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1. Introduction

Information on interest or disinterest of users possesses great
potential for general Human-Computer Interaction [1,2] and many
commercial applications, such as sales and advertisement systems
or virtual guides. Similar to the work introduced in [3], we are like-
wise interested in curiosity detection, e.g. for topic switching, in
infotainment systems, or in customer service systems. Apart from
that, also interest detection in meetings [4-6], or (children’s) tutor-
ing systems [7] has been addressed so far.

Numerous works exist on the recognition of affective or emo-
tional user-states, which are strongly related to interest. Many
use solely acoustic speech parameters [8-10], followed by fewer
works which use vision-based features (e.g. [11,12]) or linguistic
analysis [5,10]. Only a considerably lower number deals with
fusion of these input cues (e.g. [6,13]), even though processing of
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such complementary information is known to be generally advan-
tageous with respect to robustness and reliability [14-17]. So far,
this integration of streams has been fulfilled for acoustic and vision
cues, exclusively (e.g. [4,17,13]), without fully automatic integra-
tion of textual analysis of spoken content, i.e. by using an
Automatic Speech Recognition (ASR) system or considering non-
linguistic vocalisations. Linguistic analysis up to date has been
performed on ground truth data and not on actual transcripts from
an ASR engine, which naturally is much more challenging due to
inherent errors in the ASR stage. Further, current models for fusion
usually are rather simple, as majority voting or logical operations
on a late fusion level [11,18] are implemented.

As shown in many works (e.g. [14,15,11,17,16]), audiovisual
processing is known to be superior to each single modality. We
therefore propose an attempt to combine features from practically
all facial and spoken information available: facial expression anal-
ysis based on Active Appearance Models (AAM), eye activity mod-
elling, acoustic and comprehensive linguistic analysis including
non-linguistic vocalisations, and additional contextual history
information.

In this respect it is received wisdom that a fusion of all accessi-
ble information on an early feature level is highly beneficial, as it
preserves the largest possible information-basis for the final
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decision process [19]. The main problem thereby is the asynchro-
nity of the feature streams. Frame-by-frame image analysis
operates on 25 frames per second, for example, while speech anal-
ysis is term-based and linguistic analyses turn-based [20]. How-
ever, so far only fusion of acoustic and linguistic information
[21,10], and acoustic and vision-based information [16,17] have
each been realised on an early integration level.

Further, practically all results reported are based on databases
rather than experience within the use of a real-life demonstrator.
These data-sets usually employ a number of idealisations: a fixed
head position, no occlusions, constant lighting conditions, no back-
ground noises, given pre-segmentation, partly known subject-sam-
ples, all modalities showing one clearly assignable affective state at
a time, basic, mostly discrete emotions, that are deliberately dis-
played (as opposed to spontaneous) expressions [22]. If one aims
at an automatic system that is capable of fully automatically
responding to spontaneous interest, these simplifications clearly
need to be overcome and more realistic, large scale databases are
required. Moreover, recognition rates such as precision, recall, or
accuracy can only report the objective performance of affective
computing systems, but not how such a system would be accepted
by users and whether it will be useful in a real-world scenario. A
system with close to 100% accuracy under laboratory conditions
(e.g. by relying on prototypical emotions, as often carried out) will
still — in most cases — perform unsatisfactory in real-world scenar-
ios. Thus, actual use-case studies [13,23] must be performed to
evaluate the performance and the acceptance of such systems in
addition to the objective measures like accuracy.

In contrast to most works in the field of affective computing and
interest recognition, we therefore attempt fully automatic audiovi-
sual continuous interest recognition on spontaneous data recorded
in a real-world scenario by including information from extensive
audiovisual sources via early fusion. In an real-life user-study we
evaluate how and if the system provides users a benefit.

The article is structured as follows: in Section 2 the featured
approach to multimodal interest recognition is described and dis-
cussed in detail. Algorithms implemented for each modality are
explained individually and are followed by a description of the
multimodal fusion approach and an evaluation of recognition
performance using individual modalities as well as various combi-
nations of modalities. The setup and the survey results of the real-
life application scenario user-study are discussed in Section 3. The
article is concluded by a final discussion in Section 4.

2. Evaluating multimodal interest recognition

The details of the fully automatic approach to human interest
detection are presented in this section. After a short description
of the recording process and the final database of spontaneous
interest data in Section 2.1 we describe the features and algorithms
relevant for each modality in Section 2.2. The modalities we con-
sidered are as follows: facial expressions in Section 2.2.1, eye activ-
ity in Section 2.2.2, acoustics in Section 2.2.3, linguistics in Section
2.2.4, and contextual history integration in Section 2.2.6. The auto-
matic transcription of non-linguistic vocalisations and spoken con-
tent for linguistic analysis (Section 2.2.4) is outlined in Section
2.2.5. Multimodal information stream integration on an early fea-
ture level is described in Section 2.3, followed by detailed results
for various combinations of modalities and full multimodal inte-
gration in Section 2.4.

2.1. Spontaneous interest data

In order to overcome today’s mostly acted audiovisual databases
being only of limited help for real-life emotion recognition [22,24],
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Table 1

AVIC database recording parameters.

Image resolution 720 x 576

Frame rate 25 fps progressive
Colour resolution 24 Bit

Encoder DV

Audio sampling rate 44,100 Hz

Audio quantisation 16 Bit

Left audio channel
Right audio channel

Lapel microphone
Far-field microphone

and due to the lack of a large publicly available audiovisual set
dealing with interest, we decided to record a database named AVIC
(Audiovisual Interest Corpus) in the ongoing. It was firstly intro-
duced in [25]. In the scenario setup, an experimenter and a subject
are sitting on opposite sides of a desk. The experimenter plays the
role of a product presenter and leads the subject through a commer-
cial presentation. The subject’s role is to listen to explanations and
topic presentations of the experimenter, ask several questions of
her/his interest, and actively interact with the experimenter consid-
ering his/herinterest in the addressed topics. The subject was explic-
itly asked not to worry about being polite to the experimenter, e.g. by
always showing a certain level of “polite” attention. Visual and voice
datais recorded by a camera and two microphones, one headset and
one far-field microphone, in this situation. The final AVIC recordings
are stored with the parameters given by Table 1.

Twenty-one subjects participated in the recordings, three of
them Asian, the remaining European. The language throughout
experiments is English, and all subjects are very experienced Eng-
lish speakers. Three age categories (< 30 years, 30-40 years, > 40
years) were defined during specification phase for balancing. More
details on the subjects are summarised in Table 2.

Given by the setting of face-to-face communication, the head
poses in the database vary in the approximate ranges of +20° in
pitch, +30° in yaw, and £20° in roll rotations.

In the following exclusively the data of the subjects, respec-
tively speaker, is used for analysis. To acquire reliable labels of a
subject’s “Level of Interest” (LOI) as detailed in the ongoing, the
entire video material was segmented in speaker- and sub-speak-
er-turns and subsequently labelled by four male annotators, inde-
pendently. The annotators are undergraduate students of
psychology in the role of naive assessors: the intention was to
annotate observed interest in the common sense. A speaker-turn
is defined as continuous speech segment produced solely by one
speaker. Back channel interjections (mhm, etc.) are ignored hereby.
That is, every time there is a speaker change, a new speaker turn
begins. This is in accordance with the common understanding of
the term “turn-taking”. Speaker-turns thus can contain multiple
and especially long sentences. In order to provide Level of Interest
analysis on a finer time scale, the speaker turns were further seg-
mented at grammatical phrase boundaries: a turn lasting longer
than two seconds is split by punctuation and syntactical and gram-
matical rules, according to [10], until each segment is shorter than
two seconds. These resulting segments are the basis for the exper-
iments in the ongoing and are referred to as sub-speaker-turns.

Table 2

Details on subjects contained in the AVIC database. Further details in the text.
Group of subjects # Mean age (years) Rec. time (h)
All 21 29.9 10:22:30
Male 11 29.7 5:14:30
Female 10 30.1 5:08:00
Age <30 11 234 5:13:10
Age 30-40 7 32.0 3:37:50
Age >40 3 47.7 1:31:30
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Fig. 1. AVIC database annotation workflow.

Fig. 1 shows the corresponding annotation work flow. The Level
of Interest is annotated for every sub-speaker turn. In order to get
an impression of a subject’s character and behaviour prior to the
actual annotation, the annotators had to watch approximately five
minutes of a subject’s video. This helps to find the range of inten-
sity within which the subject expresses her/his curiosity. As the
focus of interest based annotation lies on the sub-speaker turn,
every such had to be viewed at least once to find out the Level of
Interest displayed by the subject.

Five Levels of Interest (LOI) were distinguished in the first place:

e LOI-2: Disinterest (subject is tired of listening and talking about
the topic, is totally passive, and does not follow the discourse).

e LOI-1: Indifference (subject is passive, does not give much feed-
back to the experimenter’s explanations, and asks unmotivated
questions, if any).

e LOIO: Neutrality (subject follows and participates in the
discourse; it can not be recognised, if she/he is interested or
indifferent in the topic).

e LOI1: Interest (subject wants to discuss the topic, closely follows
the explanations, and asks some questions).

e LOI2: Curiosity (strong wish of the subject to talk and learn more
about the topic).

For automatic processing, a fusion of these Levels of Interest to a
“master LOI” was automatically fulfilled. We introduced the fol-
lowing scheme of different cases of Inter Labeler Agreement (ILA)
and confidence bounds:

e Same rating by all annotators: ILA 100%;Master LOI :=LOI of
majority.

e Same rating by three of four annotators: ILA 75%;Master LOI
:=LOI of majority.

e Same rating by two annotators: ILA 50%> If other two annota-
tors agree:Master LOI :=“?" (undefined)> If other two annotators
disagree:Master LOI :=median LOLIn this case an additional con-
fidence measure C is derived from the standard deviation ¢ of
the LOI over all annotators: C=1-0.5-0.

Additionally, the spoken content and non-linguistic vocalisa-
tions have been labelled. These vocalisations are breathing, consent,
coughing, hesitation, laughter, long pause, short pause, and other
human noise (referred to as garbage in the ongoing). This additional
labelling effort shall demonstrate the potential of such events

Table 3
Distribution of non-linguistic vocalisation by type in the AVIC database across the five
frequently occurring types (only instances longer than 100 ms).

#Breathing #Consent #Garbage #Hesitation #Laughter #Sum
452 325 716 1147 261 2901
Table 4

Distribution of sub-speaker turns over LOI-2 through LOI2 and Inter Labeler
Agreement (I) with confidence (C). The last coloumn (“?”) shows the number of
instances that remain as non-assignable to an LOI at the respective C and I. Likewise,
the line total equals 12,839 sub-speaker turns throughout.

#Sub-Speaker Turns LOI-2 LOI-1 LOIO Lon LOI2 “r

1=50%,C>0 19 383 3602 5386 305 3144
1=50%, C > 0.5 19 362 3339 5316 305 3498
1=50%,C > 0.6 19 261 2832 4603 305 4819
1=75% 19 185 2226 3741 305 6363
I=100% 4 19 417 960 25 11,414

within higher semantic analysis. There is a total of 18,581 spoken
words, and 23,084 word-like units including non-linguistic vocali-
sations (19.5%). The latter are distributed as shown in Table 3. Note
that only non-linguistic vocalisations with a length greater than
100 ms are considered for automatic detection via our HMM
framework and thus only those non-linguistic vocalisations are
shown in Table 3. All instances of coughing are smaller than
100 ms and thus not considered for automatic recognition.

Summarised, overall annotation contains sub-speaker- and
speaker-turn segments in millisecond resolution, spoken content,
non-linguistic vocalisations, individual annotator tracks, and Mas-
ter LOI with confidence in XML-format created with ANVIL [26].
Table 4 shows the amount of sub-speaker turns per master LOI
depending on the chosen Inter Labeler Agreement and the bound
of confidence C. An LOI of “?” indicates the “undefined class”, i.e.
no LOI could be assigned to these samples with the desired confi-
dence. The database comprises 12,839 sub-speaker turns. Overall, a
very low kappa-value (k) of k¥ = 0.09 and standard deviation for
the Level of Interest of the labelers of ¢ = 0.54 is observed for
the database at this point.

The Inter Labeler Agreement is therefore pruned of undefined
sub-speaker turns (those labelled with “?”) and sub-speaker turns
of LOIO with a confidence C < 1.0. Through this reduction of sub-
speaker turns, the agreement of the four annotators increases to a
substantial kappa-value of k¥ = 0.62 with ¢ = 0.23. Moreover, the
distribution of the instances over the Levels of Interest is more bal-
anced. As too few items for LOI-2 and LOI-1 are present, these were
clustered together with LOIO, so that the Level of Interest scale
reaches from 0 to 2 in the ongoing for discrete classes?. Thereby final
values of k = 0.66 with ¢ = 0.20 are observed. Detailed inter-annota-
tor kappa-values were computed according to [27] and are given in
Table 5. The exact LOI-distribution of the single labelers and Inter
Labeler Agreement in this reduced set of sections is depicted in
Fig. 2. Example video frames for LOIO-LOI2 after clustering and Inter
Labeler Agreement based reduction are depicted in Fig. 4.

In order to increase the amount of these low occurrence Levels
of Interest (LOI1 and LOI2), further methods of master LOI deriva-
tion from the annotator specific LOI need to be investigated, if
promising for training and evaluation purposes.

2 Note that LOI2 has even fewer numbers than LOI-1 in Table 4, first line.
Alternatively one could consider clustering LOI2 to LOI1 instead. However, from an
application point of view we were rather interested in preserving high interest as
separate class. In manifold applications even a two-class decision may however be
sufficient while expectantly being more robust at the same time.



Table 5
Kappa-values for the Inter Labeler Agreement.
K Labeler 1 Labeler 2 Labeler 3 Labeler 4 ILA
Labeler 1 1.00 0.86 0.62 0.61 0.89
Labeler 2 0.86 1.00 0.72 0.71 0.97
Labeler 3 0.62 0.72 1.00 0.44 0.75
Labeler 4 0.61 0.71 0.44 1.00 0.74
ILA 0.89 0.97 0.75 0.74 1.00

£ 600

£ 400

Z 200

0 Labeller 1 Labeller 2 Labeller 3 Labeller 4 ILA
0.91 £0.65 0.85 £0.67 1.00 £0.60  0.72 £0.52  0.85 +0.68

Fig. 2. Distribution of the Level of Interest (LOI) over various labelers; LOI-
distribution Inter Labeler Agreement (ILA): 316 510 170, min/mean/max Inter
Labeler Agreement confidence: 0.75/0.89/1.0, k = 0.66.

Fig. 3. Mean Level of Interest (LOI) histogram for the full LOI scale [-2,2] as used for
regression experiments.

One generally alternative approach is a shift to a continuous
scale obtained by averaging the single annotator LOI. The histo-
gram for this mean LOI is depicted in Fig. 3. Note that here the ori-
ginal scale reaching from LOI-2 to LOI2 is naturally preserved.
Apart from higher precision, this representation form allows for
subtraction of a subject’s long-term interest profile [28]. Note that
the Level of Interest introduced herein is highly correlated to arou-
sal. However, at the same time there is an obvious strong correla-
tion to valence, e.g. boredom has a negative valence, while strong
interest is characterised by positive valence. The annotators how-
ever labelled interest in the common sense, thus comprising both
aspects.

Overall, the AVIC database is a multimodal data collection of
unseen size, quality, realness, and focus, providing non-acted
multimodal data for affective computing and especially curiosity
detection in human dialogues.

Fig. 4. Example video frames (for better illustration limited to the facial region
here) for Level of Interest 0-2 taken from the AVIC database. Two subjects in gender
balance were chosen from each of the three age groups.
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2.2. Modalities and algorithms

In the ongoing we will introduce the four information streams
considered for audiovisual fusion and - where appropriate - pres-
ent individual performance details. Apart from these streams -
namely acoustic and linguistic feature information stemming from
the audio channel and facial expression and eye movement activity
stemming from the video channel - contextual knowledge on the
interest level development will be introduced. Finally, we shortly
discuss fusion of these knowledge sources.

2.2.1. Facial expression

Apart from being a predominant means in human communica-
tion, the human face is also known to portray facial expression
related to affective user states [29,30]. There is a considerable
number of approaches towards recognition of such states [31],
reaching from computationally less demanding low-level features
such as global motions [32] over extraction of MPEG?7 facial feature
points [33] to high-level action units, including such in a 3D space
(cf. [34,35,31] for overviews). In particular related to our scenario
are works on interest recognition [36] and yawning [37,33]. Here-
in, we decided for Active Appearance Models (AAM), which are
known to be well suited for this task [12]. AAM can be understood
as a means of parametrising a face by its shape and texture with
respect to a statistical face model. The derived parameters explain,
among others, the facial expression of the monitored face.
However, AAM serve only for feature provision. The final expres-
sion-related analysis is fulfilled in the subsequent classification
step (cf. Section 2.4).

Active Appearance Models are statistical models derived from
example images of an object class [38], i.e. faces in our case. For
a detailed overview on application and variants the reader is
referred to [39,40]. In the ongoing we will only give a short intro-
duction: Active Appearance Models assume that the appearance of
a face can be described by its two-dimensional shape and its
texture within the hull of the shape. Thereby, the shape is defined
as the relative position of a set of landmarks, disregarding Euclid-
ean transformations and scaling on the entire shape. The statistical
analysis of the shape variations, texture variations and their com-
bination is usually performed by the Principal Component Analysis
(PCA). This allows for a compact representation of the obtained
variance by a very small set (« 100) of main components. Now,
the appearances of the training objects as well as a great variety
of unseen object instances can be synthesised by a linear combina-
tion of the main components.

In the application phase of an Active Appearance Model, the
coefficients of the linear combination have to be optimised with
respect to a maximal similarity between the original object and
the artificial object appearance, synthesised by the Active Appear-
ance Models. These optimised coefficients constitute a precise rep-
resentation of the analysed face and can therefore be considered as
features for a statistical classification in facial expressions, head
poses, gender, age, etc. Our face analysis system is capable of such
pattern recognition tasks due to multiple evaluations of the influ-
ence of algorithmic parameters and their optimisation. Exemplary,
with Support-Vector Machine based statistical classification, the
gender recognition problem is solved with 94.6%, four facial
expression classes can be distinguished with 91.8%, and five hori-
zontal head poses (+30°,+15°,0°) can be recognised at 89.8%. Each
of the tasks was evaluated on large and public standard databases,
namely AR Face Database®, FG-NET Aging Database®, and NIFace1®,
with disjunctive data-sets for training and evaluation. Thus, this face

3 http://cobweb.ecn.purdue.edu/aleix/aleix_face_DB.html
4 http://www-prima.inrialpes.fr/FGnet/
5 http://tu-ilmenau.de/fakia/NIFace1.5255.0.html


http://cobweb.ecn.purdue.edu/aleix/aleix_face_DB.html
http://www-prima.inrialpes.fr/FGnet/
http://tu-ilmenau.de/fakia/NIFace1.5255.0.html
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Fig. 5. 2D annotation of a face with 72 landmarks.

analysis system is applied to provide valuable information on a sub-
jects face for the recognition of the interest level.

The statistical analysis via Principal Component Analysis
requires a set of shapes and corresponding textures to build a shape
model, a texture model and finally a combined model. First, the train-
ing images p; € 2 with 0 <i < p have to be manually annotated,
producing a set of p corresponding landmark vectors s; €  with
s; being the ith landmark vector defined as the concatenation of
all landmark coordinates

T
S Xm/2)1,Ym/2)-1) - (1)

Fig. 5 shows an example annotation with n/2 = 72 landmarks. These
shape vectors are arranged column-wise in the shape matrix S.

Additionally, the mean shape s is defined as the mean of all
shape vectors in S.

The texture within the annotated shape of each training image
is warped to fit the mean shape s. For generation of the texture
model, we store the obtained set of textures t; € 7 as vectors col-
umn-wisely in the texture matrix T

Further let t be defined as the mean of all textures in T.

The first step of building an Active Appearance Model is the
independent application of a Principal Component Analysis to the
aligned and normalised shapes in S and the shape-free textures
in T, thus generating a shape and a texture model. Finally these
two models are combined to one Active Appearance Model which
comprehends the correlated shape and texture variations con-
tained in the training images [41].

The shape model is built by applying a Principal Component
Analysis to the shape matrix S, i.e. an Eigenvalue Decomposition
of the Covariance Matrix over all shapes s;. The obtained Eigenvec-
tors constitute the shape basis W, whereas basis vectors are sorted
in descending order of the corresponding Eigenvalue 4;. Informa-
tion reduction is achieved by only selecting the top s “most impor-
tant” basis vectors, discarding those which correspond to principal
axes bearing low variance of the data (cf. Fig. 6 for an illustration of
the effects of the first two shape model components in our case).
Evaluations showed throughout that the remaining basis vectors
should explain 98% of the total shape variance. Since the size of
the Eigenvalue As; indicates the variance explained by the ith
Eigenvector, r; can easily be determined by

Si = (X0,Y0,X1,¥1, - -

1,
=0 > 098, )
i=0 /i

The same method is applied for the texture and combined model. A
new shape s can be synthesised by the linear combination

Fig. 6. Effect of the first shape model components.

s =S + W;hg 3)

whereas hs contains the shape coefficients that control the deforma-
tion of the shape model. Note that a zero coefficient vector relates to
the mean shape s. As W; defines an orthonormal basis, the new rep-
resentation of the known shape s; in the new basis can be obtained

by
hy; ~ W(s; —§). (4)

The generation of the texture model follows exactly the principle of
the shape model generation.

To generate the combined Active Appearance Model, shape and
texture correlations are recovered from the so far independent
shape and texture models. Let ¢; be the ith vector which contains
the concatenated shape and texture coefficient vectors hg; and hy;
for each of the 0 < i < p training samples

o (2

E is a diagonal matrix of reasonable weights to equalise the differ-
ent co-domains of the variance in the shape and the texture model.
The vectors ¢; column-wise form the matrix C. Another Principal
Component Analysis is applied to the matrix C producing the com-
bined basis W, whereas basis vectors are sorted in descending order
of their corresponding Eigenvalue i;, again discarding the “least
important” basis vectors. A coefficient vector ¢ can be synthesised
by evaluating

¢ =Wch, (6)

where h, contains the AAM coefficients. As the matrix W, can be split
into the shape and texture relevant parts W¢s and Wy,

Wes }

W, = 7

¢ {wct )
it is possible to express a new shape s and texture t directly as func-
tion of he which finally leads to these synthesis rules for a shape and

a corresponding texture:

s=5+Qh;, Q;=WE W (8)
t=t+Qh, Q,=WWg )

The Active Appearance Model coefficient optimisation can roughly
be understood as a standard multi-variate optimisation problem
with the goal to minimise the energy of the difference image r(v)
between this synthesised face and the currently analysed face. This
constitutes the error measure with respect to the AAM coefficient
vector v comprising h. and the coefficients for translation, rotation,
and scale for the shape plus brightness and intensity for the texture.



Due to the high complexity of the face synthesis, a run-time opti-
mised Gauss—-Newton gradient descent method by an off-line gradi-
ent prediction is applied [38]. Therefore the following steps have to
be conducted: definition of an error energy function E(r(v)), estima-
tion of the Jacobian J = 2 of the difference function r(v), as well as
calculation of the predictor matrix R = (J7J)~'J" used during the
coefficient search. The update of the coefficient vector in iteration
i follows

v(i+1) = v — qRr(v?) (10)

using the step width o. The algorithm terminates when E(r(v)) does
not further decrease between iterations. The final value of the error
energy serves as confidence measure for the performed Active
Appearance Model analysis.

In order to map the Active Appearance Model results to the sub-
speaker-turn basis, only the coefficient vector of the video frame
with the lowest final E(r(v)) is added to the feature space of the
early fusion with the other modalities.

2.2.2. Eye activity

Apart from facial expressions, which are addressed in terms of
features by the Active Appearance Model analysis, the level of
eye activity is considered, herein, as a criterion for the description
of the mental state of a person. Eye activity is widely researched as
an important element in the human vision system, e.g. [42]. Psy-
chological studies confirm the existence of a correlation between
mental states, such as workload, and eye activity, e.g. in [43]. In
the scenario of the AVIC database the activity is estimated by a
compact description of the body-, and especially the head-move-
ments of the subject over a short video sequence. Note that like-
wise - in a strict sense - we measure the activity of the head
derived from eye position features. Since skin-colour or Viola-
Jones [44] based head localisation provides rather rough informa-
tion about the position and the size of a person’s head, we utilise
the optimised performance of our eye localisation algorithms from
[45]. The localisation of a face and its eyes serves as necessary ini-
tialisation of the analysis based on Active Appearance Models as
described in the previous section. Hence, we apply an algorithm
following the approach presented by Viola and Jones [44] for the
face localisation. This localisation algorithm is based on sampling
of an image with windows of variable size. From each sample win-
dow visual Haar-like wavelet features are extracted. Thereby a
Decision Stump as weak classifier operates on single features.
These weak classifiers are combined by a Gentle AdaBoost [46],
which tries to reject windows without a face at early stages of a
cascade. The localisation of the eyes runs on a narrowed area with-
in the face region provided by the face localisation.

We developed several improvements to the standard Viola-
Jones algorithm for a more accurate eye localisation. It turned
out that the addition of Gabor Wavelet features and the replace-
ment of the Decision Stump as weak classifier by an adaptive inter-
val classifier leads to a localisation at higher efficiency and smaller
spatial deviation. Finally, according to our evaluations on the FER-
ET database [47], 98.5% of the eyes in pictures with proximate fron-
tal human faces can be localised with less than five pixel euclidean
deviation from the actual eye centre when the face is scaled to a
size of 90 x 120 pixels based on the automatic face localisation.
The software implementation runs more than five times real-time
on images of double VGA resolution. Therefore, the developed
improvements provide a reliable basis for our Active Appearance
Model analysis as well as for the tracking of the eyes in order to
measure their activity.

The derivation of the eye positions, i.e. the speed and direction
of the movement of the eyes, and of the eye distance, i.e. change in
length and angle of the connecting line between the eyes, are our
basic features to describe the person’s motion activity. The first
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Table 6

Features for the estimation of eye activity.

Index Description

0-2 Eye position § (maximum, maximum X, maximum y)
4-6 Eye position § (mean, mean x, mean y)

8-10 Eye position ¢ (variance, variance x, variance y)
3,7,11 Eye distance 6 (maximum, mean, variance)

12 Eye position ¢ (relative #frames > threshold)

measure of the overall motion activity is the mean value. However,
homogeneous motion is perceived as less active than heteroge-
neous motion, although both could lead to the same average value
of the derivatives of eye positions and eye distance over a video
clip. Therefore, the variance of the motion values should carry
important information for activity estimation. On the same
account the maxima of each of the motion vector magnitudes are
also part of the activity vector. Table 6 lists all examined measures
of activity.

Since head and eye position data is derived from the preceding
automatic localisation tasks and is thus not always reliable, a set of
conditions must be met for the data to make it into the activity fea-
ture vector:

o If the confidence (contained in the AdaBoost meta-data for each
region of interest (ROI) type) is less or equal to zero for an eye
position, the respective eye data are marked as invalid. This
eliminates samples where the eye location could not be
determined.

e To avoid wrong tracking results, the change in eye position
between two successive frames may not exceed a certain
threshold. If the threshold is exceeded, the respective eye posi-
tion is marked as invalid.

The Head- and Eye-Localisation Module outputs have shown to be
noisy quite often. Thus, the eye positions are additionally smoothed
over the last three time steps. This of course requires the last three
coordinates for the respective eye to be valid. To finally receive a valid
derivative of the eye position, two successive smoothed positions of
an eye must exist. For the derivative of the eye distance, two succes-
sive smoothed values must exist for both eyes.

For the evaluation of the calculated measures of activity, it is
mandatory to compare the different image sequences with each
other. However, this may not be possible in all cases. For example,
different dimensions of the head in the image (originating from dif-
ferent video resolutions) should not influence the resulting mea-
sures of activity. Thus, all values are calculated in relation to the
dimensions of the head region of interest provided by the head
localiser.

The activity vector should give a quantitative statement for the
head-motion in closeup views. In the next step the activity vector
is used to recognise the Level of Interest (LOI) as it is supposed, that
a strong correlation between these two values exists.

2.2.3. Acoustics

There are rather sparse works on recognition of interest from
speech in particular. However, as with the vision processing, this
can be seen as highly related to the recognition of emotion or affec-
tive user states in general. The latter usually relies on prosodic [48],
voice quality, and articulatory feature information. Today’s sys-
tems almost exclusively derive one static feature vector per spoken
unit — mostly turns — by application of statistical functionals as lin-
ear moments, extremes, ranges, or percentiles to typical acoustic
Low-Level Descriptors (LLD) as pitch, energy, duration, or spectral
(partly with prior perceptive modelling [49,10]). We adopted these
methods for recognition of interest, as successfully shown in [50].
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Table 7
Low-Level Descriptors used throughout systematic construction of a 1.4k acoustic
feature space.

Table 8
Functionals applied to Low-Level Descriptor contours used for systematic construc-
tion of a 1406 dimensional acoustic feature space.

37 Low-Level Descriptors

Formant 1-5: Amplitude, Bandwidth and Position
Pitch (FO), Frame Energy, Envelope
Mel-Frequency Cepstral Coefficients (MFCC) 1-16
Harmonics-to-Noise Ratio (HNR)

Jitter, Shimmer

With respect to the quasi-stationary nature of a speech signal,
firstly a pre-processing by windowing the signal with a Ham-
ming-window function is performed. The signal of interest (the
audio signal from a complete sub-speaker turn) is split into over-
lapping frames having a length of 20 ms. The frames are sampled
successively at a hop size of 10 ms. Each frame is multiplied by
the Hamming-window function. In order to obtain a better repre-
sentation in view of Level of Interest content, low-level feature
contours containing information about intonation, intensity, har-
monic structure, formants, and spectral development and shape
are extracted. Secondly, delta and acceleration regression coeffi-
cients computed from these Low-Level Descriptor (LLD) contours
are included as further features.

Using only LLD as features, a classification by means of dynamic
modelling (e.g. Hidden Markov Models) is already feasible. Yet,
basing on our past experience [8] and in accordance with the com-
mon practice in the field [14,15], in a third stage, statistical func-
tionals f are applied to the Low-Level Descriptor contours in
order to project the multivariate time-series F on a static feature
vector R! and thereby become less dependent of the spoken pho-
netic content Eq. (11):

fF-R (11)

A systematic feature generation by calculation of moments,
extreme values, and further shape characteristics (see Table 8) of
the Low-Level Descriptor contours leads to > 1k features. The
length of the analysed time series thereby corresponds to the length
of a sub-speaker turn, i.e. Low-Level Descriptor contours are
extracted for a complete sub-speaker turn and functionals are
applied to these contours, resulting in one feature vector per sub-
speaker turn. The idea thereby is not to extract all these features
for the actual Level of Interest detection, but to form a broad basis
for self-learning feature-space optimisation.

The used basis of 37 typical acoustic Low-Level Descriptors well
known to carry information about paralinguistic effects is shown in
Table 7. Energy resembles simple log frame energy. Pitch (FO) and
Harmonics-to-Noise Ratio (HNR) calculation base on the time-signal
Autocorrelation Function (ACF) with window correction. Formants
base on 18-point Linear Predictive Coding (LPC) with root-solving
and a pre-emphasis factor o = 0.7. Mel-Frequency Cepstral Coeffi-
cient (MFCC) computation is based on a 26 channel Mel-Scale filter
bank. FO and formant trajectories are globally optimised with respect
to the whole sub-speaker turn by the use of Dynamic Programming.
The Low-Level Descriptors are smoothed by techniques such as semi-
tone-interval filtering or simple moving average low-pass-filtering
to overcome noise. Delta coefficients are appended to the 37 descrip-
tors resulting in 2 x 37 Low-Level Descriptor contours.

In Table 8, a total of 19 statistical functionals chosen is named.
The obtained multivariate time series of variable length is thereby
projected on a single 1406 dimensional feature vector as used in
[51,52]. Here again, we decided for a typical selection of common
functionals covering the first four statistical moments, quartiles,
extremes, ranges, positions, and zero-crossings. Finally, we use
speaker standardisation by mean and standard deviation by a
few turns to better cope with speaker independence.

19 Functionals

Mean, Centroid, Standard Deviance
Skewness, Kurtosis

Zero-Crossing-Rate

Maximum Value, Minimum Value, Range
Relative Maximum/Minimum Position
Position of 95% Roll-Off-Point

Quartiles 1,2,3

Quartile 1 - Minimum
Quartile 2 - Quartile 1
Quartile 3 - Quartile 2
Maximum - Quartile 3

2.2.4. Linguistics

As opposed to “how” something is said as introduced in the last
section, “what” was said - i.e. linguistic information - is rather
sparsely exploited in the search for affective cues, though it was
proved highly beneficial. Approaches to this task vary strongly,
reaching from rule-based key-word spotting [53] to more elabo-
rate statistical approaches as (class-based) N-Grams [54] and vec-
tor space modelling [50,10]. The spoken content may also in
particular carry cues with respect to a subject’s interest [50].

The precondition to linguistic analysis is to obtain the spoken
content out of an audio-file. Yet, almost all results for emotion or
interest recognition based on linguistic analysis reported rely on
manual transcription of spoken content rather than on incorpora-
tion of an Automatic Speech Recognition (ASR) unit [10]. This
comes, as ASR of emotional speech itself is a challenge. In this
work, next to linguistic analysis results obtained with ground-
truth annotations, we present first results of a fully automatic
linguistic analysis based on an ASR engine, which is capable of
transcribing non-linguistic vocalisations along with the recognised
word chain. This ASR engine is described briefly in Section 2.2.5.
The transcription of non-linguistic vocalisations is necessary
because they are important linguistic features for interest detec-
tion, e.g. sighs and yawns carry information on boredom [55]. This
importance is also confirmed by Table 9. Moreover, considering
non-linguistic vocalisations is important for correct recognition
of spontaneous speech since they are an essential part of natural
speech and also carry meaningful information [56-58].

For linguistic analysis a vector-space-representation popular in
the field of document retrieval and known as Bag-of-Words (BOW)
was chosen [59]. The motivation therefor is the effective fusibility
of obtained linguistic features within the combined audiovisual
and contextual feature space on an early level. A term w; within

Table 9
Top 18 lexemes by Information Gain Ratio (IGR) ranking after stemming (transcrip-
tion based). Stems are marked by .

Rank Stem IGR
1 coughing 0.2995
2 laughter 0.1942
3 yeah 0.0514
4 oh 0.0474
5 xver 0.0358
6 if 0.0358
7 «th 0.0337
8 consent 0.0325
9 hesitation 0.0323
10 a 0.0308
11 that 0.0305
12 car 0.0275
13 xhav 0.0263
14 is 0.0258
15 [ 0.0252
16 *S 0.0230
17 and 0.0219
18 it 0.0219




a sub-speaker turn X = {wy,---,w;,---,ws} with S = |X] is thereby
projected onto a numeric attribute x; : w; — R'. The precondition is
to establish a vocabulary @ = {wy,---,w;,---,wy}, with V = |©], of

terms of interest. In a first approach these are all different terms
contained in the annotation of the data-set of interest. Each word
in the vocabulary serves as a feature. Throughout feature extrac-
tion a value for each term in @ is calculated. This value reflects
the frequency of occurrence in the sub-speaker turn. Usual repre-
sentations for this value are binary and logarithmic frequency
measures.

There exist a number of further refinement approaches such as
normalisation to the sub-speaker-turn length, the inverse fre-
quency of occurrence in the data-set known as Inverse Document
Frequency (IDF), or logarithmic transform (log) to compensate
linearity. Thereby an offset-constant ¢ = 0.5 is chosen, as many
zero-occurrence cases will be observed. Our final per-term feature
is calculated as follows and proved superior throughout evaluation
(cf. [50]) to the named alternatives:

TF(w;, X)
1| >

A drawback of this modelling technique is the lack of word order
consideration. However, use of bags of Back-Off N-Grams by tokeni-
sation did not result in any further gain.

In general, vocabularies will show a too high dimensionality
(> 1k terms) and contain much redundancy in view of the sighted
LOI detection. Similar to acoustic feature reduction as described in
Section 2.3, two standard techniques in linguistic analysis are
therefore employed to reduce complexity: stopping and stemming.
The first method directly reduces the vocabulary by eliminating
terms of low relevance. This is realised based on Shannon’s infor-
mation as described in the ongoing. Stemming on the other hand
clusters morphological variants of terms belonging to the same
lexeme, i.e. having the same stem. Thereby the hit-rate of such
clusters is directly boosted while reducing complexity at the same
time. However, danger of over-stemming exists, i.e. clustering of
terms that possess different meanings in view of LOIL Therefore,
we decided for an Iterated Lovins Stemmer (ILS), which bases on
context-sensitive longest match stemming - a slight enhancement
of the very traditional approach to stemming.

Table 9 shows the 18 most relevant lexemes after ILS stemming
and ranking based on Information Gain Ratio (IGR) by Shannon
entropy ratio®. The final vocabulary size thereby is 639 lexemes
instead of 1485 terms by rejection of all zero Information Gain Ratio
terms. Note that the non-linguistic vocalisation coughing could not
be detected automatically (cf. Section 2.2.5) despite its high rele-
vance for twofold reasons: its occurrences are mostly shorter than
100 ms, which violates our HMM topology, and too few instances
are contained for reliable training — IGR does not take overall occur-
rence into account but measures predictive ability of e.g. coughing
when it appears. The table also shows the high ranking of four
non-linguistic vocalisations (in italics, as described in Section 2.1)
on the ranks 1, 2, 8, and 9. Within linguistic experiments test-runs
employing actual large vocabulary continuous speech recognition
(LVCSR) and annotation-based runs have been conducted. Firstly,
Table 10 provides minimum term frequencies within the set and
clearly speaks for problems arising when using a real LVCSR engine:
more terms of single occurrence are observed than actually con-
tained in the vocabulary when using real LVCSR. This comes, as

Xigrrs — log (c n (12)

6 This ranking was carried out on the transcriptions of the whole AVIC database to
take all data into account. Feature selections based on the whole corpus are
exclusively used in the running system for experiments with new subjects as in the
user study presented in Section 3. However, in subject independent performance
evaluations in Section 2.4, features have been selected independent of the subject,
each, thus resulting in 21 slightly different rankings.
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Table 10
Term numbers at diverse minimum term frequency levels, annotation-based (left)
and LVCSR-based (right).

Min. TF Annotation #Terms LVCSR #Terms
1 1485 1568
2 645 351
5 277 109

10 149 51

20 98 20

50 48 8

words are partly mis-recognised and matched on diverse other
terms in the engine vocabulary. Otherwise, this diffusion by word
errors also leads to fewer observations of the same terms: already
at a minimum term frequency of two within the database the anno-
tation based level overtakes. Yet, Bag-Of-Words relies on high term
frequency within a data-set. This can partly be repaired by stemming
(5.8% absolute gain in accuracy in the setting as shown in Table 12) -
assuming that phonetic mismatches lead to confusions within a lex-
eme. For more information on linguistic processing the reader is
referred to [25,50].

2.2.5. Non-linguistic vocalisations and speech

At this point we will briefly describe the Large Vocabulary Con-
tinuous Speech Recognition (LVCSR) framework used within this
work. The main focus will be on the detection of non-linguistic
vocalisations, which have been ranked as highly important linguis-
tic features (Section 2.2.4) for interest detection. The detection of
non-linguistic vocalisations discussed in [60] has now been inte-
grated into the speech recognition framework. Only the best per-
forming configurations are presented here, since an in depth
discussion of speech recognition is beyond the scope of this article.

The LVCSR framework is built using Hidden Markov Models
(HMM) [61]. The complete decoding process is organised in a
two-step process (Fig. 7): in the first step a discrimination between
linguistic and non-linguistic sounds is performed and the latter are
spotted and classified. In the second step, the speech in the seg-
ments detected as verbal sounds is transcribed.

For automatically dividing the input speech into linguistic and
non-linguistic segments in the first step, a modified word-based
speech recogniser using HMM is explored. Three word class

Pass 1:

Discrimination Speech <-> Non-Verbals
(modified speech decoder)

v v

Speech:
Phoneme-based recogniser

Non-Verbals:

Dynamic classification:
HMM, HCRF
Static classification:
SVM, etc.

Transcriptions including Non-Verbals

Fig. 7. Framework of proposed two-step method for Large Vocabulary Continuous
Speech Recognition and detection of non-linguistic vocalisations.
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models for speech and four models for the four most important
non-linguistic vocalisations plus two silence models are defined.
To effectively model words with different durations, the three
models have different complexity depending on the word length.
The number of letters in the word provides us a rough but suffi-
cient estimate for the acoustical length of the word. Respectively,
the three models have N =8 N =13 and N = 18 emitting states
for words with less than four, between four and seven and more
than seven letters. The model for longer pauses has N = 3 emitting
states, the model for short pauses has one state. The models for
non-linguistic vocalisations have N =9 emitting states with
M = 8 Gaussian mixture components per state. Al HMM have a
linear topology. In [60] this configuration among 120 configura-
tions in total has proven to give best results for classification of
non-linguistic vocalisations. As acoustic features 12 Perceptual Lin-
ear Predictive Cepstral Coefficients (PLPCC) [62] and logarithmic
energy extracted from frames of 25 ms length sampled at a rate
of 10 ms are used. First and second order regression (6 and 65) coef-
ficients are appended, resulting in a 39 dimensional feature vector.
Other approaches, such as those introduced in [63-65], deal only
with the detection of one type of non-verbal sound and are more
difficult to integrate into a state-of-the-art LVCSR system. Another
work by Schultz [66] also deals with non-linguistic vocalisations,
however, only to improve ASR performance and not to identify
the type. However, the latter was proven relevant for interest rec-
ognition based on linguistic features.

For automatic transcription of the segments classified as ver-
bal (speech) in the first step, tied-state decision-tree clustered
cross-word context dependent triphone HMM with three emit-
ting states and eight Gaussian mixture components per state
are used. The models are trained on the training set of the AVIC
corpus. As acoustic features, 13 Mel Frequency Cepstral Coeffi-
cients (MFCC) [67] are preferred over the PLPCC and log-energy
from step 1. The difference in feature sets used can be explained
by our findings in [60] where PLPCC slightly outperformed MFCC
for the specific task of spotting non-linguistic vocalisations. Fur-
ther experiments we conducted concerning automatic speech
recognition on the AVIC corpus have revealed the MFCC feature
set being superior to the PLPCC set for the ASR task. The details

Table 12

Table 11

Confusion matrix: Hidden-Markov-Model based discrimination between 4 classes of
non-linguistic vocalisations (hesitation, consent, laughter, and breathing). Speaker
independent cross-validation. Sum over all 3 folds. N=9,M = 8, linear topology
Hidden-Markov-Models.

# Classif. as — Hesitation Consent Laughter Breathing
Hesitation 929 14 13 1
Consent 37 255 3 3
Laughter 1 2 229 12
Breathing 2 1 19 412

of these experiments are beyond the scope of the article. The
reader shall only be aware of the fact that different feature sets
are optimal for spotting and classifying non-linguistic vocalisa-
tions on the one hand and for full automatic spoken content
transcription on the other hand.

For spotting of non-linguistic vocalisations in the first decoding
pass as described in the previous section with best parameters a
recall rate of 55% and a precision rate of 46% is achieved. It is to
note that for this result only non-linguistic vocalisations that are
spotted at the correct location within the utterance are scored as
correct. If more relaxed method, e.g. a string matching is used
the rates are higher, however also of less practical significance if
the segmentation is to be used as a basis for further processing.

In order to evaluate which non-linguistic vocalisations are con-
fused most often, the classification of non-linguistic vocalisations
is considered as a separate problem. Using the AVIC ground-truth
transcriptions the non-linguistic segments were isolated. Using
the same HMM as in the first step of the decoder, however, now
trained on a part of the isolated non-linguistic vocalisation seg-
ments, the confusion matrix in Table 11 is obtained.

Many different configurations for speech recognition in the sec-
ond pass were investigated. For this article only the best configura-
tion was selected, which yields a Word-Error-Rate (WER) of 67.6%
on the AVIC data. Hereby data from 17 of the 21 speakers was used
for training and the data from the remaining four speakers was
used for evaluation. Compared to other speech recognition exper-
iments on read data [68] this Word-Error-Rate is high. However,
we must consider, that recognising affective, spontaneous speech

Subject independent recalls (rec) and precisions (pre) per Level of Interest (LOI), accuracy (acc), mean recall, mean precision, and F;-measure for Support-Vector Machine (SVM)
classification using selected modality combinations with early fusion and late fusion of features from acoustics (A), facial expression (F), eye activity (E), linguistics including non-
linguistic vocalisations (L), context (C), and their according combinations; subject-independent Leave-one-Speaker-out (LOSO) evaluation (21-fold); “dummy”: a single constant
dummy feature for chance reference resulting in picking the majority class (LOI1) at any time.

[%] LOI0 LoI1 LOI2 MEAN

rec pre rec pre rec pre acc rec pre F1
Balanced training and early fusion
Dummy 0.0 0.0 100 51.2 0.0 0.0 51.2 333 17.1 22.6
F 64.2 43.0 38.8 63.5 37.6 29.9 46.6 46.9 45.5 46.2
B 75.7 53.7 31.8 60.2 31.8 19.1 45.6 46.4 443 454
L 80.7 51.7 50.2 74.0 47.6 51.6 59.4 59.5 59.1 59.3
A 74.1 71.1 66.1 76.1 70.0 53.1 69.2 70.0 66.8 68.4
FE 75.1 53.4 48.8 72.2 441 36.1 56.3 56.0 53.9 54.9
LA 79.1 74.0 69.8 79.6 729 58.8 73.3 73.9 70.8 72.3
FEL 78.0 57.0 62.2 71.6 46.5 64.8 64.5 62.2 64.4 63.3
FEA 82.7 72.1 68.6 79.5 64.7 56.7 724 72.0 69.5 70.7
FELA 81.2 724 70.8 79.9 71.8 64.2 74.2 74.6 72.1 73.3
FELAC 81.8 79.5 74.7 82.5 75.9 61.7 771 77.5 74.6 76.0
Balanced training and late fusion
FELAC 79.2 734 67.7 80.2 73.5 55.3 723 73.5 69.6 71.5
Unbalanced training and early fusion
FELAC 73.5 76.9 82.5 73.7 54.7 75.6 74.9 70.2 75.4 722
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Statistical significance of the accuracy improvement for the different modality combinations (rows) when compared to the accuracy of other modality combinations (columns) at
a significance level o of 0.05 (SVM classification, balanced training). “+”: accuracy of the modality combination (row) significantly better than performance of the modality
combination in the corresponding column; “0”: no statistical significant difference in performance; “—": accuracy of the modality combination (row) worse than accuracy of the
modality combination in the corresponding column; “x”: late fusion; “dummy”: a single dummy feature for chance reference resulting in picking the majority class (LOI1) at any
time; “F": facial expression; “E": eye activity; “L": linguistic information; “A”: acoustics; “C”": contextual information.

Dummy F E] L A FE LA FEL FEA FELA FELAC FELAC*

F (o] o = = = = = = =
E — — o — - - — — - -
L + + + o - o - - - - = =
A + + + + 0 + = + — - — —
FE + + - - - - - -

LA + + + + [0} + 0 = = o
FEL + + + + = + o — — —_ _
FEA + + + + 0 + = + 0 = [
FELA + + + + + + o + ¢} o} - o
FELAC + + + + + + + + + o} o) +
FELAC® + + + + o + - + - - = )

is a great challenge due to its high irregularities [69]. For lower
Word-Error-Rates, very large databases are required to model the
large variance among all data. AVIC originally was not intended
as a database for training a speech recogniser for spontaneous
speech, and thus is fairly small for a speech database. However,
for interest recognition it is not necessary to recognise complete
sentences correctly, as long as important keywords and lexemes
(such as the ones in Table 9, Section 2.2.4) are correctly recognised.

2.2.6. Context

The AVIC database, as the usual application scenario, allows for
integration of Level of Interest history, as consecutive sub-speaker
turns are observed. Such contextual information has already been
proven beneficial in emotion recognition [70]; however, it has
not yet been used in a multimodal framework, as few data sets
exist that provide sequential turns. Level of Interest context inte-
gration can be easily realised in two ways: past feature vectors
can be included in the actual feature vector, or simply the last esti-
mates for each Level of Interest or the assumed last Level of Inter-
est can be chosen for feature-vector integration. An alternative
could e.g. be a “language model” as used in typical Automatic
Speech Recognition (ASR) engines for e.g. Level of Interest bigrams
or trigrams. Clearly, there is some danger in context integration, as
e.g. by over-modelling sudden changes in Level of Interest may be
missed.

To stick with an early integration paradigm and not lay too
much feature weight on context integration, we decided - in accor-
dance with preliminary tests - to integrate context in the feature
space only by the last estimate. This inherits another danger: the
last estimate will regularly be erroneous. However, results indicate
that there nonetheless seems to be a benefit in this method on
average (cf. Table 12), though not being significant (cf. Table 13).

2.3. Multimodal integration

As motivated in Section 1, we choose an early fusion, whereby
feature spaces of all modalities are merged into one space. This
space is classified within a single classification process saving all
available information for the final decision process. Early fusion
further allows for combined feature space optimisation: in order
to save extraction effort and reduce high complexity throughout
classification, features of high individual relevance are selected
and de-correlated for space compression by application of Sequen-
tial Forward Floating Search (SFFS) [71]. This leads to an optimal
set as a whole and the overall minimum number of features. SFFS
employs a classifier's accuracy, ideally the target one, as

optimisation criterion. Herein, powerful Support-Vector-Machines
(SVM) are used to ensure high quality throughout selection (SVM-
SFFS) and ensure no bias with the latter target classifier SVM. SFFS
is a Hill-Climbing search, and allows for forward and backward
search steps in order to cope with nesting effects. A search function
is needed, as exhaustive search becomes NP-hard having such high
dimensionality as the extensive audiovisual feature space.

All five feature groups introduced in Sections 2.2.1 (facial
expression), 2.2.2 (eye activity), 2.2.3 (acoustic), 2.2.4 (linguistics
including non-linguistic vocalisations), and 2.2.6 (context), were
intentionally projected onto the sub-speaker turn level. This was
realised by multivariate time-series analysis for eye activity and
acoustic features, while linguistic features reasonably have to
operate on this level at minimum, and AAM features were selected
from one best frame match, as described. Likewise, no further syn-
chronisation effort is needed at this point, and fusion is realised by
a simple super-vector construction including the context of the last
Level of Interest estimate.

As a reference, we also include results of a late fusion though it
is well known that highly correlated stream information benefits
from early fusion [72,73]. However, to best benefit from correlation
and thus exploit synergistic information, we decided for a soft
decision fusion: each stream is classified individually with provi-
sion of a pseudo class-probability obtained by soft-max normalisa-
tion. By this, utmost information is preserved for the final decision
process. Instead of simple logic operations or voting, a classifier
should learn “which modality to trust when by what weight”. Like-
wise an additional Support-Vector Machine “on top” of the ones
serving as uni-modal classifiers sees only the pseudo-class proba-
bilities as meta-features.

2.4. Results and discussion

Now, we present a number of experimental results for diverse
multimodal setups. For subject independent testing we use
Leave-One-Subject-Out (LOSO) evaluation, and provide mean
results over the 21 subjects. All classification and regression results
base on the sub-speaker turn level. Note, that in this section all fea-
ture selections are carried out in each cycle, to ensure full subject
independence at any time. However, for the running system used
in the user study in Section 3, the system is trained on the whole
corpus in order to exploit the maximum amount of available train-
ing material.

We first consider Support-Vector Machines (SVM) to cover the
traditional approach to affect and emotion recognition, where
discrete classes (here: {LOIO, LOI1, LOI2}) are used [15,10]. As
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Fig. 8. 3D visualisation of polynomial Support-Vector Machine parametrisation
effect on the F;-value. Integration of the full audio-visual feature space in balanced
training, subject-independent Leave-one-Subject-out evaluation.

performance measure we use accuracy’ (acc), recall® (rec), preci-
sion® (pre), and F; measure!?, as introduced in [10].

In Fig. 8 the influence of the SVM parameters complexity (C)
and the polynomial exponent (E) on the F;-measure can be seen.
SVM are thereby trained by Sequential Minimal Optimisation
(SMO) and a pairwise discrimination for multi-class problems is
employed [71]. The optimal parameter-set is chosen for each indi-
vidual modality combination in the final comparison.

Secondly, we consider a continuum instead of discrete classes,
as often proposed but seldom used in related emotion recognition
(e.g. valence and arousal, [14], or dominance [28]): the Level of
Interest (LOI) is within the interval LOI € [-2;2], and the master
LOI is obtained by mean over the four labelers as described in Sec-
tion 2.1. This demands for a regression approach for detection of
the current LOI, as by the chosen Support-Vector Regression
(SVR). Still, parametrisation is accordingly. The evaluation is car-
ried out by cross-correlation (CC) of the estimated LOI and the
mean ground truth master LOI, whereby CC € [-1;1], and a high
CC value of CC =1 is optimal. As further performance measure
we calculated the Mean Linear Error (MLE) as used in [74] which
is the mean deviation of the estimated LOI with respect to the
ground truth in the interval [-2;2].

As not all modalities are present at any time (often no speech,
especially in the case of boredom, i.e. LOIO), only a considerably
lower number of instances as depicted in Fig. 2 can be used for
multimodal evaluation. However, note that a real-life system prof-
its from multi-modality in spite of the partial lack of modalities.
Also note, that the number of instances among classes for training
are highly unbalanced. Therefore, we also consider uniformly dis-
tributed training sets obtained by deterministic up-sampling. This
is, however, only possible in a straight-forward manner in the case
of classification (by SVM): instead of discrete classes only a mean
Level of Interest is available in the case of regression (SVR). Balanc-
ing is therefore not carried out for SVR.

As can be seen in the summarised result Table 12, the usage of
balanced training sets leads to a significantly more satisfying result
with respect to balance among recall rates. Stemming could

7 number of correctly classified cases divided by total number of cases or weighted

average
8 recall is the “class-wise” computed accuracy (note, that the mean recall rate
differs from the accuracy as it is not weighted by total instance numbers; thus, it
provides a better performance measure in the case of unbalanced class distributions)
9 shows in how many cases the classifier is right when claiming a certain class
10 trade-off between rec and pre by harmonic mean of these two:
F1 =2 -rec- pre/(rec + pre)

Table 14

Subject independent cross-correlation for Support-Vector Regression (SVR) of
selected modality combinations in early fusion out of facial expression (F), eye
activity (E), acoustics (A), linguistics including non-linguistic vocalisations (L), context
(C), and their according combinations; Mean Linear Error (MLE) and Correlation
Coefficient (CC); subject-independent Leave-one-Speaker-out (LOSO) evaluation (21-
fold); performance of a classifier using a single constant “dummy” feature for chance
reference: MLE = 0.77;CC = 0.16.

F E IL, A FE LA FEL FEA  FELA FELAC

MLE 069 072 048 040 069 031 064 055 054 055
CcC 029 036 051 071 044 072 056 068 070 0.69

improve the accuracy by 4.4% when using linguistic information
only. The combination of all groups of features prevails. However,
the combination of facial expression, eye activity and acoustics
alone does not fall far behind. Yet, all possible combinations do
not satisfyingly solve the problem of LOIO and LOI2 being discrim-
inated more easily than each one from LOI1. However, in many
applications a discrimination of boredom vs. interest may be
sufficient.

Table 13 indicates the statistical significance of the performance
improvements obtained through multimodal classification.
Statistical significance of the performance gain of every modality
combination (row) is evaluated with respect to every other modal-
ity, modality combination, as well as with respect to chance (col-
umn), according to [75]. As significance level we chose the
common value of 0.05. Note that the significance test is based on
the assumption that the error rates of the compared classifiers
are independent, which can only be fulfilled if the classifiers are
evaluated on different data-sets. Since we used the same data-set
for all test runs, the premise to reject the null hypothesis [75]
was comparably strict.

In Table 14 the results for Support-Vector Regression are given.
For the regression experiments, the full Level of Interest spectrum
(-2 to 2) was used. The higher resolution of the regression
approach (providing “inbetween” LOI values such as 1.5) has the
downside of yielding a slightly lower accuracy: if we discretise
the regression output into the discrete classes {LOIO, LOI1, LOI2}
and compare it with the discrete master LOI, an F; measure of
69.1% is obtained for the optimal case of fusion of all information
instead of 76.0% for the directly discrete classification. Note that
a single dummy feature for the regression approach leads to a cor-
relation coefficient of 0.16. Interestingly, the combination of acous-
tic and linguistic processing could not be improved by the
additional visual and contextual knowledge provision in this mod-
elling approach. However, their consideration is still justified
(only) by the cases of speech absence for the regression analysis.

3. Evaluating real-life usage

Apart from figures “in the lab” as provided in typical works on
interest and human affect recognition, it seems to be important for
real-life usage to test systems with the user in the loop. We there-
fore present results of a study in which the system described so far
(Section 2) is tested in a real usage study.

The primary aim of this survey is to measure whether a recog-
nition system can indeed already improve a virtual agent-based
presentation according to a person’s level of interest in a topic.
For comparison, the presentation is carried out without any adap-
tation as lower benchmark. The upper benchmark is obtained by a
human conductor - the “Wizard-of-0z” (Wo0) [76,77] - that esti-
mates a subject’s interest.

An agent-based system thereby inherits a shift of paradigm: so
far we had investigated the performance of interest detection
based on natural human-to-human conversation. In the ongoing
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Fig. 9. Schematic view of survey setup.

the trained system will be used in Human-Computer Interaction to
reveal benefits in this area.

3.1. Experimental setup

Nine topics are used in a virtual product and company tour
(Toyota Museum, Safety, Intelligent Transport System, Toyota Pro-
duction System, Environment, Motor sports, Toyota History, Toyota
Partner Robot, and Toyota Prius). The user is thereby guided by a
male animated embodied conversational agent (ECA) [78] that is
visualised by a photo-realistic face with lip movements synchron-
ised and speech is synthesised by concatenative synthesis.

User feedback is requested in average 8.7 times per topic
(maximum 14 times, minimum 5 times) including yes/no and
knowledge-based questions. The system reacted depending on a
“true” or “false” type of answer with two different dialogue alterna-
tives, accordingly. In the case of knowledge-based questions it
reacted with a predefined standard phrase independent of the actual
answer.

The experimental setup (as depicted in Fig. 9) consists of two
standard office PCs. One for the Wizard-of-Oz and the other for
the subject. The vision, speech and integration software were run-
ning together with the dialogue-display on the subject PC. The dia-
logue has been presented to the user on a wide-screen (16:10)
display, showing an animated male character (30 year old looking)
on the left and a still image or video on the left adequate to the cur-
rent topic in 50:50 split. The Wizard-of-Oz PC was hosting the
communication server and a semi-automatic test-environment
software (cf. [79]), which was used to control the dialogue for
the user, based on his answers and current Level of Interest. It
was also used for audio and video recording of the subject. Two
pairs of microphone and web-cam were used. One pair was needed
for audio and video based Level of Interest and speech recognition
and the other one to record videos of the subject. The web-cams
have a resolution of 320 x 200 and the videos were encoded as
Windows Media Video (WMV).

The interest recognition system, as described so far, consists of
four modules, namely AAM-based facial expression analysis, eye
activity, acoustic analysis, and speech recognition with integrated
non-linguistic vocalisations and subsequent linguistic analysis.

The four modules run in real-time on one desktop PC by making
additional use of the graphics co-processor (GPU) for calculations.
For the study we train on the full AVIC database. This is in no con-
tradiction to subject independence as the test subjects are fully
disjunctive. Further, the system is used in its optimal configuration,
that is early integration with balanced training. Note that it per-
forms fully automatic interest recognition without any manual
help. Each module forwards its features by TCP/IP socket commu-
nication to an integration server. The stream segmentation is
achieved by audio as first priority followed by video segmentation
if no audio is available. Audio segmentation is realised by two-fold
dynamic energy thresholding with subsequent speech/non-speech
verification by the acoustic feature module using the described
1.4k feature space. Video segmentation is obtained by Bayesian
Information Criterion (BIC) as described in more detail in [32].

3.2. Subjects and experiments

The survey was conducted in two experiments. For every exper-
iment 20 persons with a desired gender and age balance had to lis-
ten to the dialogue and afterwards fill out a questionnaire and a
multiple choice test.

From these 40 participants in total, 29 were < 30 years, six were
between 30 and 40 years and the remaining five were > 40 years.
The gender was nearly equally balanced with 18 females and 22
males. Two subjects were Asian, the rest were European. Their pro-
fession ranged from students, secretary, dress designers to people
with graduate profession. Again, all subjects were very experienced
English speakers, and all dialogue was carried out in English. See
Table 15 for more details.

Table 15
Statistics of the 40 subjects that participated in the user-study.

Group of subjects # Subjects Mean age (years)
All 40 30.6
Male 22 31.0
Female 18 30.1
Group1 12m/8f 33.7
Group2 10m/10f 27.5
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The first dialogue was presented to the subject without any
adaptation. All nine prepared dialogue topics were presented to
the subject. Besides the first topic (Toyota Museum), all were pre-
sented in random order. The first 20 participants (Group1) had a
mean age of 33.7. The subjects were picked in according age-class
balance per group as mentioned in Section 2.1.

In the second experiment the topic “Toyota Museum” was pre-
sented in full length as introduction to the second group of subjects
(Group2) that had a mean age of 27.5 years. The next four topics
were changed automatically by the system (as described in Section
3.3). In the second half, the remaining four topics have been chan-
ged manually by the wizard, based on the camera image of the
subject and the answers of the subject. Furthermore, all topics
had a minimum presentation length of two minutes.

3.3. Automatic topic change

The automatic change of the randomly chosen four topics is
based on the computed Level of Interest from the integration mod-
ule, which combines the visually and acoustically computed Level
of Interest. The topics have been presented for a minimum time
span of two minutes. This fixed period provides time for the sub-
ject to settle down in a new Level of Interest according to the cur-
rently presented topic. After this time span the current Level of
Interest was compared to an empirically determined threshold to
decide whether the topic should be changed or not. This current
Level of Interest (LOI(t)) was calculated over the last i sub-speaker
turns since the end of the last system uttered dialogue event by

fj length(i) - LOI(i)

LOI(t) = =0 (13)

N

>~ length(i)

i=0
where LOI(i) is the Level of Interest computed by the integration
module and length(i) its corresponding segment length. Thus, a
mean Level of Interest is considered having a typical speaker-turn
as unit of analysis. This leads to more stable estimates functioning
as filtering. Finally the topic was changed either when this mean
Level of Interest dropped under the threshold or when all available
material for the current topic has been presented to the subject.

3.4. Results and discussion

Table 16 shows selected results from the evaluation of this
survey.

As can be seen from the results, the wizard-based detection of
interest clearly improved the dialogue quality with respect to
how much information was subjectively understood. It may there-
by be speculated that more is understood if one is interested in a

Table 16

Selected significant results of a questionnaire in a real-life study on interest
recognition. Virtual tour through a museum. Forced choice reaching from 1 (best)
to 5 (worst) and percentage of users, depending on the question type. The tour was
carried out with topic switching after a fixed number of 29 dialogue elements (each
element consisting of one or two sentences) per topic (FND) whereby the average
topic length resembles 3:57 min, if the user was bored by subject-independent fully
automatic interest recognition (AIR), and by a human test-conductor, the “Wizard of
0z” (Wo0). 40 subjects are contained in gender and age-class-balance. Note that one
person occasionally abstained from judging the system concerning some of the
questions.

Questions FT AIR  Wo0

Did you think the system was taking into account your 35% 63% 84%
interest?

How much of the info the system gave you did you 190 153 1.74
understand?

topic. More users further felt that the system was taking their
interest into account in the wizard-based experiment, though they
were never told whether it actually does, and that they could pro-
vide sufficient feedback which was used in the way expected. For
questions like “How interesting was the information that the sys-
tem gave you” or “Did you get enough possibility to give feedback
to the system” the answers did not differ significantly among the
three variants of topic switching.

However, as far as taking into account the users’ interest is con-
cerned, the fully automatic system, lying in between no topic
switching and wizard-based topic switching, falls only slightly
behind the wizard. Likewise, real practicability seems to be proven.

It remains to be stated that by this experiment a further audio-
visual data-set of 20:58:03 h of user-interaction of 40 subjects
(mean time per subject: 0:34:00 h, minimum time 00:12:41 h,
maximum time 00:58:59 h) was recorded which can be used in
future studies after it was transcribed and annotated.

4. Concluding remarks

In this work a fully automatic system for extensive audiovisual
stream integration based recognition of human interest, which is
able to operate in real-time, was presented. The approach pro-
posed, integrates numerous streams to enable most reliable auto-
matic determination of interest-related user states, such as being
bored or being curious. For training and testing the AVIC database
was recorded. The database contains data of a real-world scenario
where an experimenter leads a subject through a commercial pre-
sentation. The subject interacts with the experimenter and thereby
naturally and spontaneously expresses different levels of interest.

Two different visual feature streams are used: facial expression
is covered through Active Appearance Models and application of
Principal Component Analysis for statistical analysis of shape and
texture variations. Furthermore, eye activity is determined consid-
ering various characteristics of eye movement.

From the audio signal acoustic features are extracted by sys-
tematically applying statistical functionals to acoustic Low-Level
Descriptors in combination with a self-learning feature-space opti-
misation. Further, linguistic features are included in the multi-
modal recognition framework. Thereby Bag-of-Words are used as
efficient vector space representation while the strategy of stopping
and stemming reduces the complexity of linguistic analysis. As
extra-linguistic information, such as non-linguistic vocalisations
can also reveal a subject’s Level of Interest, a two-step Hidden Mar-
kov Model for the detection and discrimination of non-linguistic
vocalisations in combination with speech recognition is included
in fully automatic processing.

Additionally, contextual interest information is integrated in
the feature space by using the last estimate of the Level of Interest
as feature. This slightly improved recognition performance on
average, but was not observed as significant.

An early fusion strategy is used before the multimodal feature
space is optimised in a combined manner. Support-Vector
Machines discriminate three discrete levels of interest in fully sub-
ject-independent experiments. The results presented, show that by
early fusion of all information sources the maximum accuracy is
obtained: a remarkable subject-independent F;-measure of 72.2%
is achieved for unbalanced training. Performance could be further
boosted through balanced training resulting in an F;-measure of
76.0%. In comparison a late semantic fusion based on meta-classi-
fication led to only 71.1% F; measure. As alternative modelling
approach a continuous Level of Interest scale was used for Sup-
port-Vector Regression. Here, the best cross-correlation value
reached 0.72. In a significance analysis, the integration of addi-
tional streams was shown to be significant for the classification



task. However, more experience will be needed in the case of
regression where no gain could be reached yet.

To determine whether such a recognition system can already
improve a virtual agent-based presentation [80] according to the
Level of Interest the user shows, the system was additionally tested
in a real-life use-case study. There, the automatic recogniser per-
formed significantly better than a system simply ignoring the
users’ interest. However, there is still a small gap between the per-
formance of the automatic interest recogniser and a human opera-
tor acting as a “wizard” that decides upon the interest of users.

Overall, spontaneous interest could be automatically detected,
independent of the subject, in human conversation by the pro-
posed extensive audiovisual and contextual information carried
out for the first time on such broad basis and in fully automatic,
yet real-time-capable processing. While there is clearly room left
for further improvement, it seems that present technology has ma-
tured to a degree that allows us to take affective computing tech-
nology into real-life Human-Computer Interaction systems.

Future works will have to deal with improved discrimination of
the subtle difference of the border class between strong interest
and boredom. Also, in this respect more instances of strongly
expressed boredom should be recorded in future efforts to broaden
the scope of use-cases: in the face-to-face communication cap-
tured herein, these did not occur sufficiently often - potentially
due to subject’'s minimum politeness. Also the detection of a
group’s interest seems important in many application scenarios.

For many applications detection of boredom or high interest
moments may be sufficient. As these were observed to lie in-
between comparably long sequences of normal interest, a detec-
tion approach may be an interesting alternative to the classifica-
tion shown. However, the further introduced continuous
modelling by regression allows for a threshold definition, already.

Moreover, in this work no heavy noise, occlusions or failure of
whole components have been investigated. In case of noted heavy
disturbance of single modalities, however, a shift to others can be
performed - being one additional strength of a multimodal
approach. Automatically noticing such events and performance
with automatic modality selection will be one future research
issue.

Furthermore, it would be interesting to examine the benefits of
integrating knowledge about the context not only as a feature, but
in the architecture of the recogniser. Thereby classifiers which
model long-range dependencies such as Conditional Random
Fields for discrete classification or Long-Short Term Memory
Recurrent Neural Networks for continuous prediction could be
used [81].

A refinement of the presented system will also have to allow for
stronger pitch, yaw and roll rotations of the head pose, as the cur-
rent system is trained and focused on face-to-face conversation.
Thus, in present status it is in particular useful in similar settings
such as a user at a traditional computer or e.g. in an automotive
setting.

Finally, the measures of interest herein were observational: an
automated system was trained with observations. As interest in a
broader sense refers to a cognitive-motivational state, additional
focus may be laid on subjective interest rather than its appearance.
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