low-level descriptors. openSMILE is implemented in
C++ with no third-party dependencies for the core function-
ality. It is fast, runs on Unix and Windows platforms, and
has a modular, component based architecture which makes
extensions via plug-ins easy. It supports on-line incremen-
tal processing for all implemented features as well as off-line
and batch processing. Numeric compatibility with future
versions is ensured by means of unit tests. openSMILE can
be downloaded from http://opensmile.sourceforge.net/.

Categories and Subject Descriptors
H.5.5 [Information Systems Applications]: Sound and
Music Computing

General Terms
Design, Performance

Keywords
audio feature extraction, statistical functionals, signal pro-
cessing, music, speech, emotion

This is the author's version of the work. It is posted here for your personal
use. Not for redistribution.
MM’10, October 25–29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-60558-933-6/10/10 ...$10.00.

1. INTRODUCTION
Feature extraction is an essential part of many audio anal-

ysis tasks, e.g. Automatic Speech Recognition (ASR), anal-
ysis of paralinguistics in speech, and Music Information Re-
trieval (MIR). There are a few freely available feature ex-
traction utilities which, however, are mostly designed for a
special domain, such as ASR or MIR (see section 2). More-
over, they are either targeted at off-line data processing or
are libraries, which do not offer a ready-to-use, yet flexible,
feature extractor. Tools for off-line feature extraction are
useful for research tasks, but when it comes to building a
live demonstrator system (e.g. the SEMAINE system1) or
a commercial application where one wants to use the exact
same features as used in research work, something different
is needed.

We thus introduce openSMILE2, a novel open-source fea-
ture extractor for incremental processing. SMILE is an
acronym for Speech and Music Interpretation by Large-space
Extraction. Its aim is to unite features from two worlds,
speech processing and Music Information Retrieval, enabling
researchers in either domain to benefit from features from
the other domain. A strong focus is put on fully supporting
real-time, incremental processing. openSMILE provides a
simple, scriptable console application where modular fea-
ture extraction components can be freely configured and
connected via a single configuration file. No feature has to
be computed twice, since output from any feature extractor
can be used as input to all other feature extractors inter-
nally. Unit tests are provided for developers to ensure exact
numeric compatibility with future versions.

Even though openSMILE’s primarily intended area of use
is audio feature extraction, it is principally modality inde-
pendent, e.g. physiological features such as heart rate, EEG,
or EMG signals can be analysed with openSMILE using au-
dio processing algorithms. An easy plugin interface more-
over provides the ability to extend openSMILE with one’s
own components, thus virtually being able to solve any fea-
ture extraction task and thereby using existing components
as building blocks.

In the following we give an overview on related tools in sec-
tion 2, describe openSMILE’s design principles in section 3
and the implemented features and descriptors in section 4.
We provide computation time benchmarks in section 5 and
summarise this overview paper in section 6.

1http://www.semaine-project.eu/
2Available at: http://opensmile.sourceforge.net/

1459

2. RELATED TOOLKITS
Related feature extraction tools used for speech research

include e.g. the Hidden Markov Model Toolkit (HTK) [15],
the PRAAT Software [3], the Speech Filing System3 (SFS),
the Auditory Toolbox4, a MatlabTM toolbox5 by Raul Fer-
nandez [6], the Tracter framework [7], and the SNACK 6

package for the Tcl scripting language. However, not all of
these tools are distributed under a permissive open-source
license, e.g. HTK and SFS. The SNACK package is without
support since 2004.

For Music Information Retrieval many feature extraction
programs under a permissive open-source license exist, e.g.
the lightweight ANSI C library libXtract7, the Java based
jAudio extractor [9], the Music Analysis, Retrieval and Syn-
thesis Software Marsyas8, the FEAPI framework [8], the
MIRtoolbox9, and the CLAM framework [1].

However, very few feature extraction utilities exist that
unite features from both speech and music domains. While
many features are common, MFCC or LPC are used primar-
ily for speech, for example, and e.g. CHROMA features or
algorithms for estimating multiple fundamental frequencies
are mostly found in music applications. Next to low-level
audio features, functionals mapping time series of variable
length to static values are common e.g. for emotion recog-
nition or music genre discrimination. Such mappings are
also referred to as aggregate features or feature summaries.
Further, delta coefficients, moving average, or various filter
types are commonly applied to feature contours. Hierar-
chies of such post-processing steps have proven to lead to
more robust features, e.g. in [13], hierarchical functionals,
i.e. ‘functionals of functionals’ are used for robust speech
emotion recognition.

For an application or demonstrator system which is a re-
sult of research work, it is convenient to use the same feature
extraction code in the live system as used to produce pub-
lished results. To achieve this goal, we require incremental
processing of the input with a delay as small as possible.

3. OPENSMILE’S ARCHITECTURE
This section addresses the problems that were consid-

ered during planning of openSMILE’s architecture and sum-
marises the resulting architecture. A more detailed descrip-
tion can be found in the openSMILE documentation.

In order to address deficiencies in existing software pack-
ages, such as the lack of a comprehensive cross-domain fea-
ture set, the lack of flexibility and extensibility, and the
lack of incremental processing support, the following require-
ments had to be – and were – met:

• Incremental processing, where data from an arbi-
trary input stream (file, sound card, etc.) is pushed
through the processing chain sample by sample and
frame by frame (see figure 1).

3http://www.phon.ucl.ac.uk/resource/sfs/
4http://cobweb.ecn.purdue.edu/~malcolm/interval/
1998-010/
5http://affect.media.mit.edu/publications.php
6http://www.speech.kth.se/snack/
7http://libxtract.sourceforge.net/
8http://marsyas.sness.net/
9https://www.jyu.fi/hum/laitokset/musiikki/en/
research/coe/materials/mirtoolbox

• Ring-buffer memory for features requiring temporal
context and/or buffering, and for reusability of data,
i.e. to avoid duplicate computation of data used by
multiple feature extractors such as FFT spectra (see
figure 1, right).

• Fast and lightweight algorithms carefully imple-
mented in C/C++, no third-party dependencies for
the core functionality.

• Modular architecture which allows for arbitrary fea-
ture combination and easy addition of new feature ex-
tractor components by the community via a well struc-
tured API and a run-time plug-in interface.

• Configuration of feature extractor parameters and
component connections in a single configuration file.

Moreover, the extractor is easy to compile on many com-
monly used platforms, such as Windows, Unix, and Mac.

Figure 1 (left) shows the overall data-flow architecture of
openSMILE, where the Data Memory is the central link be-
tween all Data Sources (components that write data from ex-
ternal sources to the data memory), Data Processors (com-
ponents which read data from the data memory, modify it,
and write it back to the data memory), and Data Sinks
(components that read data from the data memory and write
it to external places such as files).

The ring-buffer based incremental processing is illustrated
in figure 1 (mid). Three levels are present in this setup:
wave, frames, and pitch. A cWaveSource component writes
samples to the ‘wave’ level. The write positions in the levels
are indicated by the vertical arrows. A cFramer produces
frames of size 3 from the wave samples (non-overlapping),
and writes these frames to the ‘frames’ level. A cPitch (sim-
plified for the purpose of illustration) component extracts
pitch features from the frames and writes them to the ‘pitch’
level. Since all boxes in the plot contain values (=data), the
buffers have been filled, and the write pointers have been
warped. Figure 1 (right) shows the incremental processing
for higher order features. Functionals (max and min) over
two frames (overlapping) of the pitch features are extracted
and saved to the level ‘func’.

The size of the buffers must be adjusted to the size of
the block a reader or writer reads/writes from/to the data
memory at once. In the above example the read blocksize
of the functionals component would be 2 because it reads 2
pitch frames at once. The input level buffer of ‘pitch’ must
be at least 2 frames long, otherwise the functionals compo-
nent will not be able to read a complete window from this
level. openSMILE handles this adjustment of the buffersize
automatically.

To speed up computation, openSMILE supports multi-
threading. Each component in openSMILE can be run in
a separate thread. This enables parallelisation of the fea-
ture extraction process on multi-core machines and reduces
computation time when processing large files.

4. AVAILABLE FEATURE EXTRACTORS
openSMILE is capable of extracting Low-Level Descrip-

tors (LLD) and applying various filters, functionals, and
transformations to these. The LLD currently implemented
are listed in table 1.

1460

D a t a M e m o r y

D a t a S o u r c e
(e . g . s o u n d c a r d)

D a t a S i n k
(e . g . L i b S V M c l a s s i f i e r)

D a t a S i n k
(e . g . C S V f i l e e x p o r t)

D a t a P r o c e s s o r
(e . g . w i n d o w i n g)

D a t a P r o c e s s o r
(e . g . F F T)

D a t a P r o c e s s o r
(e . g . M e l - F i l t e r b a n k)

. . .

:
:

D a t a P r o c e s s o r
(e . g . F u n c t i o n a l s)

D a t a P r o c e s s o r
(e . g . D e l t a C o e f f i c i e n t s)

:
:

� ������

��	�
���

������	
�

�
�

� � � � ��	
��	

	�����	� 	�����	� 	�����	� 	�����	

������	
�

������	

������	�

������	

������	�

��	�����	�

	�����	� 	�����	� 	�����	� �����	

���	�����	�

������

�������	������� !��"� ��## �$

�"�%�&	���!��% �"� ��## �$

���'�� (���	�����%�� (���$

�)�**���+	�����%����+$

�,�-#'���'����+	�����%����+$

.

��	�����	� ��	�����	� ��	�����	

������	�

������	�

������	.

������	�

������	
�

������	

���	�����	� ���	�����	� ���	�����	

�����
�
�	��
�������

	�����	�

����������

�������
 �������� �������� ������

	
���������

�������

������������������������

�������������������������� ��	�	
�
���
�������

����������������������

��� ���!��������������������

���������� ���������� ���������

	
��������� 	
��������� 	
��������

"�#���

������$�
 ������$�� �������$$$

"�����

$$$

"�#���

"�����

"�#�	
�

"���	
�

"�#�	
�

"���	
�

����������!��

������

Figure 1: Sketch of openSMILE’s architecture (left) and incremental data-flow in ring-buffer memories (centre
and right); the (red) arrow (pointing in between the columns) indicates the current write pointer.

Feature Group Description
Waveform Zero-Crossings, Extremes, DC
Signal energy Root Mean-Square & logarithmic
Loudness Intensity & approx. loudness
FFT spectrum Phase, magnitude (lin, dB, dBA)
ACF, Cepstrum Autocorrelation and Cepstrum
Mel/Bark spectr. Bands 0-Nmel

Semitone spectr. FFT based and filter based
Cepstral Cepstral features, e.g. MFCC, PLP-

CC
Pitch F0 via ACF and SHS methods

Probability of Voicing
Voice Quality HNR, Jitter, Shimmer
LPC LPC coeff., reflect. coeff., residual

Line spectral pairs (LSP)
Auditory Auditory spectra and PLP coeff.
Formants Centre frequencies and bandwidths
Spectral Energy in N user-defined bands,

multiple roll-off points, centroid,
entropy, flux, and rel. pos. of
max./min.

Tonal CHROMA, CENS, CHROMA-
based features

Table 1: openSMILE’s low-Level descriptors.

The Mel-frequency features, Mel-Spectrum and Mel-Fre-
quency Cepstral Coefficients (MFCC), as well as the Percep-
tual Linear Predictive Coefficients (PLP) can be computed
exactly as described in [15], thus providing compatibility
with the popular Hidden-Markov Toolkit (HTK).

Delta regression coefficients can be computed from the
low-level descriptors, and a moving average filter can be ap-
plied to smooth the feature contours. All data vectors can
be processed with elementary operations such as add, mul-
tiply, and power, which enables the user to create custom
features by combining existing operations.

Next, functionals (statistical, polynomial regression coeffi-
cients, and transformations) listed in table 2 can be applied,
e.g. to low-level features. This is a common technique, e.g.
in emotion recognition ([11, 4]) and Music Information Re-
trieval [12]. The list of functionals is based on CEICES,

Category Description
Extremes Extreme values, positions, and ranges
Means Arithmetic, quadratic, geometric
Moments Std. dev., variance, kurtosis, skewness
Percentiles Percentiles and percentile ranges
Regression Linear and quad. approximation coeffi-

cients, regression err., and centroid
Peaks Number of peaks, mean peak distance,

mean peak amplitude
Segments Number of segments based on delta

thresholding, mean segment length
Sample values Values of the contour at configurable

relative positions
Times/durations Up- and down-level times, rise/fall

times, duration
Onsets Number of onsets, relative position of

first/last on-/offset
DCT Coefficients of the Discrete Cosine

Transformation (DCT)
Zero-Crossings Zero-crossing rate, Mean-crossing rate

Table 2: Functionals (statistical, polynomial regres-
sion, and transformations) available in openSMILE.

where seven sites combined their features and established a
feature coding standard that among others aims at a broad
coverage of functional types [2]. Functionals can be applied
multiple times in hierarchical structure as described in [13]).

Due to the modular architecture, it is possible to apply
any implemented processing algorithm to any time series,
i.e. the Mel-band filter-bank could be applied as a functional
to any feature contour. This gives researchers an efficient
and customisable tool to generate millions of novel features
without adding a single line of C++ code.

To facilitate interoperability, feature data can be loaded
from and saved to popular file formats such as WEKA ARFF
[14], LibSVM format, Comma Separated Value (CSV) File,
HTK [15] parameter files, and raw binary files (which can
be read in, e.g. MatlabTM or GNU Octave).

Live recording of audio and subsequent incremental ex-
traction of features in real-time is also supported. A built-
in voice activity detection can be used to pre-segment the

1461

recorded audio stream in real-time, and on-line mean and
variance normalisation as well as on-line histogram equal-
isation can be applied. Features extracted on-line can be
directly visualised via gnuplot, which is a great feature es-
pecially for demonstration and teaching tasks.

5. PERFORMANCE
Since the main objective of openSMILE is real-time op-

eration, run-time benchmarks for various feature sets are
provided. Evaluation was done on a Ubuntu Linux machine
with Kernel 2.6 and an AMD Phenom 64 bit CPU (only
one core was used) at 2.2 GHz having 4GB of DDR2” 800
RAM. All real-time factors (rtf) were computed by timing
the CPU time required for extracting features from 10 min-
utes of monaural 16 kHz PCM (uncompressed) audio data.

Extraction of standard PLP and MFCC frame-based fea-
tures with log-energy and 1st and 2nd order delta coefficients
can be done with an rtf of 0.012. 250 k features (hierarchical
functionals (2 levels) of 56 LLD (pitch, MFCC, LSP, etc.))
can be computed with an rtf of 0.044. Prosodic low-level
features (pitch contour and loudness) can be extracted with
an rtf of 0.026. This show the high efficiency of the code to
compute functionals; most computation time is spent with
tasks such as FFT or filtering during low-level descriptor
extraction.

6. CONCLUSION AND OUTLOOK
We introduced openSMILE, an efficient, on-line (and also

batch scriptable), open-source, cross platform, and exten-
sible feature extractor implemented in C++. A well struc-
tured API and example components make integration of new
feature extraction and I/O components easy. openSMILE is
compatible with research tool-kits, such as HTK, WEKA,
and LibSVM by supporting their data-formats. Although
openSMILE is very new, it is already successfully used by
researchers around the world. The openEAR project [5]
builds on openSMILE features for doing emotion recogni-
tion. openSMILE was the official feature extractor for the
INTERSPEECH 2009 Emotion Challenge [11] and the ongo-
ing INTERPSEECH 2010 Paralinguistic Challenge. It has
also been used for problems as exotic as classification of
speaker height from voice characteristics [10].

Development of openSMILE is still active and even more
features such as TEAGER energy, TOBI pitch descriptors,
and psychoacoustic measures such as Sharpness and Rough-
ness are considered for integration. Moreover, openSMILE
will soon support MPEG-7 LLD XML output. In the near
future we aim at linking to openCV10, to be able to fuse
visual and acoustic features. Due to openSMILE’s modular
architecture and the public source code, rapid addition of
new and diverse features by the community is encouraged.
Future work will focus on improved multithreading support
and cooperation with related projects to ensure coverage of
a broad variety of typically employed features in one piece
of fast, lightweight, flexible open-source software.

Acknowledgment
The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-

10http://opencv.willowgarage.com/

gramme (FP7/2007-2013) under grant agreement No. 211486
(SEMAINE).

7. REFERENCES
[1] X. Amatriain, P. Arumi, and D. Garcia. A framework

for efficient and rapid development of cross-platform
audio applications. Multimedia Systems, 14(1):15–32,
June 2008.

[2] A. Batliner, S. Steidl, B. Schuller, D. Seppi,
K. Laskowski, T. Vogt, L. Devillers, L. Vidrascu,
N. Amir, L. Kessous, and V. Aharonson. Combining
efforts for improving automatic classification of
emotional user states. In T. Erjavec and J. Gros,
editors, Language Technologies, IS-LTC 2006, pages
240–245. Informacijska Druzba, 2006.

[3] P. Boersma and D. Weenink. Praat: doing phonetics
by computer (v. 4.3.14). http://www.praat.org/, 2005.

[4] F. Eyben, M. Wöllmer, A. Graves, B. Schuller,
E. Douglas-Cowie, and R. Cowie. On-line emotion
recognition in a 3-d activation-valence-time continuum
using acoustic and linguistic cues. Journal on
Multimodal User Interfaces, 3(1-2):7–19, Mar. 2010.

[5] F. Eyben, M. Wöllmer, and B. Schuller. openEAR -
introducing the munich open-source emotion and
affect recognition toolkit. In Proc. of ACII 2009,
volume I, pages 576–581. IEEE, 2009.

[6] R. Fernandez. A Computational Model for the
Automatic Recognition of Affect in Speech. PhD thesis,
MIT Media Arts and Science, Feb. 2004.

[7] P. N. Garner, J. Dines, T. Hain, A. El Hannani,
M. Karafiat, D. Korchagin, M. Lincoln, V. Wan, and
L. Zhang. Real-time asr from meetings. In Proc. of
INTERSPEECH 2009, Brighton, UK. ISCA, 2009.

[8] A. Lerch and G. Eisenberg. FEAPI: a low level feature
extraction plug-in api. In Proc. of the 8th
International Conference on Digital Audio Effects
(DAFx), Madrid, Spain, 2005.

[9] D. McEnnis, C. McKay, I. Fujinaga, and P. Depalle.
jaudio: A feature extraction library. In Proc. of ISMIR
2005, pages 600–603, 2005.

[10] I. Mporas and T. Ganchev. Estimation of unknown
speaker’s height from speech. International Journal of
Speech Technology, 12(4):149–160, dec 2009.

[11] B. Schuller, S. Steidl, and A. Batliner. The
INTERSPEECH 2009 emotion challenge. In Proc.
Interspeech (2009), Brighton, UK, 2009. ISCA.

[12] B. Schuller, F. Wallhoff, D. Arsic, and G. Rigoll.
Musical signal type discrimination based on large open
feature sets. In Proc. of the International Conference
on Multimedia and Expo ICME 2006. IEEE, 2006.

[13] B. Schuller, M. Wimmer, L. Mösenlechner, C. Kern,
D. Arsic, and G. Rigoll. Brute-forcing hierarchical
functionals for paralinguistics: A waste of feature
space? In Proc. of ICASSP 2008, April 2008.

[14] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition edition, 2005.

[15] S. Young, G. Evermann, M. Gales, T. Hain,
D. Kershaw, X. Liu, G. Moore, J. Odell, D. Ollason,
D. Povey, V. Valtchev, and P. Woodland. The HTK
book (v3.4). Cambridge University Press, Cambridge,
UK, December 2006.

1462

