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Introduction
The idea of masking the verbal content of spoken language but 
keeping the emotional tone is decades old (Rogers, Schererf, & 
Rosenthal, 1971). However, as in Steven Spielberg’s recent 2018 
cinematic film Ready Player One, the opposite idea also exists: 
masking the emotion but keeping the verbal content. There, the 
protagonist is caught by his evil opponent in a telepresence con-
versation after receiving a generous offer: “Twenty-five million 
dollars. I can see you’re using emotion-suppressing software 
right now, and why wouldn’t you?” But where are computers 
really these days on analysing, synthesising, or converting  
emotions in the voice? Analysing emotions in the voice has a 
broad application field in industry already—call centre analysis, 
interview analysis of emotions for recruiting and assessing the 
right candidate for a position, or tracking one’s emotions over the 
course of the day are just a few examples that are already com-
monly used. Thereby, the emotion as conveyed in spoken lan-
guage is recognised by means of acoustic and linguistic analyses. 
The synthesis of emotional speech by machines bears huge 

application potential, in particular in human–machine communi-
cation. Speech is already broadly synthesised in devices such as 
Alexa, Cortana, and Siri, but not yet in different emotional fla-
vours. Finally, converting the emotion in the voice by changing 
acoustic parameters allows, for example, to hide one’s genuine 
emotion, for example, to appear always friendly in a phone call.

Such computational processing of speech either in search of 
emotion or to synthesise emotion and even convert emotion has 
matured considerably over its more than two decades of history 
(B. Schuller, 2018). From a machine learning perspective, dif-
ferent approaches that require more or less human help exist. 
These include the prevailing approach in the field of supervised 
learning, where a machine learns only from human-annotated 
data. Essentially, this means that humans let the machine know 
by “labelling” which emotion is contained in speech data exam-
ples selected for training. In self-learning, the machine itself 
annotates speech samples with the emotion. This way, the 
machine learns from having seen more, even if these data are 
not labelled by humans and could have erroneous labels coming 
from errors made by the machine. Weakly supervised learning 

A Review on Five Recent and Near-Future 
Developments in Computational Processing  
of Emotion in the Human Voice

Dagmar M. Schuller
audEERING GmbH, Germany

Björn W. Schuller
audEERING GmbH, Germany
GLAM – Group on Language, Audio, and Music, Imperial College London, UK
Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany

Abstract

We provide a short review on the recent and near-future developments of computational processing of emotion in the voice, 
highlighting (a) self-learning of representations moving continuously away from traditional expert-crafted or brute-forced feature 
representations to end-to-end learning, (b) a movement towards the coupling of analysis and synthesis of emotional voices to 
foster better mutual understanding, (c) weakly supervised learning at a large scale, (d) transfer learning from related domains such 
as speech recognition or cross-modal transfer learning, and (e) reinforced learning through interactive applications at a large scale. 
For each of these trends, we shortly explain their implications and potential use such as for interpretation in psychological studies 
and usage in digital health and digital psychology applications. We also discuss further potential development.

Keywords
affective computing, emotion, review, speech, voice

Author note: We acknowledge funding from the EU’s HORIZON 2020 Grants Nos. 754657 (ECoWeB) and 210487208 (WorkingAge).

Corresponding author: Björn W. Schuller, Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Eichleitnerstrasse 30, Augsburg, 86159, Germany. 
Email: bjoern.schuller@imperial.ac.uk

898526 EMR0010.1177/1754073919898526Emotion ReviewSchuller & Schuller
research-article2020

SPECIAL SECTION: EMOTION IN THE VOICE

mailto:bjoern.schuller@imperial.ac.uk


Schuller & Schuller Developments in Computational Processing of Voice Emotion 45

can be seen as a mix of these two strategies, where usually the 
machine is trained first by humans, but then improves itself. To 
reduce the workload of human annotation, further alternatives 
exist: transfer learning aims at using knowledge on related tasks 
available to a machine to exploit. For example, when learning to 
speak English but already knowing another Germanic language, 
humans would use this advantage. Machines, too, can profit 
from knowledge on other speech analysis or computer percep-
tion tasks when learning about speech emotion recognition. 
Reinforced learning has practically not been used in the field 
yet, but offers to train a machine by interaction with humans and 
the “world” rather than having humans explicitly annotate emo-
tion in speech samples. These different approaches and others 
will be outlined in what follows.

Recent improvement on machine analysis, synthesis, and con-
version of emotion in the voice is particularly owed to the 
advances in deep learning,1 that is, the usage of artificial neural 
networks with several hidden layers known as “deep neural net-
works.” Manifold, different deep neural network types have been 
considered in this field, such as convolutional, recurrent, or gen-
erative adversarial ones, which can only partially be explained 
here. Overall, these networks can provide a hierarchical learning 
of aspects contained in the speech signal. The technique has been 
embraced early on in this field (Wöllmer et al., 2008).

Deep learning has in particular led to a shift from represent-
ing the voice by acoustic features suggested by experts such as 
phoneticians, to increasingly representing it by acoustic features 
automatically learnt from exemplary speech samples, for exam-
ple, by deep neural networks. In fact, such representations are 
increasingly transferred, including using representations learnt 
by neural networks for automatic speech recognition for speech 
emotion recognition (Pratap et al., 2018). Furthermore, the 
advent of deep neural networks that can also generate speech 
data, such as generative adversarial networks (GANs; 
Goodfellow et al., 2014) and deep neural networks trained on 
large data sets such as WaveNet (van den Oord et al., 2016) 
allow more and more to synthesise speech not only of much bet-
ter quality, but to increasingly condition it to speaker states and 
traits of interest. Ultimately, one can expect future emotionally 
intelligent AI to improve itself on these tasks, likely first by try-
ing to learn by itself from speech without emotion labels, then 
increasingly by reinforcement learning when turning its artifi-
cial emotional intelligence into an advantage in real-world 
interactions (D. Schuller & Schuller, 2018).

Here, we aim to quickly introduce these trends and discuss 
their potential use in getting more insights into human behav-
iour. In particular, we explain the interpretability of computa-
tional processing of emotion in the human voice in the age of 
deep learning. While we are mostly focussing on the acoustic 
factor, most principles apply similarly for linguistic analysis of 
emotion in spoken and even written language.

Self-Learning of Representations
The computational analysis of emotion as manifested in the 
voice dates back long before the first attempts at automatic 

speech emotion recognition. While the first patent on emotion 
recognition from speech dates from 1978 (U.S. Patent No. 
4,093,821, 1978), and related attempts at affective speaker state 
assessment from even earlier (U.S. Patent No. 3,855,416, 1974), 
computers had already been used for the analysis of emotion 
before (Williams & Stevens, 1972). In these efforts and the later 
automatic recognition of emotion in the voice, automatically 
extracted acoustic features designed by experts were the state-of-
the-art technology for the representation of the voice as a basis 
for decision making on emotional states. This seems, however, 
suboptimal and unnatural to some degree—suboptimal, as fea-
tures adapted to the exact problem and learnt by computers from 
data themselves could be expected to lead to better representa-
tions; unnatural, as infants as young as 5 months of age can dis-
criminate emotions in the voice (Walker-Andrews & Lennon, 
1991). At this age, however, they can hardly understand spoken 
language since they have not been told which acoustic features to 
pay attention to, but rather have learnt to represent the character-
istics themselves, likely by a mixture of reinforced learning and 
transfer learning from context and visual emotion recognition. A 
first step towards “learning” features from data may be the move 
towards “bags of audio words.” There, acoustic features are 
quantised into a number of representative examples stored in a 
codebook. Then, often only histograms of their frequency of 
occurrence are used for classification of emotion in speech (e.g., 
the “openXBOW” toolkit; Schmitt & Schuller, 2016). In addi-
tion, complete representation learning arrived with the advances 
in deep learning. In fact, in 2016, the first computational 
approach was successful to learn “end-to-end” from the raw 
speech waveform through to the continuous emotion target in 
terms of arousal and valence values (Trigeorgis et al., 2016). 
Since then, several related end-to-end learning approaches have 
appeared (e.g., Chang & Scherer, 2017; Sarma et al., 2018).

In addition, next to toolkits such as “openSMILE”2 for the 
extraction of “traditional” feature sets for emotion in speech, 
such as the compact “GeMAPS” set (Eyben et al., 2016), also 
toolkits for self-learning of representations such as “auDeep” 
(Freitag, Amiriparian, Pugachevskiy, Cummins, & Schuller, 
2018) and end-to-end learning from the raw speech time signal 
such as the “End2You” toolkit (Tzirakis, Zafeiriou, & Schuller, 
2018) have appeared. Since, related approaches have also been 
based on spectral representations (Ghosh, Laksana, Morency, & 
Scherer, 2016). Rather than learning from the raw time signal, 
these do not learn a representation from the time signal, instead, 
they learn a representation from a time-frequency transform 
such as the short-time Fourier transform. This seems natural in 
a way, relating to human hearing in our inner ear, where a time 
frequency transformation is the basis for further hearing.

When it comes to decision-making, for example, deciding on 
“joy” or “anger,” or the degree of valence based on the representa-
tion, the field has largely moved to modelling also the time history 
of emotion. An often taken approach to this end are recurrent neu-
ral networks, that is, neural networks that take past (and potentially 
also future) events into account—often considering memory such 
as by long short-term memory (LSTM; Wöllmer et al., 2008) or 
the related simpler gated recurrent units (GRUs; Rana, 2016).
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More recently, so-called “attention modelling” has been used 
to improve according architectures. The aim is to learn which parts 
of the input to pay more attention to in order to best recognise the 
emotion. According algorithms are used at various positions in 
deep neural networks to focus attention, for example, on time or 
frequency. These have repeatedly been shown to work well in 
speech emotion recognition (Mirsamadi, Barsoum, & Zhang, 
2017; Z. Zhang, Wu, & Schuller, 2019; Zhao et al., 2018).

Such approaches are at state-of-the-art level (Trigeorgis et al., 
2016; Tzirakis et al., 2018) while omitting the need for any 
explicit acoustic feature extraction. The often-made reproach 
when it comes to such deep end-to-end learning is the “black 
box” nature of these approaches (Shwartz-Ziv & Tishby, 2017). 
This relates to the fact that while deep learning usually leads to 
great results, it is hard to explain how and why decisions are 
made, as up to millions of learning parameters are used to form a 
usually highly nonlinear decision boundary in high-dimensional 
decision space. This seems a particularly important aspect to 
overcome for psychological or medical applications, where 
explainability and interpretability are crucial. For example, in 
terms of diagnoses, patients crave for information on which 
these are based. In fact, selected parts can be explained. For 
example, visualising the learnt attention patterns or the contex-
tual time profiles is possible. Also, one can compare learnt 
acoustic features with human-designed features, for example, by 
correlation. In fact, high correlations were observed (Trigeorgis 
et al., 2016), for example between learnt features and human-
designed prosodic features, such as average fundamental fre-
quency and energy. The correlation was not 1, but rather between 
.7 and .8. This could have stemmed from too little training data 
available during learning. Yet, it may be that more optimal repre-
sentations have been learnt. In fact, adequate psycho-acoustic 
modelling (Zwicker & Fastl, 2013) can go far beyond usual pros-
ody-related feature calculation as applied in speech emotion rec-
ognition today. As an example, pitch is commonly modelled in 
attempts to estimate the (physical) fundamental frequency in the 
speech signal. This, however, ignores human pitch perception’s 
interdependence with length, intensity, and spectral composition 
of the acoustic signal. In other words, it appears possible that 
end-to-end learning from the raw speech signal lead to better 
representations in the sense of being more like human percep-
tion, hence leading to better speech emotion recognition. 
However, the visualisation and interpretation of such learnt 
acoustic features seem crucial to lead to a better understanding of 
the relation to emotion as carried in speech acoustics. This inter-
pretation is not trivial; luckily, algorithms and tools (Ribeiro, 
Singh, & Guestrin, 2016) that help with explanation of the learnt 
features are increasingly available. With these, it will hopefully 
soon be possible to better interpret why machine learnt represen-
tations and models work potentially better than those trained on 
traditional feature representations.

Coupling of Analysis and Synthesis
One could discuss whether when we learn to recognise and 
understand speech, we simultaneously learn to produce 
speech (Lenneberg, 1962; Owren, Amoss, & Rendall, 2011). 

In fact, it has been shown that speaking and understanding 
speech share the same regions in the brain, except that the 
parts controlling the vocal tract movement are not needed for 
spoken language understanding (Menenti, Gierhan, Segaert, 
& Hagoort, 2011). Hence, it seems a promising avenue of 
research to couple learning to recognise and synthesise emo-
tion in speech also in computational processing, to learn 
about both of these related tasks synergistically. In the case of 
(speech emotion) recognition, this is the case because the 
generation of new artificial samples can be beneficiary 
because, then, a larger amount of data would be made availa-
ble for training. Until recently, this was hardly possible, as 
synthesis of emotion in speech has been largely rule-based 
(Schröder, Burkhardt, & Krstulovic, 2010). However, GANs, 
as mentioned in the Introduction and shown in Figure 1, 
recently allowed for such coupling. In a GAN, a “generator” 
neural network iteratively learns to generate realistic data. A 
second neural network called “discriminator” iteratively 
learns to improve on (a) distinguishing the artificially gener-
ated data by the generator neural network from real (speech) 
data, and (b) solving its usual task (speech emotion recogni-
tion, in our case). Then, they iteratively improve on both 
tasks, that is, generation and recognition of emotion in an 
iterative process, each neural network learning from the other. 
This may be a rather simple architecture but indeed it is pos-
sible to generate speech audio with GANs (Donahue, 
McAuley, & Puckette, 2018). GANs that allow to generate a 
conditioned target output, such as angry or happy speech, can 
then allow to generate emotionally targeted speech.

At the same time, it has been shown that GANs can be used 
to improve machines’ performance at emotion recognition tasks 
(Han, Zhang, Cummins, & Schuller, 2018; Han, Zhang, Ren, 
Ringeval, & Schuller, 2018). The generative part thereby gener-
ates novel learning examples to enrich the training material. 
While this has so far been executed on the level of the feature 
vector for speech emotion recognition, that is, the generator pro-
duces novel acoustic feature values rather than audio, it basi-
cally leaves coupling generation of emotional speech audio for 
future research as a next step to truly couple analysis and syn-
thesis in this field. A couple of further issues to solve will 

Figure 1. Schema of a generative adversarial network (GAN) with 
emotion as “condition.” A generator deep neural network (DNN) learns 
to generate artificial speech; a discriminator DNN learns to discriminate 
artificially generated from human-generated speech while simultaneously 
learning how to solve its emotion recognition task such that both DNNs 
improve on their task.
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include improvements on the so-called “mode collapse” prob-
lem of GANs (the production of novel examples of data that are 
too similar to previous instances; Srivastava, Valkov, Russell, 
Gutmann, & Sutton, 2017). Independent of that, a couple of fur-
ther architectures such as variational auto-encoders (VAEs) are 
currently available and able to generate novel data that could be 
considered for related architectures of coupled analysis and syn-
thesis. As end-to-end learning has been successfully realised 
also for synthesis of emotional speech (Gao, Chakraborty, 
Tembine, & Olaleye, 2018), one could aim at coupling end-to-
end analysis and synthesis.

Furthermore, such coupled analysis and synthesis may help to 
improve future emotional voice conversion. The identity of the 
speaker and the linguistic content could be preserved during con-
version (Gao et al., 2018). Yet, the emotion would be changed 
such as in the introductory example of emotion-suppressing soft-
ware. Apart from human audible voice conversion, one can also 
think of addition of human nonaudible noise to a speech signal to 
fool automatic recognition systems. So far, such “adversarial 
attacks” have been successfully applied to fool AI unnoticeable to 
humans mostly in the image domain. This was reached by adding 
image noise hard to see by humans but triggering a desired recog-
nition outcome from a deep neural network. A potential use of 
such deception in the speech emotion domain could be to trick an 
AI to believe one is being friendly despite being rude. This could 
be of interest, for example, if the AI would be monitoring one’s 
behaviour during an AI-based job interview. Adversarial attacks 
have also been accomplished to fool automatic speech recogni-
tion (Alzantot, Balaji, & Srivastava, 2018), and could soon alter 
how we appear emotionally to an AI.

Weakly Supervised Learning
Insufficient data with information of the contained emotion is 
usually the major bottleneck for computational processing of 
emotion in speech and nonverbal vocalisations. Hence, 
approaches that exploit also speech data without a known emo-
tion are particularly important in reaching emotion recognition 
by machines largely independent of the individual speaking, her 
cultural background, or the language spoken (Sauter, Eisner, 
Ekman, & Scott, 2015). As speech data are available in abun-
dance on social media, in films, etc., according approaches are in 
principle able to exploit endless data resources. Most impor-
tantly, methods exploiting such speech data without information 
of the emotion usually need to provide a solid estimation of (a) 
the algorithm’s own confidence in its judgement of the emotion 
and (b) how informative the current sample is. Based on this, 
they are able to decide whether the algorithm can add the new 
sample to the training material based on its own assessment 
(“semisupervised learning”; Huang et al., 2018), or, if not suffi-
ciently confident in its own assessment, whether it would be 
important enough to ask for a human labeller, if available (“active 
learning”). In combination, such “cooperative learning” (as 
offered, for example, by the “iHEARu-PLAY” platform; Hantke, 
Eyben, Appel, & Schuller, 2015) is known to bear the potential 
to drastically reduce the amount of manually labelled data 

(Y. Zhang et al., 2019). In addition, weakly supervised learning 
can also exploit other strong modalities. An example is training 
an automatic speech emotion recogniser with the help of an auto-
matic video emotion recogniser. This makes sense, for example, 
for valence, where video analysis is known to be more reliable 
than speech acoustics analysis (Albanie, Nagrani, Vedaldi, & 
Zisserman, 2018; Han, Zhang, Ren, & Schuller, 2019). As it 
requires excessive computational power to process big data in 
such manner, one can expect the potential of such weakly super-
vised learning to be leveraged soon.

Transfer Learning
Humans are great at transfer learning, that is, using knowledge 
gained in one domain when learning in another one. For exam-
ple, when it comes to language learning (Durgunoglu, Nagy, & 
Hancin- Bhatt, 1993): if speaking English, we exploit this 
knowledge easily to learn new related languages such as those 
in the Germanic language family. While transfer learning is 
gaining momentum in machine learning these days (Pan & 
Yang, 2010), such knowledge transfer has not been seen much 
in the field of computational emotion processing in speech 
until recently.

The idea to use networks trained on other tasks in the recog-
nition of emotion in speech kicked off using deep neural net-
works that, surprisingly, had been pretrained to do image 
classification (Cummins et al., 2017) based on speech spectro-
grams as images (see Figure 2). Cummins et al. (2017) showed 
an image-recognition pretrained network to be on a par or better 
than expert-designed “traditional” speech features, such as 
mean fundamental frequency, and alike for representation of 
recognition of emotion in speech in a recognition task. Publicly 
shared automatic speech recognition pretrained networks have 
started to be used for emotion recognition in speech with great 
success (Adigwe, Tits, Haddad, Ostadabbas, & Dutoit, 2018). In 
addition, whole toolkits such as the “DeepSpectrum” toolkit 
have recently been devoted to this task, where one can choose 
amongst trained deep neural networks to use for representation 
of speech. Following this trend of shared pretrained networks in 
computer vision and speech recognition, one can expect “emo-
tion-nets” pretrained for the specific task of emotion processing 
in speech or other modalities to appear soon. Interpretation of 
why such transfer learning works can be difficult, but visualisa-
tion of the neural network activations can give some insight. For 
example, vision deep neural networks often learn to recognise 
edges or certain shapes, which may also appear in audio spectra. 
It remains to be evaluated how well such transfer learning will 
generalise across languages and levels of specificity (e.g., posi-
tive valence vs. happy).

Beyond such transfer learning on the level of acoustic fea-
tures, further forms of transfer learning exist, such as transfer 
learning for decision-making models (e.g., Abdelwahab & 
Busso, 2015; Mao, Xue, Rao, Zhang, & Zhan, 2016; Song, Jin, 
Zhao, & Xin, 2014). Interpretation of successful transfer of 
knowledge can be challenging in these cases as well, in particu-
lar if the tasks are not obviously related to each other.
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Reinforced Learning
As humans, it appears natural that we learn about emotions by 
interacting with the real world. For example, we learn to inter-
pret vocal patterns conveying emotion or facial expressions of 
others without being given overly repeated explanations of 
these patterns to learn in a supervised manner to generalise to 
future unseen patterns. In current computational speech emo-
tion recognition, however, supervised learning is still the pre-
vailing reality, apart from the sparse attempts at weakly 
supervised learning mentioned before. But in a world where 
AI empowered with artificial emotional intelligence will 
become an ever-present reality, it seems obvious that also 
computers will start learning to recognise our emotions to best 
solve their tasks while in interaction with us (Broekens, 2007). 
A positive emotion of a user of AI could then serve as a posi-
tive reward, and vice versa for a user’s negative emotion for an 
AI relying on reinforcement learning. First attempts in this 
direction exist (Motamed, Setayeshi, & Rabiee, 2017), but 
more is expected to come.

Beyond analysis of emotional speech, one can also easily 
imagine reinforcement learning to play a role in future emo-
tional speech synthesis; for example, a speech interface may 
learn how to shape its acoustic parameters to better simulate 
empathy to be perceived as more sympathetic by the user. 
Integrated into mass consumer products, such an AI could learn 
reinforced from interactions with thousands or millions of users, 
just like “Samantha” in the 2013 film Her. It will be interesting 
to analyse the vocal behaviour such a system will learn to use to 
best accomplish its goals in its interaction with us.

Conclusion
We discussed five major trends currently reshaping the compu-
tational processing of emotion in the human voice, or that can 
be expected to soon do so. These were, in short, (a) self-learning 
of representations from or to raw speech signals in analysis and 
synthesis of emotional speech, (b) the coupling of analysis and 
synthesis into a topology that learns about both ends and hence 

gains emergent knowledge beyond separated handling of these 
tasks, (c) weakly supervised learning at a large scale, (d) the 
transfer of knowledge from related tasks, domains, and modali-
ties, and (e) reinforcement learning of analysis and synthesis of 
emotion in the voice. From these trends, one can assume that 
such systems will soon be able to reach human parity level not 
only for arousal recognition. How accurate they become, pre-
sumably depends on the granularity at which they are tested. 
However, as self-learning and reinforcement learning at a large 
scale can be expected to soon shape the landscape of computa-
tional engines in this context, machines could indeed do without 
learning from human-annotated data, which is usually highly 
ambiguous in this field. Rather, machines could develop an 
improved beyond-human understanding of emotion, potentially 
also profiting from closer to ground-truth emotion labels that 
could come from increasingly better brain–computer interfaces. 
This would potentially lead to superhuman speech emotion rec-
ognition performance. At the same time, recent progress in 
speech separation from noise and other speakers (Keren, Han, & 
Schuller, 2018) will help reach superhuman abilities also when 
it comes to processing of speech in adverse “in-the-wild” condi-
tions. As a side stream, computational processing may also 
broaden out beyond human vocalisations and lead to analysis 
and synthesis of animal emotion (e.g., Hantke, Cummins, & 
Schuller, 2018). In short, we likely look into a near future where 
machines can recognise, synthesise, and convert emotion in 
human and animal voices beyond our skills. The challenge then 
will be to interpret and explain what the machine has learnt. It 
will remain to be seen how well such AI will recognise regu-
lated or insincere emotion. The current belief that women are 
more emotionally expressive than men (Fischer & LaFrance, 
2015), and computers are not emotionally expressive, could 
hence soon change—at least when it comes to computers.
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Notes
1 Resources to learn about backgrounds of deep learning or how to 

implement solutions can be found, for example at websites https://
pytorch.org/ and https://www.tensorflow.org/. An example of a tuto-
rial on machine learning can be found at https://developers.google.
com/machine-learning/crash-course/

2 For a tutorial allowing to implement a speech emotion recogniser, see: 
https://www.audeering.com/download/opensmile-book-latest/
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