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Martin Wöllmer, Florian Eyben, Björn Schuller, Gerhard Rigoll

Institute for Human-Machine Communication, Technische Universität München, Germany
[woellmer,eyben,schuller,rigoll]@tum.de

Abstract
We present a novel continuous speech recognition framework
designed to unite the principles of triphone and Long Short-
Term Memory (LSTM) modeling. The LSTM principle allows
a recurrent neural network to store and to retrieve information
over long time periods, which was shown to be well-suited
for the modeling of co-articulation effects in human speech.
Our system uses a bidirectional LSTM network to generate a
phoneme prediction feature that is observed by a triphone-based
large-vocabulary continuous speech recognition (LVCSR) de-
coder, together with conventional MFCC features. We evaluate
both, phoneme prediction error rates of various network archi-
tectures and the word recognition performance of our Tandem
approach using the COSINE database - a large corpus of conver-
sational and noisy speech, and show that incorporating LSTM
phoneme predictions in to an LVCSR system leads to signifi-
cantly higher word accuracies.
Index Terms: Long Short-Term Memory, Large-Vocabulary
Continuous Speech Recognition, Context Modeling, Recurrent
Neural Networks

1. Introduction
The recognition performance of systems for large-vocabulary
continuous speech recognition (LVCSR) heavily depends on
various factors: training and evaluating systems on well-
articulated, clean, read speech can lead to word error rates be-
low 10 % [1], while disfluent and noisy speech strongly down-
grades performance [2]. Thus, in recent years a large number of
different strategies to cope with conversational and noisy speech
has been proposed [3, 4, 5]. Most innovations can be found in
the areas of speech signal preprocessing, feature enhancement,
as well as speech and non-linguistic vocalization modeling (for
an overview see e. g. [6]).

Apart from techniques aiming to improve the front- or back-
end of automatic speech recognition (ASR) systems based on
Hidden Markov Models (HMM), strategies towards improving
ASR in challenging conditions by combining the HMM princi-
ple with recurrent neural networks (RNN) is an active area of re-
search [7, 8, 9]. Generally, these techniques can be categorized
into hybrid approaches that use RNNs for acoustic modeling
while applying HMMs for decoding, and Tandem approaches
that use the RNN output as additional features in combination
with conventional (e. g. MFCC) features. However, the limi-
tations of recurrent neural networks still prevent such hybrid
or Tandem techniques from becoming a widely used standard
in ASR systems. One such limitation is the so-called vanish-
ing gradient problem that causes the backpropagated error in
RNNs to either blow up or exponentially decay over time [10].
This strongly limits the amount of context that RNNs can access

and model. Yet, due to co-articulation effects in human speech,
modeling a sufficient amount of context during speech feature
generation and processing is essential. On a higher level, con-
text in speech is usually modeled via triphones and language
models, while on the feature level most ASR systems incorpo-
rate only a very limited amount of context by using first and sec-
ond order regression coefficients of low-level descriptors such
as MFCCs as additional features.

There exist a few works that try to address the topic of con-
sidering a higher amount of context on the feature level [11]
on the one hand, and solving the vanishing gradient problem
in RNNs on the other hand [12, 13, 14]. An elegant and effi-
cient way to enable long-range context modeling with recurrent
neural networks has been proposed in [14] and refined in [15]:
bidirectional Long Short-Term Memory (BLSTM) networks are
able to model a self-learned amount of contextual information
by using memory blocks in the hidden layer of RNNs. Even
though this technique was shown to prevail over the triphone
principle [16], phoneme modeling via BLSTM networks has so
far only been investigated for the tasks of phoneme classifica-
tion [15] and keyword spotting [17, 18, 19].

In this paper, we want to investigate the potential of
BLSTM phoneme modeling for continuous speech recognition
in a challenging conversational ASR scenario. Since previous
experiments on keyword detection revealed that in the context
of speech modeling via BLSTM, Tandem architectures tend to
outperform hybrid approaches [20], we decided to implement
a Tandem system that generates BLSTM phoneme predictions
which are incorporated into an HMM framework. This allows
us to combine Long Short-Term Memory and triphone model-
ing and leads to higher word accuracies when using the system
for decoding continuous, noisy, and spontaneous speech as con-
tained in the COSINE corpus [21].

The structure of this paper is as follows: Section 2 gives an
overview over the COSINE corpus which we used to evaluate
our system, Section 3 outlines the principle of Long Short-Term
Memory (LSTM), Section 4 introduces our Tandem BLSTM-
HMM architecture, and Section 5 shows experimental results.

2. The COSINE Corpus
The COnversational Speech In Noisy Environments (COSINE)
corpus [21] is a relatively new database which contains multi-
party conversations recorded in real world environments. The
recordings were captured on a wearable recording system so
that the speakers were able to walk around during record-
ing. Since the participants were asked to speak about anything
they liked and to walk to various noisy locations, the corpus
consists of natural, spontaneous, and highly disfluent speak-
ing styles partly masked by indoor and outdoor noise sources
such as crowds, vehicles, and wind. The recordings were cap-
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tured using multiple microphones simultaneously, however, to
match most application scenarios, we exclusively used speech
recorded by a close-talking microphone (Sennheiser ME-3).

We used all ten transcribed sessions, containing 11.40 hours
of pairwise conversations and group discussions. All 37 speak-
ers are fluent, but not necessarily native English speakers. Each
speaker participated in only one session and the speakers’ ages
range from 18 to 71 years (median 21 years).

For our experiments, we used the recommended test set
(sessions 3 and 10) which comprises 1.81 hours of speech. Ses-
sions 1 and 8 were used as validation set and the remaining
six session made up the training set. The vocabulary size is
4.8 k, whereas the out-of-vocabulary (OOV) rate in the test set
is 3.4 %. To the best of our knowledge, there exist no bench-
mark ASR results for the COSINE corpus so far.

3. Long Short-Term Memory
This section briefly introduces the principle of Long Short-Term
Memory networks which we use in order to generate context-
sensitive phoneme predictions in our Tandem ASR system (see
Section 4).

The analysis of the error flow in conventional recurrent neu-
ral nets led to the finding that long range context is inaccessible
to standard RNNs since the backpropagated error either blows
up or decays over time (vanishing gradient problem [10]). This
led to the introduction of Long Short-Term Memory RNNs [14].
They are able to overcome the vanishing gradient problem and
can learn the optimal amount of contextual information relevant
for the classification task.
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Figure 1: LSTM memory block consisting of one memory cell:
input, output, and forget gate collect activations from inside and
outside the block which control the cell through multiplicative
units (depicted as small circles); input, output, and forget gate
scale input, output, and internal state respectively; ai and ao

denote activation functions; the recurrent connection of fixed
weight 1.0 maintains the internal state

An LSTM layer is composed of recurrently connected
memory blocks, each of which contains one or more memory
cells, along with three multiplicative ‘gate’ units: the input, out-
put, and forget gates. The gates perform functions analogous
to read, write, and reset operations. More specifically, the cell
input is multiplied by the activation of the input gate, the cell
output by that of the output gate, and the previous cell values
by the forget gate (see Figure 1). The overall effect is to allow
the network to store and retrieve information over long periods
of time. For example, as long as the input gate remains closed,
the activation of the cell will not be overwritten by new inputs
and can therefore be made available to the net much later in the
sequence by opening the output gate.

Another problem with standard RNNs is that they have ac-
cess to past but not to future context. This can be overcome
by using bidirectional RNNs [22], where two separate recurrent
hidden layers scan the input sequences in opposite directions.
The two hidden layers are connected to the same output layer,
which therefore has access to context information in both di-
rections. The amount of context information that the network
actually uses is learned during training, and does not have to be
specified beforehand. Figure 2 shows the structure of a simple
bidirectional network.

Combining bidirectional networks with LSTM gives bidi-
rectional LSTM [16], which has demonstrated excellent perfor-
mance in many sequence labeling or pattern recognition tasks
such as phoneme recognition [15], keyword spotting [17], and
emotion recognition from speech [23].
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Figure 2: Structure of a bidirectional network with input i, out-
put o, as well as two hidden layers (hf and hb)

4. Tandem BLSTM-HMM Architecture
The structure of our Tandem decoder can be seen in Figure 3: st
and xt represent the HMM state and the acoustic (MFCC) fea-
ture vector, respectively, while bt corresponds to the discrete
phoneme prediction of the BLSTM network (shaded nodes).
Squares denote observed nodes and white circles represent hid-
den nodes. The HMM uses bt as observation, in addition to
the MFCC features. xt also serves as input for the BLSTM,
whereas the size of the BLSTM input layer it corresponds to
the dimensionality of the acoustic feature vector. The vector
ot contains one probability score for each of the P different
phonemes at each time step. bt is the index of the most likely
phoneme:

bt = max
ot

(ot,1, ..., ot,j , ..., ot,P ) (1)

At every time step the BLSTM generates a phoneme prediction
according to Equation 1 and the HMM observes both, xt and bt
using learned emission probabilities p(xt, bt|st).

Note that the usage of bidirectional context implies a short
look-ahead buffer, meaning that recognition cannot be per-
formed truly on-line. However, for many recognition tasks it
is sufficient to obtain an output e. g. at the end of an utterance,
so that both, forward and backward context can be used during
decoding.

5. Experiments and Results
All experiments are speaker-independent (meaning that training
and testing were performed on different speakers) and were car-
ried out using the COSINE corpus described in Section 2. As
features xt we used MFCC coefficients 1 to 12 including log.
energy together with first and second order regression coeffi-
cients. To compensate for stationary noise effects, we applied
cepstral mean normalization.
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Figure 3: Architecture of the Tandem BLSTM-HMM decoder:
st: HMM state, xt: acoustic feature vector, bt: BLSTM
phoneme prediction feature, it, ot, hf

t /hb
t : input, output, and

hidden nodes of the BLSTM network; squares correspond to ob-
served nodes, white circles correspond to hidden nodes, shaded
circles represent the BLSTM network.

5.1. Network Training and Evaluation

To train and evaluate the quality of phoneme prediction, we in-
vestigated various network architectures. Since the networks
were trained on framewise phoneme targets, we used an HMM
system (for details see Section 5.2) to obtain phoneme bor-
ders via forced alignment. We evaluated four different network
architectures: conventional recurrent neural networks, bidi-
rectional neural networks (BRNN), unidirectional LSTM net-
works, and bidirectional LSTM networks. Two different vari-
ants of the respective architectures were evaluated. The first
one used a single hidden layer (per input direction) composed
of 128 hidden cells and memory blocks, respectively. Thereby
each memory block consisted of one memory cell. The second
one used three hidden layers of size 78, 128, and 80, respec-
tively. The LSTM and BLSTM using three hidden layers per
input direction consisted of one backpropagation layer (size 78)
and two LSTM layers (size 128 and 80).

For training we used a learning rate of 10−5 and a momen-
tum of 0.9. As a common means to improve generalization for
RNNs, we added zero mean Gaussian noise with standard de-
viation 0.6 to the inputs during training. Prior to training, all
weights were randomly initialized in the range from -0.1 to 0.1.
Input and output gates used tanh activation functions, while
the forget gates had logistic activation functions. Thereby we
trained the networks on the standard (CMU) set of 41 differ-
ent English phonemes, including targets for silence and short
pause. We aborted training as soon as no improvement on the
validation set (sessions 1 and 8) could be observed for at least
50 epochs, and chose the network that achieved the best frame-
wise phoneme error rate on the validation set.

Table 1 shows the framewise error rates on the test, valida-
tion, and training set of the COSINE corpus obtained with the
different network architectures. Generally, bidirectional con-
text prevails over unidirectional context, LSTM context mod-
eling outperforms conventional RNN architectures, and using
three hidden layers leads to better performance than using only
one hidden layer. The best error rate can be achieved with a
BLSTM network consisting of three hidden layers (35.76 % on

network hidden frame error rates [%]
type layers train validation test

BLSTM 3 23.64 35.76 33.59
LSTM 3 30.28 42.89 41.09
BRNN 3 48.74 50.60 49.49
RNN 3 52.37 53.11 51.09

BLSTM 1 26.79 38.16 37.02
LSTM 1 37.69 44.46 42.21
BRNN 1 51.10 51.80 50.09
RNN 1 53.17 54.64 52.85

Table 1: Framewise phoneme error rate using the COSINE cor-
pus and different network architectures: BLSTM, LSTM, BRNN,
and RNN consisting of one and three hidden layers per input di-
rection.

the validation set and 33.59 % on the test set).

5.2. Baseline HMM System

As explained in Section 4, we incorporate the BLSTM phoneme
prediction feature into an HMM framework for LVCSR where
each phoneme is represented by three emitting states (left-to-
right HMMs) with 16 Gaussian mixtures. The initial mono-
phone models consisted of one Gaussian mixture per state. All
initial means and variances were set to the global means and
variances of all feature vector components (flat start initializa-
tion). The monophone models were then trained using four it-
erations of embedded Baum-Welch re-estimation. After that,
the monophones were mapped to tied-state cross-word triphone
models with shared state transition probabilities. Two Baum-
Welch iterations were performed for re-estimation of the tri-
phone models. Finally, the number of mixture components
of the triphone models was increased to 16 in four successive
rounds of mixture doubling and re-estimation (four iterations in
every round). In each round the newly created mixture com-
ponents are copied from the existing ones, mixture weights are
divided by two, and the means are shifted by plus and minus
0.2 times the standard deviation. Both, acoustic models and a
bigram language model were trained on the training set of the
COSINE corpus.

5.3. Tandem Speech Decoding

For the sake of simplicity, the BLSTM phoneme prediction fea-
ture was modeled using the same Gaussian mixture framework
as for the continuous MFCC features. Since the prediction fea-
ture can be interpreted as a discrete index whose absolute value
is not correlated to any intensity but rather encodes the most
likely phoneme at a given time step, the weights of the Gaus-
sians are used to represent the likelihood of a certain phoneme
prediction while being in a given HMM state. By training the
weights of the Gaussians, the HMM learns typical phoneme
confusions of the BLSTM network that are visible as (lower
weighted) Gaussian components in the respective distributions.
Generally, the trained Gaussian distributions tend to form sin-
gle Gaussians of low variance and high weight (‘spikes’) corre-
sponding to the correct phoneme prediction in a given state as
well as the most frequent confusions, and high variance Gaus-
sians of low weight that build a ‘floor value’ for the phoneme
predictions that are not modeled by sharp spikes in the distri-
bution. An alternative to Gaussian mixture modeling of the
phoneme predictions would be to use discrete HMMs or a mix-
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network type layers WA [%]
BLSTM 3 45.04
LSTM 3 44.46
BRNN 3 42.59
RNN 3 43.79

BLSTM 1 44.27
LSTM 1 43.82
BRNN 1 42.95
RNN 1 43.02

baseline - 43.36

Table 2: Word accuracies on the COSINE test set for different
Tandem models and the baseline HMM recognizer.

ture of continuous and discrete HMMs.
Table 2 shows the word accuracies on the COSINE test set

which we obtained for Tandem modeling using the different net-
work architectures explained in Section 5.1. We can observe a
similar trend as for framewise phoneme recognition (Table 1):
the best performance is achieved with a Tandem model using a
BLSTM network that consists of three hidden layers (word ac-
curacy 45.04 %), leading to a significant improvement over the
HMM baseline. By contrast, incorporating the phoneme predic-
tions of a conventional RNN leads to similar, or even slightly
lower word accuracies when compared to the baseline HMM.

6. Conclusion and Future Work
We proposed a system for continuous speech recognition, using
phoneme predictions generated by a bidirectional Long Short-
Term Memory recurrent neural network that are observed by
an HMM, in addition to conventional speech features. So far,
BLSTM speech modeling has only been applied for phoneme
recognition, keyword spotting, and emotion recognition. In
this work, we demonstrated how a combination of triphone
and LSTM context modeling can be applied for noisy LVCSR.
We showed that BLSTM networks can achieve a framewise
phoneme recognition accuracy that significantly outperforms
conventional (bidirectional) RNN architectures. When using
BLSTM phoneme prediction in a Tandem manner for continu-
ous speech recognition in a challenging spontaneous and noisy
speech scenario, our Tandem model prevails over a conventional
HMM system.

In the future, we will investigate discrete HMMs with re-
spect to their suitability for Tandem BLSTM-HMM speech
recognition. Furthermore we aim to combine the Tandem model
with state-of-the-art algorithms for improving noise robustness,
such as Unsupervised Spectral Subtraction, Wiener Filtering,
Switching Linear Dynamic Model based feature enhancement,
or Histogram Equalization.
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