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Many machine learning algorithms, like supervised Deep Learning, 
assume that Training Data are available in a single database. 

Federated Learning[2] trains a model at each institution locally,
aggregates and share only the model, not the patient data.

Privacy Risks
e.g., data from different institutions in a central database.[1]

Federated Benefit
The iterative process allows each model to benefit from knowl-

edge learned in other institutions, without sharing the data.

Using the TensorFlow Federated[3] Framework and data from the 
MIT-BIH Electrocardiogram[4] database, we simulate two scenari-
os of an arrhythmia classifier, with: 
• different ammounts of Federated Participants (FP)s and 
• different patient data per FP

• 20 FPs (hospitals)
• 3,000 heart beats per FP
• Independent and identically 
distributed data (IID):

• different patients per FP
• different diagnosis per FP

• 2,000 FPs (smartwatches)
• 30 heart beats per FP
• Non-IID:
• 1 patient per FP
• 95% FPs: sinus rhythms only

Hospital Scenario Smartwatch Scenario

Sinus

Conclusion
From a machine learning perspective Federated Learning instead 
of centralized model training is a promising option.
Models can be trained to comparable performance without the 
risk a centralised patient data base poses.
There are scenarios in which federated medical data enable a 
deep learning model, which only emerge through the iterative 
model aggregation of various FPs.
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Model quality is measured via the F1 score on a validation data 
set. We define 
 
 

Hospital Scenario: We achieve PC of 0.03% and FB of 3.53% 
after 49 federated rounds (training iterations). 

Privacy Cost (PC) := F1(centralized) - F1(federated)
Federated Benefit (FB) := F1(federated) - F1(single client)

Smartwatch Scenario: The PC are 2.33% after 1,999 training rounds. 
A model trained on a single smartwatch isn’t feasible, since it con-
tains not all considered arrhythmia-classes. Hence, the FB is being 
able to learn at all.
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