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I, IV und V. Die Forschungsbeiträge (Research Paper R1, R2 & R3) in Kapitel II,

III und IV sind in Englisch verfasst.

iii



I Einleitung

In den 30er Jahren des 20. Jahrhunderts hatte der US-amerikanische Lastkraftfahrer

Malcolm McLean die bahnbrechende Vision, Waren und Güter weltweit in standar-

disierten Kisten zu transportieren (Levinson, 2016, S. 1). Eine stapelbare Box sollte

direkt vom Lastkraftwagen in das Schiff gehievt werden, um so den Ladevorgang zu

vereinfachen und die Produktivität an Seehäfen zu steigern. Vor der Einführung von

Containern konnte der Warenumschlag nur durch einen hohen Einsatz an körper-

licher Arbeit und teilweise wochenlangen Standzeiten der Schiffe realisiert werden.

Für ein mit 5.000 Tonnen Stückgut beladenes Schiff waren ca. 60 Arbeiter nötig,

um dieses innerhalb einer Woche zu löschen (Urwer, 2008, S. 3).

Allerdings sollte es noch 20 Jahre dauern, bis McLean seine Vision tatsächlich in der

Praxis umsetzen konnte. Am 26. April 1956 war es schließlich soweit, als der umge-

baute Frachter IDEAL X von Newark, New Jersey mit 58 Aluminium-Boxen beladen

in Richtung Houston, Texas in See stach (Martin, 2012, S. 21). Der standardisierte

Container war geboren — ein Meilenstein in der Logistik.

1966 landeten die ersten Container aus den USA im Hafen von Rotterdam und Bre-

men auf europäischem Boden (Jahns und Schüffler, 2008, S. 156). Ein paar Jahre

später, im Jahr 1970, wurden die Maße der bis heute gängigen Standard-Container

von der ISO (International Organization for Standardization) festgelegt. Als Stan-

dardmaß gilt seither die Twenty-foot Equivalent Unit (TEU), was einem Container

mit 8 Fuß (2,44 m) Breite, 8 Fuß und 6 Zoll (2,59 m) Höhe sowie einer Länge von

20 Fuß (6,06 m) entspricht (Martin, 2016). Neben 20 Fuß (1 TEU) haben sich mitt-

lerweile auch 2 TEU Container mit 40 Fuß Länge durchgesetzt, zudem existieren

Spezial-Container mit Überlänge oder als High-Cube Ausführung.

Vor dem Zeitalter des Containers lohnte sich der internationale Export und Import

für viele Produkte nicht (Levinson, 2016, S. 12). Die verstärkte Nutzung von Contai-

nern führte daher zu einer Revolution in der Logistik. Die gesamte Transportkette
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I Einleitung

an Land und Wasser hat sich an das System angepasst, was zu erheblichen Kosten-

einsparungen, aber auch zu weltweiten Strukturveränderungen in Produktion und

Handel geführt hat. Seit 2009 werden ca. 90% des Welthandels der Nicht-Schütt-

gutfracht über Seecontainer abgewickelt (Ebeling, 2009). Besonders beeindruckend

ist die Entwicklung der letzten zwei Jahrzehnte: Im Zeitraum von 1996 bis 2016 hat

sich der weltweite Containerhandel mehr als verdreifacht (vgl. Abb. 1).
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Abb. 1: Weltweiter Containerhandel in Mio. TEU (Saxon und Stone, 2017)

Mittlerweile liegen die zehn größten Häfen nach Containerumschlag ausschließlich

auf dem asiatischen Kontinent (davon sieben in China), wobei der ’Port of Shang-

hai’ den ersten Platz mit 40.230 Mio. TEU pro Jahr (2017) belegt. Die größten

europäischen Häfen in Rotterdam, Antwerpen und Hamburg folgen auf den Plätzen

11, 13 und 18 (vgl. Maritime Intelligence (2017)). Obwohl das Wachstum durch die

weltweite Bankenkrise im Jahr 2009 nachgelassen hat, rechnen Experten auf lan-

ge Sicht mit einem durchschnittlichen Wachstum von 1,9 bis 3,2% pro Jahr (vgl.

Saxon und Stone (2017, S. 10)). Eine ähnliche Entwicklung ist bei der Größe von

Containerschiffen zu beobachten. Hatte das größte Containerschiff im Jahr 1996 eine

Kapazität von ca. 6.000 TEU (Reederei: Mærsk Line), so sind es mittlerweile 21.413

TEU (2017, Reederei: OOCL). Auch hier ist die Grenze des technisch Möglichen

noch nicht erreicht, bereits heute existieren Pläne für Containerschiffe mit bis zu

24.000 TEU (Saxon und Stone, 2017, S. 13).
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I Einleitung

Durch den rasanten Anstieg des Welthandels und die steigende Kapazität von Fracht-

schiffen sind Umschlagsmengen von 6.000 Containern pro Schiff und Hafen kein Ein-

zelfall mehr (Speer, 2017, S. 1). Aus Sicht der Reedereien sollte das Löschen und

Laden der Container deshalb möglichst schnell und effizient durchgeführt werden,

um kostspielige Standzeiten zu minimieren (Soriguera und Espinet, 2006; Schütt,

2011). Die Containerterminals unterliegen daher einem fortlaufenden Wettbewerb.

Für den Erfolg des einzelnen Terminals ist es entscheidend, den Umschlagprozess

noch effizienter und damit kostengünstiger als die Konkurrenz anzubieten (Min und

Park, 2005).

Um den Anforderungen der Kunden gerecht zu werden, kommt seit der Jahrtau-

sendwende verstärkt moderne Automatisierungstechnik zum Einsatz, mit der vor

allem Kosten gesenkt und die Servicequalität verbessert werden sollen (Speer, 2017,

S. 2). Insbesondere für Länder mit einem hohen Lohnniveau hat die Automatisie-

rung einen bedeutenden Stellenwert. Im Sommer 2002 wurde das Containerterminal

Altenwerder (CTA) in Hamburg eröffnet, bei dem der horizontale Containertrans-

port nahezu vollautomatisiert abläuft (HHLA, 2017). Zwischen der Brücke und dem

Containerlager werden für den fahrerlosen Transport Automated-Guided-Vehicles

(AGVs) eingesetzt. In den Lagerblöcken arbeiten jeweils zwei Rail-Mounted-Gantries

(RMGs) zwischen Land- und Seeseite. Ein solches Layout und der hohe Automa-

tisierungsgrad des CTA in Hamburg gelten weltweit als Vorbild für viele moderne

Terminals.

Dieser Trend ist in letzter Zeit auch in Asien angekommen. Im Jahr 2012 wurde das

erste Terminal mit vertikal automatisiertem Transport in Korea eröffnet, das Busan-

New-Container-Terminal (BNCT) (Slootweg, 2017). Zudem soll bis zum Jahr 2020

am Hafen von Shanghai das weltweit größte automatisierte Containerterminal mit

120 RMGs und 130 AGVs entstehen (The Straits Times, 2017).

Durch die neuen Technologien in der Automatisierung steigen allerdings auch die

Anforderungen an die IT-Systeme, um diese zu steuern (Schütt, 2011, S. 104). Aus

Sicht des Operations Research (OR) gibt es zahlreiche Optimierungsprobleme in

einem Terminal zu beachten, wobei sich ein modernes teil- oder vollautomatisier-

tes Containerterminal am Seehafen in vier operative Abschnitte gliedern lässt (In

Anlehnung an Gharehgozli et al. (2016), siehe Abb. 2).

Abschnitt (1) befindet sich an der Seeseite, hier wird das Schiff mithilfe von Kai-
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I Einleitung

Kränen be- und entladen. Zunächst muss das Schiff dabei einem Anlegeplatz und

Kai-Kränen zugeordnet werden (Berth-Allocation-Problem und Quay-Crane-Assignment-

Problem). Ziel ist es, unter anderem Servicezeiten und Verspätungen zu minimie-

ren (Cordeau et al., 2005). Das Quay-Crane-Scheduling Problem muss anschließend

gelöst werden, wobei durch einen optimalen Ablaufplan der Hafenkräne am Kai

der Fertigstellungszeitpunkt minimiert und die Produktivität gesteigert werden soll

(Bierwirth und Meisel, 2009). Beim Container-Stowage-Problem soll darüber hinaus

ein Ladeplan für das Schiff erstellt werden. Ziele sind insbesondere die Minimierung

der Servicezeit, die Gewährleistung der Stabilität und die Einhaltung der Belas-

tungsgrenzen des Schiffes (Gharehgozli et al., 2016).

Abb. 2: Operative Einteilung von Containerterminals an Seehäfen

In Abschnitt (2) findet der interne Transport zwischen Kai und Lagerblock statt.

Dabei wird zwischen automatisierten (z.B. AGVs) und von Menschen gesteuerten

Fahrzeugen unterschieden. In modernen Systemen befinden sich zudem Übergabe-

plattformen an der Kai- und Lagerseite, um Wartezeiten zu vermeiden und das

System unabhängig von den Kranbewegungen zu machen. Hierbei gilt es vor allem

klassische Probleme der Touren- und Routenplanung zu lösen (Jeon et al., 2011)

oder eine optimale Flottengröße zu bestimmen.
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I Einleitung

In Abschnitt (3) befindet sich der Kern des Terminals mit mehreren Lagerflächen

bzw. Blöcken zur Zwischenlagerung der Container. Bei älteren Terminallayouts be-

werkstelligen bspw. Portalhubwagen (engl. straddle carriers) oder gummibereifte

Stapelkräne (engl. rubber tired gantry) den Transport der Container. In modernen

automatisierten Terminals arbeiten bis zu drei RMGs an einer Fläche, um Container

ein- und auszulagern, wobei sich die Übergabestellen häufig an den kurzen Seiten

des Blocks befinden. Hier sind die Lagerflächen oftmals orthogonal zur Anlegestelle

ausgerichtet und bilden somit eine Schnittstelle zwischen See- und Landseite bzw.

Automatisierung und manueller Ausführung.

Ziele beim sogenannten Yard-Crane-Scheduling-Problem sind oftmals produktivitäts-

und/oder serviceorientiert, bspw. sollen die Kräne Container ein- und auslagern,

sodass der Fertigstellungszeitpunkt minimal ist oder Servicezeiten der Schiffe einge-

halten werden können. Neben Ablaufplanungsproblemen existieren darüber hinaus

zahlreiche Optimierungsprobleme, bei denen der Fokus auf dem geschickten Stapeln

der Container liegt. Beim Pre-Marshalling-Problem sollen die Container so gestapelt

werden, dass zu einem späteren Zeitpunkt keine weiteren Umstapler nötig sind (Lee

und Hsu, 2007). Mehrere Forschungsarbeiten befassen sich daher mit verschiedenen

Stapel-Strategien, bspw. sollen die Container stets nach den erwarteten Standzeiten

sortiert werden (Dekker et al., 2006).

In Abschnitt (4) findet der Container-Austausch zur Landseite bzw. Straße, Schiene

oder Fluss statt. Durch eine enge Zusammenarbeit mit Hinterland-Terminals und

Spediteuren kann der Hafen die Auslastung im Laufe der Zeit besser steuern und

Verzögerungen beim Be- und Entladen vermeiden. In der Studie von van Asperen

et al. (2013) wird der Einfluss von Informationen zur Ankunft der LKWs auf die

Effizienz des Terminals untersucht. Douma et al. (2009) erstellen ein Verfahren, um

den Fahrplan der Binnenschifffahrt an die Abläufe am Hafen von Rotterdam anzu-

passen. Eine Verlagerung des Verkehrs auf Binnenschiffe (oder Züge) ist sinnvoll,

um bspw. die Belastung auf den Straßen zu verringern und Emissionen einzusparen.

Wie bereits erwähnt, wird in modernen Containerterminals häufig Automatisie-

rungstechnologie eingesetzt, um den steigenden Anforderungen an Service und Pro-

duktivität gerecht zu werden. In Abschnitt (3) des Terminals setzt man hierbei ins-

besondere auf RMG-Systeme, diese stellen jedoch einen potentiellen Engpass und

eine kritische Ressource im System dar. Zahlreiche technische Innovationen und Er-
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I Einleitung

weiterungen in den anderen Bereichen machen diese besser skalierbar, dazu zählen

bspw. Dual-Cycling am Kai-Kran (1), Multitransporte, zusätzliche AGVs für den

horizontalen Transport (2) sowie Vormeldesysteme für LKWs an der Landseite (4)

(Speer, 2017, S. 121–125).

Aufgrund des hohen Platzbedarfs und der verhältnismäßig aufwendigen Erweiter-

barkeit gelten RMG-Systeme als schlecht skalierbar, weshalb die Optimierung der

vorhandenen Geräte von zentraler Bedeutung ist. Sobald mehr als ein Kran an der

gleichen Fläche arbeitet, kann es zu Behinderungen kommen, wodurch Wartezeiten

oder Umwege der beteiligten Kräne entstehen. Durch eine intelligente Steuerung

bzw. Ablaufplanung lassen sich diese Behinderungen eingrenzen bzw. minimieren,

sodass letztendlich eine höhere Produktivität gewährleistet wird.

An diesem Optimierungsproblem setzt auch die vorliegende kumulative Disserta-

tionsschrift an. Bevor jedoch die einzelnen Forschungsbeiträge und Ergebnisse zu

diesem Thema präsentiert werden (Abschnitt 2), soll im nachfolgenden Abschnitt

1 zunächst genauer auf den konkreten Forschungskontext eingegangen und die we-

sentlichen Forschungsziele dargestellt werden.

1 Forschungskontext und Forschungsziele

Heutzutage verlassen sich viele Wirtschaftszweige auf automatisierte Kransysteme,

wenn es darum geht, Waren möglichst effizient von A nach B zu bewegen bzw.

ein- und auszulagern. Es finden sich dabei zahlreiche Einsatzgebiete, bspw. in der

Containerlogistik, in der Industrie und bei automatisierten Lagersystemen (engl.

automated storage and retrieval systems (ASRS)). Um die Produktivität zu steigern,

werden oft mehrere Kräne bzw. Roboter auf einer gemeinsamen Fläche oder Schiene

eingesetzt, sodass Interferenzen bzw. Wartezeiten auftreten.

Zu vielen praktischen Problemstellungen im Bereich der Optimierung von Kran-

systemen mit Interferenzen sind bereits wissenschaftliche Beiträge erschienen, die

sich mit verschiedenen Anwendungsbereichen befassen (siehe Abb. 3). Boysen et al.

(2017) stellen fest, dass das Forschungsinteresse gerade in den letzten Jahren be-

sonders hoch war, von insgesamt 82 klassifizierten Publikationen sind 63 allein im

Zeitraum zwischen 2010 und 2016 erschienen, zudem sind über 75% der Beiträge der

Containerlogistik an Seehäfen zuzuordnen. Davon betrachten wiederum 44 die Si-
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tuation am Kai (insb. das Quay-Crane-Scheduling-Problem) und 20 den Lagerblock

(insb. das Yard-Crane-Scheduling-Problem).
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Abb. 3: Anzahl der Publikationen pro Anwendungsbereich (Boysen et al., 2017)

Ein Hauptfokus in diesem Forschungsbereich liegt auf der Minimierung des Fertig-

stellungszeitpunktes, wovon 61 Publikationen zeugen. Darüber hinaus werden bei

71 Beiträgen die Lagerpositionen auf einer eindimensionalen Geraden betrachtet

bzw. angenommen, die restlichen elf Publikationen betrachten Interferenzen in ei-

nem zwei- oder dreidimensionalen Raum.

Das vorrangige Ziel der vorliegenden Dissertation besteht darin, in diesem Themen-

feld einen Beitrag für Forschung und Praxis zu leisten, insbesondere in Bezug auf

die Situation am Lagerblock in Seehäfen. Konkret lassen sich dabei vor allem die

folgenden vier Forschungsziele formulieren:

Ziel 1: Ein häufiges Problem im Bereich des Operations Research ist es, die entwi-

ckelten Verfahren mit denen anderer Forscher zu vergleichen, sofern kein gemeinsa-

mes Testbed zur Verfügung steht (Beasley, 1990). Zudem sind in vielen Fällen keine

praktischen Daten verfügbar, z.B. wenn neue Konzepte analysiert werden, die noch

nicht in der Praxis etabliert sind oder aus vertraulichen Gründen nicht preisgegeben

werden. Ziel ist es daher, für die Optimierung von automatischen Lagerkransystemen

ein konsistentes Testbed zu etablieren, mit dessen Hilfe es möglich ist, praxisnahe

und zukünftig relevante Situationen am Lagerblock in Containerterminals abzubil-

den, um repräsentative Stichproben von Testinstanzen zu erzeugen.
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Ziel 2: Die Optimierungsprobleme in diesem Forschungsfeld sind teilweise NP-

schwer, daher kann es durchaus sinnvoll sein, Approximationsalgorithmen zu ent-

wickeln, die der optimalen Lösung möglichst nahe kommen. Solche Algorithmen

existieren in diesem Forschungsfeld bisher jedoch fast ausschließlich für das Quay-

Crane-Scheduling-Problem (Lee und Chen, 2010; Lee und Wang, 2010), während

in den anderen Anwendungsbereichen noch erheblicher Forschungsbedarf besteht.

Einzig Erdoğan et al. (2014) beschreiben einen solchen Algorithmus auch für auto-

matische Lagersysteme (ASRS). Ein wesentliches Ziel der vorliegenden Arbeit be-

steht daher vor allem darin, Approximationsalgorithmen für Problemstellungen am

Lagerblock zu entwickeln.

Ziel 3: Aus dem Beitrag von Boysen et al. (2017) geht hervor, dass sich bislang nur

wenige Forscher mit den für die Praxis relevanten cross-over Kränen befasst haben,

z.B. ein kleiner RMG der unter bestimmten Umständen einen großen RMG passieren

kann. Die existierenden Ansätze betrachten stets eher spezifische Krankonfiguratio-

nen, z.B. Twin RMG (ein kleiner und großer RMG) (Briskorn und Angeloudis, 2016)

oder Triple RMG (zwei kleine und ein großer RMG) (Dorndorf und Schneider, 2010).

Ein weiteres zentrales Forschungsinteresse bzw. Ziel der Dissertationsschrift besteht

in diesem Zusammenhang darin, einen allgemeinen Ansatz zu entwickeln, der belie-

bige Kombination von kleinen und großen Kränen berücksichtigt, denn so betonen

unter anderem auch Boysen et al. (2017):

”
[...], there is a special need for generalized approaches, which can handle

any combination of small and large cranes.“ (Boysen et al., 2017)

Ziel 4: Weitere Forschungslücken sehen Boysen et al. (2017) zudem in gemein-

schaftlichen Betrachtungen von Ein- und Auslagerungen in einem Kranzyklus. Die

abwechselnde Durchführung beider Bewegungen wird auch als Double- bzw. Dual-

Cycle bezeichnet und führt zu einer Reduzierung der Leerfahrten eines Krans. Zwar

existieren bereits zahlreiche Ansätze in ASRS oder an Containerterminals (Boysen

und Stephan, 2016; Meisel und Wichmann, 2010; Gharehgozli et al., 2014), jedoch

wird hier immer nur ein einziger Kran betrachtet. Eine detaillierte Betrachtung von

Dual-Cycles unter Berücksichtigung von mehreren Kränen mit Interferenzen fehlt

bislang dagegen. So schreiben Boysen et al. (2017) beispielsweise:
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”
[...] the combination of a storage move and a retrieval move within one

crane cycle, proved very successful in ASRS and QC scheduling, [...].

However these studies consider only a single crane. Thus, a systema-

tic in- vestigation of dual cycles for multiple cranes under non-crossing

constraints is yet missing.“ (Boysen et al., 2017)

Mit der vorliegenden Dissertationsschrift soll daher ein Beitrag zur Schließung dieser

Forschungslücke geleistet werden.

2 Zusammenfassung der Forschungsbeiträge

Im folgenden Abschnitt werden die in der Dissertationsschrift enthaltenen Beiträge

zusammengefasst und in den Forschungskontext im Hinblick auf die oben genannten

Ziele eingebettet.

Kapitel II – Research Paper R1: A generator for test instances of scheduling

problems concerning cranes in transshipment terminals

In Beitrag R1 wird ein Instanzen-Generator vorgestellt, der zur Simulation von

Kranprozessen an Containerterminals dient. Mithilfe des Generators ist es möglich,

gängige Abläufe an Containerterminals anhand zahlreicher Parameter nachzustel-

len. Vorbilder für die parametrisierte Datengenerierung haben sich bereits in anderen

Bereichen des Operations Research etabliert, z.B für Ablaufplanungsprobleme (Hall

und Posner, 2001), in der Projektplanung (Kolisch et al., 1995) und in der Aukti-

onsforschung (Leyton-Brown und Shoham, 2006).

Um ein möglichst gutes Abbild der Realität zu gewährleisten, ist das generische

Modell in Zusammenarbeit mit einem Praxispartner aus diesem Gebiet entstanden.

Eine einzelne Instanz repräsentiert dabei eine gegebene Menge an Containerbewe-

gungen innerhalb eines Lagerblocks. Je nach Planungsebene bzw. Zielfunktion kann

man den Containern bestimmte Eigenschaften mithilfe von Verteilungsfunktionen

zuweisen, dazu gehören Positionsdaten, Termindaten, Vorrangbeziehungen und Wei-

tere. Zudem können die Maße des Lagerblocks innerhalb einer Instanz mit bis zu

drei Dimensionen spezifiziert werden. Der Instanzen-Generator ist online als Benut-

zeroberfläche (GUI, siehe www.instances.de/dfg/) sowie Programmierschnittstelle

9
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I Einleitung

(API) verfügbar und damit für Forscher weltweit zugänglich. Eine weitere wichtige

Eigenschaft des Generators ist die Reproduzierbarkeit der Daten. Eine Sammlung

von Instanzen kann unter einem Projektnamen veröffentlicht und mithilfe der Seed-

generierten Zufallszahlen wiederhergestellt werden.

Kapitel III – Research Paper R2: Approximation algorithms for the twin robots

scheduling problem

Forschungsbeitrag R2 stellt eine grundsätzliche Erweiterung der Arbeit Scheduling

twin robots on a line von Erdoğan et al. (2014) dar. Das Praxisproblem des darin

vorgestellten NP-schweren Twin-Robots-Scheduling-Problem (TRSP) findet sich

bei automatisierten Lagersystemen:

Zwei gleichartige Industrieroboter sind an gegenüberliegenden Enden (Depots) einer

Schiene positioniert und liefern Produkte von Depot zu Slots entlang dieser Schiene,

des Weiteren müssen die Roboter einen Sicherheitsabstand von einem Slot einhal-

ten und können somit nicht aneinander vorbei fahren (engl. non-crossing). Ziel ist

es, daher einen Ablaufplan für die Lieferaufträge zu erstellen, sodass der Fertigstel-

lungszeitpunkt minimal ist. In der Praxis tritt dieses Problem beispielsweise beim

automatischen Zusammenfassen von Produkten zu einer Ladeeinheit auf (Palettie-

ren).

Das ursprüngliche Problem wird durch variable Abhol- und Lieferzeiten erweitert,

um die Situation an Containerterminals besser abzubilden. Insgesamt wird zwischen

vier verschiedenen Szenarien unterschieden. In Szenario A werden die Aufnahme-

bzw. Lieferzeiten vernachlässigt (Erdoğan et al., 2014), bei B wird von konstanten

Aufnahme- bzw. Lieferzeiten ausgegangen (Boysen et al., 2015) und bei C können

diese Zeiten unterschiedlich ausfallen. An Containerterminals ist diese Annahme

durchaus realistisch, da es bspw. bei der Aufnahme von Containern zu Verzögerun-

gen durch Umstapler kommen kann. In Szenario D wird sowohl die Einlagerung als

auch die Auslagerung innerhalb eines Prozesses berücksichtigt (dual cycle). Zur Er-

stellung von Ablaufplänen werden zwei Konzepte eingeführt: semi-active schedule

und active schedule. Bei einem active schedule werden bspw. die Aufträge im Ab-

laufplan stets am frühestmöglichen Ort positioniert, ohne dass dabei ein einziger

bereits eingeplanter Auftrag verschoben bzw. später ausgeführt wird.

Eine untere Schranke (engl. lower bound) ergibt sich, wenn die non-crossing Ne-
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benbedingung aufgehoben wird, diese lässt sich mit einer Laufzeit von O(n log n)

feststellen, wobei n die Anzahl der Aufträge ist.

Ein weiterer zentraler Bestandteil von Beitrag R2 sind drei Approximationsalgo-

rithmen. Für Instanzen von Szenario A und B werden drei Verfahren beschrie-

ben, die eine approximative Lösung in Polynomialzeit finden. Mit der Decreasing-

Sort-Procedure und Earliest-Fit-Procedure liegt die Lösung maximal 50% über der

unteren Schranke und der Best-Fit Algorithmus liefert eine Lösung, die maximal

≈ 17,16% über der unteren Schranke liegt, für hinreichend große Instanzen.

Neben den Heuristiken wird auch ein exaktes Branch-and-Bound Verfahren entwi-

ckelt. Mithilfe einer Dominanzregel (engl. domination rule) lassen sich die 50 von

Erdoğan et al. (2014) zur Verfügung gestellten Instanzen signifikant schneller lösen

als mit bisher bekannten exakten Verfahren.

In einer ausführlichen numerischen Studie werden Instanzen für die vier vorgestell-

ten Szenarien untersucht. Dabei liegt ein Schwerpunkt darauf herauszustellen, unter

welchen Begebenheiten Interferenzen zwischen den Robotern bzw. Kränen auftreten

bzw. wann ein konfliktfreier Ablaufplan möglich ist. Um dies festzustellen, werden

22 Verteilungsmuster für Lagerpositionen untersucht.

Kapitel IV – Research Paper R3: A decomposition procedure for different au-

tomated yard crane systems

Forschungsbeitrag R3 beschreibt einen allgemeinen Ansatz zur Optimierung von

verschiedenen Krankonfigurationen mit cross over Kränen. Das zugrunde liegende

Praxisproblem kann folgendermaßen zusammengefasst werden: Eine verfügbare An-

zahl an RMGs ist entlang eines Lagerblocks angeordnet und soll Container ein- bzw.

auslagern. Es befinden sich zwei Übergabestellen an den kurzen Seiten des Blocks

bzw. an der Land- und Seeseite. Die Positionsdaten der verfügbaren Container sind

gegeben, jedoch ist die Bearbeitungsreihenfolge und Zuordnung der auszuführenden

RMGs variabel. Ein kleiner RMG kann einen großen RMG immer dann passieren,

wenn dieser gerade keinen Container aufnimmt bzw. ablädt. Zudem werden nur Sys-

teme betrachtet, bei denen sich maximal zwei RMGs derselben Ausprägung (bzw.

Größe) am Lagerblock befinden. Ziel des Forschungsbeitrages ist es daher, einen

Ablaufplan zu erstellen, bei dem alle Aufträge durch die zur Verfügung stehenden

RMGs ausgeführt werden, sodass der Fertigstellungszeitpunkt minimal ist.
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Aufgrund der hohen Entscheidungstiefe des zugrunde liegenden Problems wird ein

heuristischer Ansatz verfolgt, um praxisrelevante Instanzen in angemessener Zeit zu

lösen. Das Problem wird dabei in drei Teilprobleme zerlegt: (1.) Die Zuordnung von

Aufträgen zu Kränen (Crane-Assignment-Problem), (2.) das Zusammenfügen von

Ein- und Auslagerungen zu dual cycles bzw. single cycles (Single-Crane-Routing-

Problem) und (3.) das Erstellen eines Ablaufplans unter Berücksichtigung von Inter-

ferenzen (Crane-Scheduling-Problem). Zur Lösung der Probleme (1.) und (2.) wer-

den mathematische Modelle formuliert. Dabei liefert (1.) eine untere Schranke für

das Gesamtproblem, d.h. der minimale Fertigstellungszeitpunkt ohne Berücksichti-

gung der Interferenzen. Zur Lösung des anschließenden Crane-Scheduling-Problem

werden ein verkürzter Branch-and-Bound-Algorithmus sowie eine Tabu-Suche im-

plementiert. Der resultierende Ablaufplan legt zum einen alle Bearbeitungsreihenfol-

gen der Container fest und zum anderen, welcher Auftrag Vorfahrt hat bzw. warten

muss, sofern Interferenzen auftreten.

In einer numerischen Studie werden sieben verschiedene RMG-Systeme mit bis zu

vier Kränen betrachtet, davon finden vier bereits Anwendung in der Praxis und die

verbleibenden drei stellen mögliche zukünftige Erweiterungen dar. Die Systeme wer-

den anhand von drei typischen Szenarien an Containerterminals in der Studie auf

ihre Leistungsfähigkeit getestet. Das vorgestellte heuristische Verfahren liefert gute

Ergebnisse nahe der unteren Schranke für alle Kransysteme, zudem können einige

Instanzen auch optimal gelöst werden. Ein zentrales Forschungsergebnis ist, dass ei-

ne höhere Anzahl an Aufträgen in der Planung auch zu einer höheren Produktivität

des Systems führt.

In den folgenden Kapiteln II, III und IV werden die einzelnen, hier kurz dargestellten

Forschungsbeiträge schließlich präsentiert. Abschließend fasst Kapitel V Fazit und

Ausblick die wichtigsten Ergebnisse der Dissertationsschrift nochmals gebündelt zu-

sammen und gibt einen Ausblick auf zukünftige Forschungsfelder.
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Abstract

We present a test data generator that can be used for simulating processes of cranes

handling containers. The concepts originate from container storage areas at sea-

ports, but the generator can also be used for other applications, particularly for

train terminals. A key aspect is that one or multiple cranes handle containers, that

is, they store containers, receiving the containers in a designated handover area;

outsource containers, handing the containers over in the handover area; or reshuffle

containers. We present a generic model and outline what is captured by the test

data itself and what is left to be estimated by the user. Furthermore, we detail how

data are generated to capture the considerable variety of container characteristics,
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which can be found in major terminals. Finally, we present examples to illustrate

the variety of research projects supported by our test data generator.

Keywords: OR in maritime industry, test data generator, container terminals, crane

scheduling.

1 Introduction

Containerization has been an important component of international trade for many

years. The fastest and most cost-effective way to ship general cargo is typically by

container. Accordingly, the volume of cargo being transshipped in containers has

increased over the past twenty years; see Port of Hamburg (2017a). Not surprisingly,

the throughput of most major ports is increasing; see Port of Hamburg (2017b).

Similarly, this leads to new challenges for rail-road terminal operators since container

transportation on rail is typically preferred over that on the road due to lower costs

and because of a reduced environmental impact, e.g. rail-based freight systems emit

less CO2 than truck-only systems; see Kim and Van Wee (2009).

Automation of handling processes has been in the focus of terminal operators and

equipment manufacturers over the past 20 years. Seen as the key to significant

performance improvements and cost savings, many efforts have been devoted to au-

tomating several aspects of terminal operation. Automated stacking cranes (ASCs)

are commonly used in major seaport terminals, such as the port of Rotterdam, the

port of Hamburg, and the port of Antwerp. In contrast to straddle carriers and

rubber-tired gantry cranes, which are not automated, ASCs are fixed to a certain

block within the container storage area. In other words, ASCs manage containers

only within the storage area and consequently have to hand over the containers to

transport devices for the containers to be transported elsewhere or receive containers

from other devices. Typically, such transport devices are automated guided vehicles

or ship-to-shore cranes on the seaside and trucks on the landside. ASCs span the

entire storage block in width and move on tracks installed alongside the block. They

are not necessarily fully automated and may need an operator to guide them in the

handover areas. Handover areas may either be on the short side of the blocks (e.g.

Port of Hamburg) or on the long side of the blocks (e.g. Shanghai International
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Port). In the paper on hand we present a test data generator to simulate processes

of cranes handling containers at transshipment yards. The generator can be used to

create a wide range of problems instances in this area and thus establish a basis for

further research.

The following Section 1.1 provides a literature review on cranes in transshipment

terminals and other test data generators. We first consider the situation of cranes at

seaport terminals, then at train terminals, last we provide an overview on test data

generators in general. In Section 1.2, the contribution and structure of our paper is

presented.

1.1 Literature review

Aside from allowing automation from a technical perspective, optimizing the (stack-

ing or gantry) cranes’ performance potential requires effective and efficient schedul-

ing mechanisms. These mechanisms are clearly substantial for both ASCs and non-

automated stacking cranes, including quay cranes (QCs). Note that similar to ASCs,

QCs move on a line, pick up or release containers on vessels, and have to hand over

containers to other transport devices. In recent years, several pieces of literature

have been published concerning ASCs and QCs. We refer to Stahlbock and Voß

(2008); Steenken et al. (2004) for general surveys on optimization in seaport con-

tainer terminals.

Regarding ASCs, several methods were developed for scheduling single cranes; see

Kim and Kim (1999), Kim et al. (2003), Lee et al. (2007), Narasimhan and Palekar

(2002), and Ng and Mak (2005a,b). Ng (2005) was among the first to investigate

the optimal scheduling of multi-gantry cranes and presents an integer programming

model that can be used to determine the sequence of crane activities for the execu-

tion of a series of container moves. In Froyland et al. (2008), a multiple crane system

is considered, where the area for each stacking crane is restricted such that cranes

do not interfere. Li et al. (2009) consider a similar system without restricting the

operations of cranes to certain areas and provide several mixed integer programming-

based techniques. Saanen and van Valkengoed (2006) compare single cranes, twin

cranes, and crossover cranes through a computational study. Vis and Carlo (2010)

present a scheduling approach for cross-over ASCs that employs an integer program-
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ming model that can determine a lower-bound schedule, accompanied by a simulated

annealing heuristic that can further balance the operations of both gantries. Speer

et al. (2011) consider blocks with multiple ASCs. They evaluate different heuris-

tics and an exact approach to minimize a weighted sum of job lateness (container

drop-off with respect to a due date), makespan and the total flow times. Briskorn

et al. (2016) consider the problem of importing containers arriving at one handover

area via the joint transport of twin cranes. They aim to minimize the schedule’s

makespan. A scheduling algorithm for triple cross-over stacking cranes is discussed

by Dorndorf and Schneider (2010). When assigning containers to be transported to

cranes using a heuristic, they address the subproblem to decide the priority of cranes

when the cranes’ next operations are in conflict with each other. Then, avoiding

collisions for a given sequence of operations is accomplished by employing a branch-

and-bound algorithm. Briskorn and Angeloudis (2016) focus on this subproblem,

which was addressed in Dorndorf and Schneider (2010) in two crane settings. For

both twin cranes and crossover cranes, they provide efficient algorithms to optimally

determine the priority of cranes in terms of makespan minimization if the sequence

of containers to be transported is fixed for both cranes. This subproblem is em-

ployed in a branch-and-cut approach, determining the assignment of containers to

cranes and the sequences of containers assigned to the same crane in a crossover

crane setting in Nossack et al. (2017). In the work of Speer and Fischer (2016) the

productivity of several different automated yard crane systems are tested.

The first optimization approaches for QC scheduling originate from Daganzo (1989)

and Peterkofsky and Daganzo (1990). These studies, however, do not consider

non-interference constraints of cranes. Kim and Park (2004) consider non-crossing

constraints and present a model formulation along with exact and heuristic solution

procedures. Alternative solution methods are presented by Lee et al. (2008b), who

also provide an NP-hardness proof. Related contributions are also provided by Lee

et al. (2008a), Lim et al. (2004, 2007) and Zhu and Lim (2006). A comprehensive

review on QC scheduling is provided by Bierwirth and Meisel (2010, 2015).

Although it appears that seaport container terminals are more prominent as fields of

application in the scientific literature, similar crane settings arise in train terminals;

for a survey, see Boysen et al. (2013, 2017). Rail-road terminals have become one of

the cornerstones of intermodal freight, with their main purpose being to serve as an
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interface between different modes of transportation. In rail transport, there is also

a trend toward automation, as discussed in Rotter (2004), although the degree of

automation is still far behind that of ports. In a railway container terminal, freight

trains are parked on parallel transshipment tracks of the terminal.

A terminal segment generally consists of between two and four parallel tracks, al-

though a maximum gantry span of six tracks is possible; see, e.g., Steenken et al.

(2004). Furthermore, a floor storage area enables intermediate container storage for

cases in which a delivered container cannot be immediately shipped to the respec-

tive outbound truck or train. Typically, one or multiple gantry crane(s) span all

three elements (i.e., tracks, storage area and truck lanes) such that containers can

be directly moved to their destinations in a single step. Up to four of these gantry

cranes serve a terminal segment in parallel.

Boysen and Fliedner (2010a) assign static and disjoint crane areas to a bundle of

trains with given parking positions to minimize the makespan of train processing.

They present a polynomial dynamic programming procedure for solving the resulting

problem and test the solutions against typical real-world policies in a simulation of

yard operations. As a complementary work, Briskorn and Fliedner (2012) consider

the problem of determining parking positions for given crane areas. Alicke (2002)

assigns a given set of crane moves to cranes with overlapping areas of operation,

which are blocked whenever a crane enters an area. Whenever a start or target

position falls in an overlapping area, the procedure dynamically determines which

of two neighboring cranes processes the move.

At the border of two countries and railway systems, rail–rail terminals are also

used to bridge different track gauges. This requires a special yard setting in which

complete train loads are transshipped by cranes onto a train with the gauge width of

the destination railway system. Martinez et al. (2004) investigate two simple rules

for crane scheduling at a terminal on the border between France and Spain. Both

rules were compared through a simulation study. The same terminal is investigated

by Gonzalez et al. (2008), who provide a mixed integer model to jointly determine

the load plan of outbound trains and crane schedules. Their objective is to minimize

crane travel distances while observing the weight and length restrictions of wagons.

The model is solved using an off-the-shelf solver that is shown to be suitable for

real-world instances of small size. In Cichenski et al. (2017) several sub-problems of
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the rail–rail transshipment yard scheduling problem are solved with an integrated

MILP model as a single optimization problem.

For all the aforementioned systems, one or more cranes, which can pass each other

only under certain circumstances or cannot pass each other at all, move along a line

and deliver containers to handover areas, pick up containers in such areas or relocate

containers within the storage area. A considerable amount of the models developed

thus far are based on similar or even identical cores; see Boysen et al. (2017). How-

ever, to the best of our knowledge, no unifying test data generator has yet been

established. Hartmann (2004) describe how to generate test scenarios for container

terminal logistics. The scope is, however, the terminal as a whole. Therefore, sce-

narios are generated with respect to the arrival and departure of containers at the

interface of the terminal to the outside. Expósito-Izquierdo et al. (2012) present an

instance generator with varying degrees of difficulty for the pre-marshalling problem

at container terminals. Here, the objective is to minimize the number of reshuffle

movements so that no further relocations are necessary. In other fields of operations

research, parameter-based generation of data has been successfully introduced; see

Hall and Posner (2001) for machine scheduling, Kolisch et al. (1995) for project

scheduling, and Leyton-Brown and Shoham (2006) and Leyton-Brown (2011) for

auction settings.

1.2 Contribution and structure

In this paper, we present an instances generator that focuses on crane systems

that handle containers. Consequently, data are generated from the perspective of

the crane system operator, resulting in instances, which reflect real life situations.

These instances might, but need not be particularly hard instances for the various

potential problem settings.

The test data generator is accessible at www.instances.de/dfg and allows test data

to easily be generated and shared. Instances can be generated directly by using the

web page or with the help of the API documented there. The remainder of this

paper is structured as follows. In Section 2, we outline environments where such

problem settings arise for which we generate test data. Furthermore, a generic model

as a base for the generator is developed. Section 3 details the data provided by the
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test data generator, and Section 4 outlines how to derive complete test instances

from such data. In Section 5, we present examples for research projects where our

generator fits the optimization model investigated. Finally, Section 6 concludes the

paper.

2 Problem settings and generic model

In this section, we first outline the relevant aspects of the problem environment with

regard to scheduling gantry cranes in different terminals. Then, we present the basic

decisions to be made when operating such cranes. Finally, we derive a generic model

that captures substantial characteristics of the encountered problem settings.

2.1 Problem environment

2.1.1 Seaport terminals

The material flow through seaport container terminals can be divided into three

classes. Land-sea containers arrive by truck or train and are received by gantry

cranes. These cranes intermediately store the containers in the block. A situation

may arise in which a container is relocated (potentially multiple times) before leaving

the block. Later, the container is delivered by the crane to a transport device (if the

crane is fixed to the block) or directly to the respective QC. Once the QC receives

the container, it loads it onto the vessel. Sea-land containers basically travel through

the terminal in reverse order. Finally, sea-sea containers share the travel direction

with sea-land containers until they are stored in the block. Afterward, they share

the travel direction with land-sea containers.

In stylized schemes, as shown in Fig. 1, we imagine the seaside area and landside

area of the terminal as being separated by the storage area. In the landside area,

land-sea containers arrive and sea-land containers are loaded on landside transport

to depart the terminal. In the seaside area, sea-land containers arrive and land-sea

containers are loaded on vessels to depart the terminal.

Considering the scheduling of cranes, both gantry cranes and QCs, we decouple the

planning problems for adjacent transport devices from our focus. We assume that

the scheduling of, e.g., AGVs has either been performed previously and therefore
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imposes constraints for the crane schedule to be taken into account or (conversely)

is performed afterward with accepting the crane schedule as a given.

Furthermore, we assume that reshuffle decision have already been made. If reshuf-

fling becomes necessary because of blocked containers, this process usually follows

predefined rules. Foresightful reshuffles are typically planned less frequently and

with a considerably longer planning horizon. In seaport operations, this situation is

commonly called housekeeping (see Ehleiter and Jaehn (2016)).

From the perspective of the crane operator, it is then convenient to consider the

following three types of containers. Containers of every type essentially impose a

transport job for the crane.

• Storage containers arrive at a certain point of time at the block and pose a

transport job from the arrival point to the dedicated storage location.

• Retrieval containers initially have a position in the block and have to be de-

livered by the crane to a (possibly fixed) position in a handover area. There

may be a due date for this delivery.

• Reshuffle containers initially have a position in the block and have to be de-

livered by the crane to a (possibly fixed) new position in the block.

Note that a single container is first a storage container, possibly a reshuffle container

and finally a retrieval container. However, considering that we focus on scheduling

Figure 1: Schematic outline of the HHLA Container Terminal Altenwerder (CTA);
HHLA (2017)
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problems of cranes, an instance of the problem under consideration may have a

planning horizon in which a container is only a storage container or only a retrieval

container. However, we explicitly consider containers to be storage containers and

retrieval containers.

Each individual container can be described according to the classes described above.

However, the entirety of containers imposing transport jobs at a certain moment is

hardly a set of independent containers. Depending on the crane under consideration

and depending on the transport mode of containers, we may observe batches of

containers that are arriving (or leaving) at the same time point or at least within a

small time window. Major seaport container vessels have capacities of greater than

18,000 TEUs. Even if only a small portion of these containers are (un)loaded in

a single port, a considerable number of containers is available for unloading at the

same time or has to be loaded meeting the same deadline. This is obvious for QCs,

but this effect also carries over to gantry cranes. Here, we observe periods where

retrieval containers clearly outnumber storage containers and vice versa. The same

holds true for containers being transported by train on the landside.

The stacking structure may also impose an interdependence of containers. Clearly,

retrieval containers being stacked upon each other have to be picked up in the

implied order. Conversely, for QCs, a stacking plan is predetermined that details

how to locate containers within the vessel. Finally, for gantry cranes, the container

loading sequence of vessels may impose precedence constraints since a container that

is loaded earlier should leave the block earlier.

2.1.2 Train terminals

The typical layout of a rail-road transshipment terminal is shown in Fig. 2. In addi-

tion to containers, the scenario considered here may also include other standardized

loading units that can be moved by gantry cranes. These units include swap bodies

and semitrailers, although in our terminology, we will simply refer to containers. In

contrast to applications at seaport terminals, the handover points for containers are

parallel to the tracks that are used by the gantry cranes.

At rail-road transshipment terminals, we may also differentiate between three classes

of material flows. Truck-train containers arrive by truck and must be loaded onto

25



II Research Paper R1

a train. In contrast to the aforementioned situation at seaports, this task can be

performed by a single crane move without intermediate storage. However, due to

early arrival of the truck or other factors, an intermediate storage of the container

might be reasonable or even necessary. Train-truck containers travel in the reverse

order, also with a possible intermediate storage. Finally, train-train containers are

to be moved from one position on a train to a different position on some other train.

In this situation, an intermediate storage might be necessary if a train delivers

a container dedicated for a train that has yet to arrive. Another reason for an

intermediate drop off might be that the container’s dedicated position is located far

away. Because the crane should not interfere with all other cranes, which then have

to yield way and therefore stop working, the container is handed over to the next

crane using the storage area. This process might be supported by automated sorters

in the storage area that move the container to its final horizontal position such that

it can be moved onto the train by some other crane.

We focus on the processes of the cranes and omit the other vehicles involved, which

include trucks, trains, and the aforementioned sorter. The container moves within

a rail-road transshipment terminal have a very different structure than those at

seaport storage areas. In the latter, there are only a few handover points on the

short side of the working area. Here, the largest part of the working area consists

of a handover area, namely, all truck lanes and tracks. Therefore, we do not further

distinguish the jobs of cranes (e.g., as storage, retrieval, or reshuffle containers)

because they can all be identified by an origin and by a destination somewhere in

the working area (only moves from truck lanes to truck lanes and from storage area

Figure 2: Schematic outline of a rail-road terminal
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to storage area do not appear).

Note that the situation at train terminals differs from seaport terminals in even more

aspects than those already mentioned. In particular, since there are commonly no

containers going from one short side of the block to the other, crane interferences

might not appear. Therefore, assigning a fixed working area to each crane is feasible

in some cases. Additionally, the degree of capacity utilization is generally lower

for the storage area at train terminals than for the one at seaport terminals. In

combination with the fact that stacking heights of at most two tiers are common

at train terminals, reshuffling aspects are completely exceptional. However, crane

scheduling is also an important task here.

2.2 Crane scheduling problems

As outlined in Section 2.1, the sole purpose of the crane system is to conduct trans-

port jobs. When scheduling the cranes at hand to accomplish transport jobs effi-

ciently, there are a variety of decisions to be made depending on the actual crane

configuration.

1. For each transport job, it has to be determined whether the corresponding

container is set down once or multiple times before reaching its destination.

Depending on the answer, the transport job is broken up into several parts,

and it has to be determined where the container is set down.

2. For each transport job and each of its parts, it has to be determined which

crane the job is assigned to. Note that in the case of a single crane, there is

no decision to be made here, and it is highly unlikely that a transport job will

be broken up into multiple parts.

3. For each crane, a sequence of assigned parts needs to be determined, prescrib-

ing the order in which these parts are conducted.

4. For given sequences of parts for each crane, the actual routing of cranes has

to be determined. This routing determines the position of cranes over time.

Each of these decisions has been addressed in the scientific literature. Some ap-

proaches address a problem that integrates multiple such decisions, whereas others
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focus on a single one. At the very core, however, we can find transport jobs (possibly

with additional information) as input to the optimization methods.

2.3 Generic model for crane systems

To describe our generic model, we first outline the commonalities of the crane sys-

tems introduced in Section 1 with respect to operating decisions. First, we have a

three-dimensional grid where containers are stored. For simplicity, we assume that

all containers to be stored are identical (we return to this issue in Section 3.2).

We will refer to the entirety of storage positions as block in the following. Second,

although cranes vary in detail, they share the following characteristics. The gantry

consists of a beam spanning the entire block along one dimension and two columns

that the beam rests upon. These columns (and therefore the entire gantry) are

movable along a second dimension of the block. The beam carries a trolley with an

attached spreader, which can be moved along the third dimension of the block (this

dimension is generally oriented vertically); see Fig. 3. Additionally, the trolley can

be moved along the beam. Therefore, by moving the trolley, the gantry and the

spreader along the first dimension, the second dimension, and the third dimension,

respectively, the spreader can reach each position in the grid. Additionally, the trol-

ley can move outside the block area to handover positions for exchanging containers

with other transport devices. This occurs either by moving the gantry along the

second dimension or by moving the trolley along the first dimension. We will refer

to the positions of containers along the first, second, and third dimensions as trolley

slot, gantry slot, and spreader slot, respectively; see Fig. 3. In each dimension, we

number slots in the block in orientation of this dimension beginning from 1. Han-

dover positions exist on two opposite sides of the block only. Depending on whether

they are reached by moving the entire gantry or only the trolley out of the block,

they are addressed by gantry slots 0 and N + 1 or trolley slots 0 and N + 1, where

N is the number of respective slots in the block.

One of the defining features of models is that they represent the original in a simpli-

fied way. A common approach to simplify the representation of the physical block

is to reduce the number of dimensions considered. Consequently, we find models

that consider two dimensions only (gantry slots and trolley slots), and it is even
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more common to consider a single dimension (gantry slots) only. These models are

well justified in the respective pieces of literature, but we shall at least provide an

example for a justified simplification of that type here. Briskorn and Angeloudis

(2016) and Briskorn et al. (2016) consider crane systems in which the trolley and

the gantry can move in parallel. Considering that the travel time of the gantry is

typically considerably higher than the travel time of the trolley, the total time for

the trolley to be adjusted in the correct position can be approximated by the gantry

travel time. The travel time of the spreader can be encoded in the processing time of

the operation that the crane is conducting in the current position. One of the main

concerns in both Briskorn and Angeloudis (2016) and Briskorn et al. (2016) is the

interference of cranes, which can be accurately captured by their positions according

to the gantry slot. Consequently, the corresponding model considers a block of one

dimension only. To support such models, we also allow for one- or two-dimensional

blocks. Note that we necessarily consider gantry position, whereas spreader slots

are only considered if trolley slots are also considered. In the following, the term

position refers to a slot number for each of the dimensions considered in the model

at hand.

In the block, containers are stored temporarily. Considering a specific problem

setting, containers either arrive at one of the handover areas during the planning

horizon or are stored within the block at the beginning of the planning horizon.

Conversely, containers are either handed over to another means of transport or are

stored within the block at the end of the planning horizon. Consequently, each

container has an origin; a release date, which marks the point of time it is available

to be handled by the crane system; a destination position; and (possibly) a due date,

which marks the point of time it is expected to have reached its destination position.

Some containers may be more important than others, and there may be precedence

relations stating that a certain container can be handled only after another container

has been handled.

There may be multiple cranes operating in the same block, in which case they are

necessarily aligned along the second dimension. Fig. 3 depicts the model compo-

nents as described above.

Thus far, the generic part of a problem setting and therefore the part that is to

be captured by the instance generator have been described. However, these pieces
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of information do not fully specify a problem setting. The type of cranes and the

operating regulations need to be defined. As we will show in the following, these are

quite unique.

If there is more than one crane operating in one block, then these cranes can hardly

operate independently from each other. The actual restrictions depend on the actual

crane setting, and therefore, they are highly individual. Consequently, we do not

cover these properties by the generic model or by the data provided by the instance

generator. In the following, we present some examples for operating regulations,

first to exemplify the problem context of our generic model and second to illustrate

the substantial variety of regulations justifying us to draw the line between generic

model and individual setting here.

• Independent from the actual crane setting, each crane has a specific operat-

ing speed. This speed refers to moving speeds along each of the dimensions.

Furthermore, movement along one of the dimensions generally consists of an

acceleration phase at the beginning, a speed phase in the middle, and a decel-

eration phase at the end. Whether to accelerate to the full speed also depends

on the operating regulations. The characteristics of the acceleration and de-

Figure 3: Schematic outline of a typical storage block with crossover cranes
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celeration phases are very individual and may depend on whether a container

is being carried.

• Although theoretically possible, moving along all three dimensions in parallel

is rarely allowed. Often, movements along the first and second dimensions are

allowed in parallel. For example, only after the trolley has been placed in the

final gantry slot and trolley slot, the spreader can be lowered. Conversely, only

after the spreader is at full height, further movements can be started.

• In a twin crane setting, we have two cranes that are identical (or can be as-

sumed to be identical with respect to the operating regulations). Hence, these

cranes cannot pass each other, which means that in each point of time, one

crane must be at a smaller gantry slot than the other. This is surely the most

characteristic operating regulation. Further regulations may involve safety dis-

tances between cranes to prevent collisions due to malfunctions or damages

caused by swinging containers. Additionally, cranes may not be allowed to

move toward each other in parallel, speed reductions must be followed if the

distance of two cranes is below a threshold, or the cranes may be restricted to

operate in designated operating areas (overlapping only in a rather small area).

Note that regarding the above, we can easily consider blocks where more than

two identical cranes are operating. In addition to actual container blocks in a

storage area, QCs and cranes in train terminals serve as prominent examples

here. Note that there may be more than two identical cranes, particularly in

these cases.

• In a crossover crane setting, as shown in Fig. 3, we have two cranes, which

differ in height and beam length. This allows the smaller crane to move under

the larger crane. This may occur under specific circumstances. For example,

it may be possible only when the larger crane is not carrying a container. In

other settings, it is possible when the larger crane is carrying a container but

the trolley of the larger crane has to be moved beside the beam of the lower

crane.

• In a triple crossover crane setting, we have two twin cranes and a larger crane.

Each pair of larger crane and a single smaller crane can be regarded as a

31



II Research Paper R1

crossover crane for the purposes of operating regulations. Consequently, com-

binations of regulations are as described above.

To summarize, we have three types of information related to a problem instance

concerned with operating a specific crane setting: first, information about the block

itself; second, information about the transport jobs to be conducted; and third,

information about the crane system. The former two are covered by our generator,

whereas the third is not.

3 Test data

In this section, we describe the data created by the test data generator. We consider

three levels of data collection. First, a basic instance describes the situation at a

single block and a set of containers to be picked up and delivered somewhere else

faced by the crane set-up under consideration. Second, we have files with multiple

basic instances generated in a single execution of the generator and thus based on

the same parameter setting. Finally, we have projects collecting multiple files that,

e.g., have been used in the same computational study. In contrast to basic instances

where all pieces of information are collected in a single file, we consider extended

instances where complex information is spread over multiple files.

In Section 3.1, we describe the data fields that are given in files explicitly. Common

structures imposed by the values of these fields are presented in Section 3.2. In

Section 3.3 we describe the concept of projects.

3.1 Data format

A basic instance conveys the data related to a set of containers. We distinguish

between containers to be transported and containers not to be transported. We

refer to the former as moving containers and to the latter as stationary containers.

Moving containers are clearly the focal objects in terms of transportation. Stationary

containers are used to describe specifics of the load of the block, which are important

particularly if one considers a setting in which the positions for moving containers

are to be determined. Depending on the scenario, a basic instance can contain

the data elements detailed below. Some of the elements are mandatory since we
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assume that they are relevant irrespective of the scenario that is considered. Hence,

all mandatory elements must be specified by the user so that a basic instance is

valid.

• The Number of Dimensions is an integer number between 1 and 3 and is

mandatory.

• The Block Size is mandatory and defines the number of slots available in

each of the dimensions considered.

• The Handover Position is a mandatory integer number equal to 1 or 2,

defining whether the handover position is aligned to dimension 1 (gantry slots)

or to dimension 2 (trolley slots).

• Each container has an ID, which is a numeric identifier that is unique among

containers of the basic instance. The ID is mandatory. A basic instance with

c containers uses IDs 1, 2, ..., c.

• We distinguish eight cases regarding the moving characteristics of containers.

Consequently, the Case of a container is an integer number in 1, . . . , 8 (to be

described in Section 3.2.2). The case is mandatory.

• An Origin Position for each container is mandatory. Recall that a position in

the block is addressed by gantry slot and possibly by trolley slot and spreader

slot.

• The Destination Position is addressed following the same pattern as the origin

position.

• Each container has a Stacking Value, which is a numeric value that enables

the user to implement stacking rules.

For example, containers can be stacked upon each other only if they have

identical stacking values, or a container can be stacked upon another container

only if the stacking value of the first container does not exceed that of the

second container. Note that the stacking rule itself is not covered by a basic

instance but rather has to be represented in the model to be evaluated.
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• A container’s Release Date signals the first point of time that a container can

be picked up.

• A container’s Due Date specifies the point of time that the container should

be delivered.

• Each container has a numeric Abstract Value that might represent other rele-

vant characteristics (e.g., the assigned crane, block, the ship the container is

ultimately to be loaded upon or its priority).

• The Set of Predecessors is a list of container IDs. This list contains containers

that have to be handled prior to the container under consideration. To keep the

representation as short as possible, only direct predecessors are listed explicitly.

There are clearly other important characteristics that are essential for a full descrip-

tion of the setting. However, most of them either can be derived from the above

parameters or are too complex or diverse to be represented by a reasonable set of

parameter values. We discuss this issue in Section 4.1.

3.2 Data structure

In the following, we take a closer look at the design and structure of data elements

and provide examples on how they can be interpreted depending on the underlying

scheduling model.

Clearly, it is useful to support randomly generated data elements. The generator

uses a seed based mersenne twister algorithm to provide a fast generation of consis-

tent pseudo-random numbers. The test data generator offers several discrete integer

distribution functions. These functions can be employed for generating various data

elements, e.g., positions, release dates, and due dates. The test suite provides func-

tions that generate parameters according to a uniform distribution and the normal

distribution. Furthermore, it offers a truncated normal distribution function, which

resembles the characteristic of the normal distribution but limits realizations to a

certain interval. Finally, an arbitrary distribution on a finite number of possible

realizations is implemented. The user can specify the parameters of each of these

distributions. We detail these built-in distributions in Appendix 6.
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3.2.1 Block layout

The block layout consists of the three pieces of information. First, the number of

dimensions under consideration is given. If we consider only one dimension, it is

necessarily the one that the gantry moves along. If two dimensions are considered,

we consider gantry slots and trolley slots. Only if three dimensions are considered

do we take spreader slots into consideration. The block size is given as integer

numbers of slots ng and possibly nt and ns available in the first, second, and third

dimensions by the gantry, trolley, and spreader. The handover position is necessarily

reached by moving the gantry out of the block and is addressed by gantry slots 0

and ng + 1 if only one dimension is considered. Otherwise, the handover position

may be addressed by either gantry slots 0 and ng + 1 or trolley slots 0 and nt + 1.

In the former (latter) case, the Handover Position evaluates to 1 (2) since it is

reached by moving along the first (second) dimension. If three dimensions are con-

sidered, then the spreader slot of handover positions is 1, that is, we assume that

handovers occur on the floor level.

3.2.2 Cases

We consider eight different cases, that is, moving characteristics, of containers. The

cases differ in the origin and destination positions on the storage or handover area.

1. Low handover to storage: The container arrives at the lower handover position,

that is, in slot 0, and is to be stored in the block.

2. Storage to low handover: The container is located in the block and is to be

delivered to the lower handover position, that is, to slot 0.

3. Inner movements: The container is located in the block and is to be moved to

a different location in the block.

4. High handover to storage: The container arrives at the higher handover posi-

tion, that is, slot ng + 1 or nt + 1, and is to be stored in the block.

5. Storage to high handover: The container is located in the block and is to be

delivered to the higher handover position, that is, slot ng + 1 or nt + 1.
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6. Low handover to high handover: The container arrives at the lower handover

position and is to be delivered to the higher handover position.

7. High handover to low handover: The container arrives at the higher handover

position and is to be delivered to the lower handover position.

8. Stationary containers: The container is not moved.

For each case, the number of containers is prescribed by the user when starting

the generation of instances. Each single container has properties as outlined in the

following.

3.2.3 Positions

Positions are generated by applying the distribution functions detailed in Appendix

6 to derive slots for each dimension under consideration. Stationary containers only

have an origin position. Note that by using the built-in distribution functions, we can

generate scenarios where locations are spread evenly along each relevant dimension

or are clustered around certain values. Positions are in line with the corresponding

case. For example, an origin position is located in the respective handover position

in cases 1, 4, 6, and 7 in Section 3.2.2, and the destination position is located within

the block in cases 1, 3, and 4.

Once the generated position data exceed the corresponding block size dimensions,

the position values are repeatedly determined according to the chosen distribution

until the position is located inside the given block. Note that this might result in a

distribution that differs from the one specified by the user.

3.2.4 Precedence relations

The test data generator offers three generation schemes that allow control over the

structure of the precedence relations between containers to some degree.

• The generator supports arbitrary precedence relations using the probability

density function (1) described by Hall and Posner (2001). The user can specify

a target density D, 0 ≤ D ≤ 1, of precedence relations. Setting D = 1 implies

a precedence relation for each pair of containers, whereas D = 0 results in no

precedence relation.
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To guarantee acyclicity of the precedence relations, we never consider contain-

ers with a lower ID to be the successor of a container with a higher ID. We use

this probability function to determine precedence relations between containers

with IDs i1 and i2, i1 < i2.

Pi1,i2 =
D(1−D)i2−i1−1

1−D(1− (1−D)i2−i1−1)
. (1)

As stated in Hall and Posner (2001), the value of Pi1,i2 decreases more rapidly

for higher values of D as the value of i2 − i1 increases. This illustrates the

intuition that the existence of a precedence relation i1 to i2 is more likely to

be implied by transitivity in higher density graphs.

• We consider a chain structure, that is, we have subsets of containers and

precedence relations such that there is a precedence relation between each

pair of containers within the same subset and there is no precedence relation

between containers of different subsets. Here, the generator offers the ability

to specify a minimum number n and a maximum number n of containers in a

subset. The probability for a subset to have size k amounts to 1/(n− n + 1)

for each n ≤ k ≤ n. Note that the chain structure can be found throughout

fields of applications of our model. For example, stacks naturally imply linear

precedence relations among subsets of containers. In some applications, it will

be reasonable to have precedence constraints only between containers of the

same case. Consequently, we allow the user to enforce this.

• We consider a batches of chains structure. Here, chains are generated as

detailed above. Furthermore, chains (that is, the containers connected by

being in the same chain) are grouped into numbered batches. No precedence

relation is imposed between containers in different chains but in the same

batch. However, each container in a batch with a smaller number must be

handled before a container in a batch with a higher number.

The user specifies a number of batches b. Each chain is assigned to a batch

number according to a uniform distribution U [1, b]. The presented structure

reflects incoming ships or blocks on ships. Here, a batch may represent a ship,

and the chains within a batch correspond to stacks stored on the ship.
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3.2.5 Other container data

Stacking values, release dates, due dates, and abstract values are also generated by

applying the distribution functions detailed in Appendix 6. In many applications,

it will be reasonable to have containers with release dates that do not exceed the

corresponding due dates. Consequently, we allow the user to enforce this constraint.

In that case, the release and due dates are chosen randomly according to the cor-

responding distribution. Both values are repeatedly determined according to the

chosen distribution until the realization is not smaller than the release date. Note

that this might result in a distribution that differs from the one specified by the

user.

3.3 Projects

Projects represent a collection of multiple files denoted with an arbitrary project

name. By using the instances generator the user can specify a Project Name under

which the respective file is stored. The project name serves as an unique alphanu-

meric identifier which can be used to recreate or share a collection of files, e.g. to

simulate certain aspects of a specific real-world problem. Once all necessary files

are attached to the project, the user can publish it and thus make sure that no

further changes can be made. This enables the user to share the project without the

worry of unauthorized changes and therefore establish fixed benchmark instances

for a specific problem setting. A collection of all published projects can be found

here: www.instances.de/dfg/published.php

4 Deriving test instances

In the section at hand we describe how to derive full test instances. Note that some

parameters necessary for test instances might not be given explicitly by the test

data itself, see Section 3. Thus, we need to complement the data to get full test

instances. Some of the parameters are implied by the data in the file, others have

to be rounded up by the user. Both is detailed in Section 4.1. In Section 4.2 we

describe how several files can be combined to create richer instances. In Section 4.3,

we present examples on how to derive instances based on practical scenarios.
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4.1 Additional information

We use the data presented in 3.1 to derive additional information and describe which

data can be estimated by the user.

4.1.1 Capacity of the block

The capacity is defined by the block size parameters. Once all three slot dimensions

(gantry, trolley and spreader) are given, the maximum container capacity of the

block can easily be derived.

4.1.2 Utilization of the block

The number of all containers in a basic instance divided by the capacity of the

corresponding block results in an upper bound for the utilization. Once we only

consider retrieval and stationary containers, we receive the utilization at the start

of an instance. Whenever we consider all stationary and storage containers with

a valid destination on the block, we can calculate the utilization at the end of the

process.

4.1.3 Structure of the block

Stationary containers can be used to create a static structure with a certain uti-

lization of the block at the beginning of the process. Once this option is used, the

destination positions of storage containers might be undefined and solely depend on

the container structure. Depending on how the stationary containers are distributed

along the gantry and trolley slots, we achieve different accumulations of containers

inside the block.

4.1.4 Assignment of cranes

The test data generator offers no direct assignment of containers to cranes; this is

generally predefined by the selected case. Containers with the same moving behavior

are often operated with the same crane. However, when a fixed assignment of

containers to cranes is required, the abstract value can be used to assign a crane

number to each container.
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4.1.5 Missing information

There are clearly other characteristics that are important in seaport terminals. How-

ever, these characteristics are not suitable to be modeled using the generator and

can easily be estimated by the user. Here is a list of missing information that the

user should take into consideration.

• Number and speed of cranes

• Type and crossing constraints of cranes

• Size of gantry, trolley and spreader slots

4.2 Extended instances

The user can also generate extended instances by using multiple files to describe a

single setting, for instance, to achieve a hierarchical structure with a child file and

a parent file. Assume that we generate a file in which containers are clustered into

batches of chains. We call this file child, where the batch ID serves as a foreign key.

Hence, to achieve individual data for each batch ID, we generate a parent file in

which the IDs (primary key) serve as reference to the batch IDs (foreign key) (see

Example 4.3.3). Thus, we can generate individual release or due dates for each batch

ID. In addition to batches, this procedure could also be used to generate individual

data for other container subsets.

4.3 Examples

In the following, we provide practical examples on how to generate instances for

specific real-world problems. We use three dimensions and a 30 × 10 × 5 block

layout for all example instances. The Handover Position is 1 for all Examples.

The Origin and Destination Positions are uniformly distributed along the block

dimensions for all examples. The presented examples are available under the project

name ’examples’.
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4.3.1 Example 1: Store containers

We store containers inside a block from both sides: the low and high handover areas.

There are 100 incoming low handover to storage containers (case 1) and 100 high

handover to storage containers (case 4). Furthermore, all containers have uniformly

distributed Release Dates U [0, 500] and weightings U [1, 3]. We use the Abstract

Value to generate the container weightings.

4.3.2 Example 2: Inner movements

A total of 100 inner movement containers (case 3) are re-stacked inside the given

storage block. We use the Abstract Value with the arbitrary distribution to assign

containers to cranes: 40% are assigned to crane 1 and 60% to crane 2.

4.3.3 Example 3: Batches with child and parent files

A total of 100 low handover to storage containers (case 1) are divided into 5 batches.

The chain structure is generated with a minimum and maximum of 5 containers,

which results in equal-sized chains. Each chain is assigned to a batch number. We

generate the data for each batch in a second file. A batch has normally distributed

Due Dates N [500, 200]. We generate two files: a child file with the container data

and a parent file with the batch data.

4.3.4 Example 4: Online case; due dates with data availability times

A total of 100 low handover to high handover containers (case 6) pass through

the block with uniformly distributed due dates U [0, 1000]. The due dates define

the arrival of trucks at the high handover area. To simulate an online case we

use uniformly distributed data availability times U [0, 1000] (here: release dates).

Furthermore, there is a gap of at least 100 time units between the data availability

and the actual due dates.

5 Applications

In this section, we will outline examples for the research projects that could have

been supported by our test data generator. Our intention is not to question any
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previous results or existing instances. Rather, we want to emphasize that literature

supports the purpose of the generator and its broad applicability.

5.1 Seaport terminals

In Briskorn et al. (2016), two cranes at a single block are considered that cannot

pass each other. The authors use a simplified model that covers only a single di-

mension. A set of containers is waiting for pickup in one of the handover positions.

A destination position within the block is given for each container. Hence, one of

the cranes has to pick up each container and can either move it to its destination

position or to another position. In the second case, the other crane picks up the

container and delivers it to the destination position to share the total workload be-

tween both cranes. The pickup sequence of containers and the delivery position of

each container are to be decided for the first crane. For the other crane, the pickup

sequence of those containers not delivered to their destinations by the first crane

has to be determined. Finally, in case both cranes interfere, the priority of way has

to be decided. Test instances for this problem setting can be created using our gen-

erator as follows. Obviously, we consider a single dimension only for a block with a

certain number of gantry slots. Due to symmetry, we can assume that all containers

have a moving behavior according to case 1. This implies the origin position for

each container. The destination position can be generated using one of the built-in

distribution functions. In Briskorn et al. (2016), no further characteristics of con-

tainers are considered, but for future research, it would be easy to enrich instances

with container’s release dates or due dates. This has been done by Jaehn and Kress

(2017) with the help of the generator at hand.

5.2 Robots

In Erdoğan et al. (2014), two robots are positioned on a rail with a non-crossing

constraint. Both robots perform transport jobs, that is, they pick up objects at

depots at both ends of the rail and deliver them to destination positions along the

rail. The objective is to minimize the makespan. In the basic problem, no loading or

unloading times are considered and only one dimension (along the rail) is relevant.

The execution time of each job depends on the distance traveled between the depot
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and destination position. In addition, waiting times in the depot may occur to

avoid collisions with the other robot. Further, in Boysen et al. (2015), the setting is

enriched by constant loading and unloading times. The paper by Jaehn and Wiehl

(2018), which builds up on Erdoğan et al. (2014), uses instances that are created

with the presented test data generator and are available under the project name

’trsp’.

We use cases 1 and 2 for the first and cases 4 and 5 for the second to define the set

of jobs performed by each robot. We consider a single dimension (the rail) with a

certain number of gantry slots and use the built-in distribution functions to define

the positions of the jobs along the rail. We can use the abstract values to add

loading and unloading times to an instance. For future research, we could easily

further enrich instances by adding another dimension, release dates, due dates or

precedence relations.

5.3 Intermodal transshipment terminals

The paper by Boysen and Fliedner (2010b) treats a problem arising in rail-road

terminals as depicted in Fig. 2. An operational task is considered in which a set

of trains is located within the yard and containers or other loading units have to

moved from the trains to trucks and vice versa. It is assumed that the cranes do

not have to perform any movements of containers from a train to another train or

to and from the storage area. Moreover, trucks delivering or receiving a container

are always expected to be in a position such that the container is not moved in the

direction of the gantry slots. Thus, it can be ensured that cranes do not interfere

if each crane exclusively receives its own working area. The workload of a single

container is a given input parameter, which is simply determined by the container’s

trolley slot. The objective is now to determine crane areas such that the maximum

workload of the cranes is minimized.

Boysen and Fliedner (2010b) self-generated test data for which they provide a precise

description of the chosen parameters; thus, an application of our instance generator

would have been reasonable. Because containers only differ by their position in the

storage area, it is sufficient to classify all containers to case 1. Two dimensions are

considered. Although the alignment of the handover area is at dimension 2, this
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information is not necessary for this specific problem setting. Boysen and Fliedner

(2010b) use 50 gantry slots and up to 5 trolley slots. Containers are distributed

along the gantry slots using a truncated normal distribution (to be more precise,

the train length is chosen to be a truncated normal distribution, which in turn leads

to a truncated normal distribution of the containers). Along the trolley slots, the

containers are uniformly distributed. No further container-specific data are needed.

6 Conclusion

We present a test data generator that covers different scenarios reflecting common

situations at seaport container terminals, warehouses and train terminals. The flexi-

ble generation schemes cover a large part of the problem settings already investigated

in previous research projects but also aim to cover those that are yet to come.

We support eight common container moving characteristics within a storage area.

Depending on the operational stage of the process, some information is already

given or has yet to be determined. This information includes position data, con-

tainer processing sequences, release and due dates, assignment to cranes and others.

The combination of the aforementioned characteristics leads to a large selection of

possible problem settings. The test data generator and thus the presented gener-

ation schemes are accessible for scientists worldwide. Furthermore, the generated

instances remain comparable for novel optimization approaches, models, algorithms

and tools developed in future projects. A consistent generation scheme avoids un-

intended biases in the data because the user develops algorithms for the instances

(in other words, the problem setting) and not vice versa. Finally, the generated

data are reproducible by using the project id, which supports future researchers in

establishing fixed benchmark instances for different scenarios.

Various additional requirements might arise in future projects, which are not obvious

at this time. Therefore, the design of test instances and the maintenance of the test

data generator will be an ongoing process.

We encourage other scientists to use the generator and create consistent data for

their specific project. However, the fundamental idea of this paper could also be

applied to other operational fields, such as shunting yards, airports or warehouses.
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Appendix

The test data generator offers the following distribution functions (version 1.08).

• Uniform distribution function:

Input: a, b ∈ Z, a ≤ b

Let [a, b] be the interval that limits the output. We generate a random value x′

using uniform distribution U(a− 1, b). To achieve integer numbers, we round

this value x = bx′c+ 1. Output: x ∈ {a, a+ 1, ..., b}

• Normal distribution function:

Input: µ, σ2 ∈ R+

We generate a random value x′ using normal distribution N (µ, σ2). To achieve

integer numbers, we round this value x = bx′ + 0, 5c. Output: x ∈ Z

• Truncated normal distribution function:

Input: µ, σ2 ∈ R+ and a, b ∈ Z, a ≤ b

Let [a, b] be the interval that limits the output. We generate a random value

x′ using normal distribution N (µ, σ2). To achieve integer numbers, we round

this value x = bx′ + 0, 5c. We reject x and restart the function if x < a or

x > b applies. Output: x ∈ {a, a+ 1, ..., b}

• Arbitrary distribution function:

Input: p1, p2, ..., pC ∈ R+ and v1, v2, ..., vC

Let C be the number of classes, where each class c = 1, ..., C has a probability

pc and a value vc. The value can be a number or an alphanumeric value.

First, we calculate normalized probabilities pnc = pc/
∑C

i=1 pi ∀c = 1, ..., C. In

the next step, the value vc is assigned to x with the probability of occurrence

P (X = vc) = pnc ∀c = 1, ..., C. Output: x ∈ {v1, v2, ..., vC}
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Abstract

We consider the NP-hard Twin Robot Scheduling Problem (TRSP), which was

introduced by Erdoğan et al. (2014). Here, two moving robots positioned at the op-

posite ends of a rail have to perform automated storage and retrieval jobs at given

positions along the gantry rail with a non-crossing constraint. The objective is to

minimize the makespan. We extend the original problem by considering pick-up and

delivery times and present exact and approximation algorithms with a performance

ratio of ≈ 1.1716 for large instances. Further, we compare the presented algorithms

in a comprehensive numerical study.

Keywords: Automated storage and retrieval systems, non-crossing constraints, ap-

proximation algorithms, crane scheduling.
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1 Introduction

The first automated storage and retrieval systems (ASRS) originated in the 1950s,

and since then, numerous applications in production and logistics have emerged.

The main goal of these systems is to make the storage and retrieval of goods more

efficient. This is achieved by replacing human labor with automated working units,

such as industrial robots, cranes or shuttles. Advantages compared to the non-

automated pendant are, among others, lower labor and land costs, reduced error

rates, and a higher throughput. This compares to high initial investment costs

and less flexibility, particularly during peak hours (see Bozer and White (1984)).

Depending on the practical application, different types of ASRS have arisen over

time. The survey of Roodbergen and Vis (2009) distinguishes between the movement

directions, the load to be handled, and the type of racks (stationary or movable).

Moreover, this results in various optimization problems, for instance, to determine

the optimal path of a working unit (such as cranes or robots). Unlike other routing

problems, like the NP-hard Traveling Salesman Problem, Gademann et al. (1999)

show that a special case of sequencing under certain storage policies at ASRS can be

solved in polynomial time. Further, Kim and Kim (1997, 1999) describe algorithms

for the optimal routing of a single crane at seaport terminals.

Both cases refer to the use of a single working unit, however productivity can be

increased by using multiple units. Once several units work on an overlapping area,

it is important to minimize interferences between them to ensure a smooth and ef-

ficient process. The first practical application described in literature can be found

in the steel mill and cooper industry, where industrial cranes transport materials

between furnaces and converters (see Lieberman and Turksen (1981)). Since then,

many other applications with multiple working units have been successfully estab-

lished. Besides industrial applications, others can be found in the logistical area, for

instance, at ASRS or in container transportation (at seaports and rail-terminals).

The survey of Boysen et al. (2017) provides a comprehensive overview of different

systems with multiple working units. The presented classification scheme differen-

tiates three characteristics. These can be briefly summarized as follows: First, the

terminal layout, consisting of the number of working units, the dimensions consid-

ered and the alignment of the depots or transfer points. Second, other characteristics
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such as movement, travel speed, information availability, precedence relations and

the input data (like release and due date of items to be transported). And last, the

objective, which is either productive orientated (e.g. minimizing the makespan or

empty drives) or service orientated (e.g. minimizing lateness and earliness).

The paper on hand considers a problem that can be denoted by [1D, 2, ends|mvX |
Cmax] using the classification scheme of Boysen et al. (2017). This defines a 1-

dimensional layout with two working units and two handover areas at each end of

the shared pathway [1D, 2, ends]. The working units store and retrieve items along

the storage and handover area with a non-crossing constraint. Both units respect

a constant travel speed, whereas the movements in other directions (e.g. trolley

and spreader) can be neglected [mvX ]. The objective is to minimize the makespan

[Cmax].

Figure 1: Examples for the applications of TRSP

We identify three practical applications for this generic model. First, the original

real-world motivation for this problem can be found in the industrial area. Here two

robots are (de-)palletizing boxes at given depots along a shared pathway (Fig. 1,

right). The so-called Twin Robots Scheduling Problem (TRSP) was first introduced

by Erdoğan et al. (2014). A similar problem with rail-bound transportation is

formulated as a Blocking Job Shop by Bürgy and Gröflin (2016), who consider

instances with up to 4 robots working on a common rail. Second, Kung et al.

(2012, 2014) describe similar problems where two shuttles work jointly together in

an automated storage and retrieval system (Fig. 1, middle). Last, twin automatic

rail-mounted gantry cranes (Fig. 1, left) working on a common rail are used to

ensure an efficient storage and retrieval of the containers at transshipment terminals.
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Despite the fact that the spreader moves in a 3-dimensional space (gantry, trolley

and spreader), we reduce it to a 1-dimensional problem. We neglect movement times

of trolley and spreader so that all pick-up and delivery times are independent of

previous operations. This assumption is commonly used in literature for yard crane

operations (see Briskorn et al. (2016); Ehleiter and Jaehn (2016); Jaehn and Kress

(2017)). A practical study about the sequencing of twin automated stacking cranes

is presented by Hu et al. (2016). For a comprehensive study about the performance

of other automated yard crane systems we refer to Speer and Fischer (2016).

In addition to practical applications, a few theoretical insights have already ap-

peared in the literature. Erdoğan et al. (2014) provide a proof of NP-hardness and

present exact and heuristic solution procedures in which one procedure provides

a performance ratio of 3
2
. Boysen et al. (2015) extend the problem with constant

pick-up and delivery times d > 0 and provide a heuristic decomposition procedure

tested with large instances with up to 500 jobs. Carlo and Mart́ınez-Acevedo (2015),

Briskorn et al. (2016) and Jaehn and Kress (2017) consider the case with cooperative

rail-mounted gantry cranes at seaport terminals. Here preemptive container moves

are allowed.

The paper on hand is structured as follows. The following section provides a formal

problem description and a mathematical model including practical extensions of

the TRSP and its properties. In Section 3, we present exact and approximative

algorithms for the TRSP. We investigate the performance of the procedures in a

comprehensive numerical study in Section 4. Finally, Section 5 concludes the article.

In the further course we will use the term robot as a designation for the working

unit, however this study also refers to other applications in which the storage and

retrieval process is carried out by cranes or shuttles.

2 Problem description

Two moving robots Robot 1 and Robot 2 are working on the same rail with a non-

crossing constraint. The rail inside the storage area is divided into S slots that both

robots can reach. At each end of the rail there is a depot that can only be reached

by the corresponding robot, slot 0 is assigned to Robot 1 and slot S + 1 to Robot

2. Both robots share an equal speed of one slot per time unit. At the beginning
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and at the end of the process the robots are located inside their depots. To avoid

collisions, both robots are expected to respect a security distance of one slot unit.

We assume a fixed assignment of jobs J = J1 ∪ J2 to robots. Robot 1 performs the

set of jobs J1 = {1, ...,m}, whereas Robot 2 performs the jobs J2 = {m+ 1, ..., n}.
Each job i ∈ J consists of a pick-up operation at slot ai followed by a delivery

operation at slot bi. The minimum number of time units job i covers from the

pick-up to the delivery destination is given by δi = |ai − bi|. We do not consider

inner movement jobs. Thus, either ai or bi corresponds to the depot at slot 0 or

S + 1, respectively. This defines that a job is either a storage (ai ∈ {0, S + 1}) or a

retrieval operation (bi ∈ {0, S + 1}). Without loss of generality, we assume that the

jobs in J1 and J2 are indexed with respect to decreasing distances from their depot,

i.e. δi ≥ δi+1. Moreover, there is a given time for the pick-up qai ≥ 0 and delivery

qbi ≥ 0 operation of each job i ∈ J . Further, we do not consider cooperative robots,

preemptive jobs or idle times between the pick-up and delivery operation.

Given this input data, a feasible solution requires two components. First, we define

a processing sequence of the jobs J1 and J2 for each robot, respectively. The jobs

are then intended to be processed without waiting time of the robot if possible.

Second, in order to resolve potential conflicts between the jobs of J1 and J2, we

define another sequence that regulates which job is prioritized and which has to

wait. We combine both requirements in sequence π, which defines the processing

order of both robots as well as the priority order of jobs. Again, we assume that

each robot performs its jobs consecutively until two jobs i ∈ J1 and j ∈ J2 appear

so that both robots interfere. This conflict is resolved by letting Robot 1 wait if j

appears before i in π. Otherwise, Robot 2 waits. The objective is to find a sequence

π = (π(1), ..., π(n)) for all jobs J so that the makespan is minimal, where π(k) is

the kth job in π, k ∈ {1, ..., n}. In Section 2.1, we show how to derive a complete

schedule from a given sequence π.

We divide the problem into four hierarchically structured scenarios. Scenario D

is the problem described above and A, B, C are special cases with the following

properties.

• Scenario A: Either all jobs are storage operations or all jobs are retrieval operations.

We neglect pick-up and delivery times (qai = qbi = 0).
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• Scenario B: Either all jobs are storage operations or all jobs are retrieval operations.

All jobs have equal pick-up and delivery times (qai = qbi = d ≥ 0).

• Scenario C: Either all jobs are storage operations or all jobs are retrieval operations.

The pick-up and delivery times can have varying values (qai ≥ 0, qbi ≥ 0).

• Scenario D: There are storage and retrieval operations with varying pick-up and

delivery times in the same process.

The classification of the problems is a result of previous work in this area. Scenario

A is the original problem introduced by Erdoğan et al. (2014), the pick-up and

delivery times are omitted since industrial robots can perform this process very

quickly. With respect to the situation at container terminals, Boysen et al. (2015)

introduce constant pick-up and delivery times (Scenario B). In the paper on hand we

extend the problem to varying pick-up and delivery times (Scenario C). Especially

at the container terminals the times can be rather different, for instance, because

of the stacking heights, re-stacking processes or other delays. To get even closer to

the practical problem we have introduced Scenario D, which includes storage and

retrieval operations in the same process.

2.1 Schedule generation

First, we define all necessary parameters and variables to create a complete schedule.

The dependent variable pi indicates the temporal position of job i ∈ J in π in time

units. This is the point in time when half of the pick-up time (if job i is a retrieval

operations) or delivery time (if job i is a storage operations) is performed by the

corresponding robot.

Let parameter starti represent the number of time units from the start of job i to

reach point pi, provided that the execution of i starts at the corresponding depot.

Further, let parameter endi represent the time units from point pi back to the depot

until the delivery operation of job i is fully executed. We calculate these parameters

as follows:
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starti =

q
a
i + δi + 1

2
qbi for bi ∈ {1, ..., S} (storage operation)

δi + 1
2
qai for ai ∈ {1, ..., S} (retrieval operation)

∀i ∈ J (1)

endi =


1
2
qbi + δi for bi ∈ {1, ..., S} (storage operation)

1
2
qai + δi + qbi for ai ∈ {1, ..., S} (retrieval operation)

∀i ∈ J (2)

Let completion time Ci be the earliest point in time the robot could be back in its

depot after executing job i, i.e. no detour appears, for example, because of executing

another job before returning to the depot. The completion time of job i depends

on point pi and can easily be derived from it: Ci = pi + endi. Note that for a given

solution π, a robot is not necessarily in its depot at time Ci, i.e. a job is directly

executed after job i without a detour to the depot (see job 3 in Fig. 2).

Let parameter dij be the minimum separation time between pi and pj due to robot

processing if job i follows j in schedule π. First, we consider the case when i and

j are performed by the same robot. Note that if a storage job i is followed by a

retrieval job j, the robot moves directly from slot bi to slot ai. We calculate dij as

follows:

dij =


1
2
qbi + |bi − aj|+ 1

2
qaj for bi, aj ∈ {1, ..., S}

endi + startj otherwise
∀(i, j) ∈ J1 × J1 ∪ J2 × J2

(3)

Next job i and j are processed by opposite robots. Let dij be the minimum separation

time between pi and pj so that the corresponding robots of job i and j are not

conflicting. Consequently, dij is −∞ whenever both robots are not conflicting in

any case, i.e. δi + δj ≤ S. Further, let qδi denote the pick-up or delivery operation,

respectively, that takes place inside the storage area. Hence, qδi is equal to qbi for

storage and equal to qai for retrieval operations. We calculate dij as follows:
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dij =

−∞ δi + δj ≤ S

δi + δj − S + 1
2
(qδi + qδj ) otherwise

∀(i, j) ∈ J1 × J2 ∪ J2 × J1 (4)

In the following we present two algorithms to generate complete schedules under a

given input sequence π. A complete schedule provides position data of all jobs in π

and the objective value. This includes all dependent variables wi, pi and Ci ∀i ∈ J .

We distinguish between two types of schedules, where Algorithm 1 generates a semi-

active schedule and Algorithm 2 an active schedule. In a semi-active schedule waiting

times occur only to overcome conflicts with the robot on the other side. Variable

wi denotes the waiting or idle time of robot c until a conflict-free execution of job

i is possible. If job jc is executed directly before job i by robot c then the waiting

time is: wi = pi − pjc − djci holds. If job i is the first job executed by robot c then

wi = pi − starti.

Definition 1 (Semi-Active Schedule). A feasible schedule is called semi-active if

no operation can be positioned earlier without changing the processing and priority

order of jobs in sequence π.

Algorithm 1: Semi-active schedule - O(n2)

0. Initialization:
Sequence π
j1, j2: Indicates the last job processed by Robot 1 and 2
1. Compute:
for k = 1 to n do
c ∈ {1, 2}: Denotes the robot that performs job π(k)
pπ(k) = max{startπ(k), pjc + djcπ(k)}
for l = 1 to k − 1 do

if pπ(l) − dπ(k)π(l) < pπ(k) < pπ(l) + dπ(l)π(k) then
Resolve conflict with job π(l): pπ(k) = pπ(l) + dπ(l)π(k)

end if
end for
Set waiting time: wπ(k) = pπ(k) − pjc − djcπ(k)

Set completion time: Cπ(k) = pπ(k) + endπ(k)

Update last job processed by c: jc = π(k)
end for
return makespan Cmax := max{Cj1 , Cj2}
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Fig. 2 shows an example of a semi-active schedule with four jobs and a makespan

of 42. None of the four jobs can be positioned earlier without changing the order

in π. There are three possible input sequences π for Algorithm 1 to obtain exactly

the schedule in Fig. 2: (1, 2, 3, 4), (1, 3, 4, 2) and (1, 3, 2, 4). In all sequences, the

processing order of Robot 1 is (1, 2) and (3, 4) of Robot 2, further job 1 has priority

over job 3.
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Figure 2: Schematic representation of a semi-active schedule

Definition 2 (Active Schedule). A feasible schedule is called active if it is not

possible to construct another schedule, through changes in the order of π, with at

least one job positioned earlier and no job positioned later.

Algorithm 2 changes the order in sequence π so that Algorithm 1 generates an active

schedule. The order in π is only modified if an earlier execution of a job is possible

without changing the position of its predecessors in π. The algorithm examines each

job iteratively according to sequence π. We move each job to the earliest position

in π, under consideration of the minimum separation times to its predecessors in π.

We obtain a modified sequence π which can be converted into an active schedule

using Algorithm 1, as no job can be positioned earlier with no job positioned later.

This always applies because every possible non-conflicting position before a job is

checked in Algorithm 2.
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Algorithm 2: Active schedule - O(n2)

0. Initialization:
Input sequence π
1. Compute:
for k = 1 to n do
pπ(k) = startπ(k)

k∗ = 1: Indicates the new position of job π(k) in π
2. Check for conflicts:
for l = 1 to k − 1 do

if pπ(l) − dπ(k)π(l) < pπ(k) < pπ(l) + dπ(l)π(k) then
Resolve conflict with job π(l): pπ(k) = pπ(l) + dπ(l)π(k)

k∗ = l + 1
Go to 2.

end if
end for
Move job π(k) from position k to k∗

end for
return Sequence π
Use Algorithm 1 to get an active schedule with sequence π

The semi-active schedule depicted in Fig. 2 can be converted into an active schedule.

We position job 4 earlier at time p4 = 5 without changing the positions of job 1, 2

and 3. After that, no job can be positioned earlier without changing the positions

of other jobs. For instance, with input sequence π = (1, 3, 4, 2), Algorithm 2 returns

π = (4, 1, 2, 3), which can be converted into an active schedule using Algorithm 1.

Obviously, an active schedule is also semi-active, however the reverse is not neces-

sarily true. A schedule with an optimal makespan can either be active, semi-active

or non-semi-active. However, there is at least one active schedule that is optimal.

Thus, we can restrict ourselves to finding the best (semi-)active schedule.

2.2 Mathematical program

The following mathematical program represents the TRSP. It should be noted that

a schedule derived from a solution of this model (i.e. the dependent variables pi) is

not necessarily a semi-active or active schedule.

Binary variables zij ∈ {0, 1} ensure that separation times dij (Equations 3 and 4)

are adhered to. Either zij = 1, then the minimum separation time dij from point

pi to pj is respected, or zij = 0, then the minimum separation time dji from point

pj to pi is respected. The auxiliary variable Cmax is equal to the makespan. The
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TRSP including all extensions can be formulated as follows:

Minimize

Cmax (5)

subject to

Cmax ≥ pi + endi ∀i ∈ J (6)

pi ≥ starti ∀i ∈ J (7)

zij + zji = 1 ∀i, j ∈ J : i 6= j (8)

pj − pi ≥ dij −M · zji ∀i, j ∈ J : i 6= j (9)

zij ∈ {0, 1} ∀i, j ∈ J (10)

Objective function (5) minimizes the makespan. Constraints (6) and (7) ensure that

both robots are in their respective depot at the beginning and end of the process.

We derive the objective value Cmax from constraints (6). Equations (8) ensure that

either zij = 1 or zji = 1 applies. Constraints (9) ensure that the minimum separation

time between pi and pj is respected. And finally, (10) ensure that the variable zij is

binary.

The problem without pick-up and delivery times (Scenario A) was shown to be

NP-hard by Erdoğan et al. (2014), even if each slot is only visited once. The

generalization of this problem which allows multiple visits at each slot is NP-hard

in the strong sense. As Scenario A is a special case of B, C, and D, respectively, all

Scenarios are NP-hard.

2.3 Properties

Property 1 (Lower bound). Given is an instance of the TRSP. If we relax the

non-crossing constraint, we obtain a lower bound using Algorithm 3 in O(n log n).

Let C∗max be the optimal makespan and Ωc be the minimal travel time of robot c if

we relax the non-crossing constraint, then the following holds: C∗max = max{Ω1 +
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wi,Ω2 + wj} ∀i ∈ J1 and ∀j ∈ J2. Hence, Ω := max{Ω1,Ω2} is a lower bound, as

C∗max ≥ Ω applies for all instances of the TRSP.

Executing storage or retrieval job i ∈ J in a single command takes ei = qai + qbi + 2δi

time units. This includes the time from the depot to pick-up slot ai and the time

from delivery slot bi back to the depot. Obviously, a dual command of storage job

i ∈ JS and retrieval job j ∈ JR leads to an improvement of 2 min{δi, δj} ≥ 0 time

units compared to two successive single commands.

We formulate this as an assignment problem using a complete bipartite graph G =

(JS, JR, E). Edges (i, j) ∈ E represent a dual command of storage job i and retrieval

job j with a weight of 2 min{δi, δj}. If necessary, we fill up either JS or JR with

dummy jobs so that both subsets contain an identical number of jobs (see Fig. 3).

A combination including a dummy job D represents a single command with zero

weight and distance δD = 0. The objective is to find a maximum weighted matching

M ⊆ E where all vertices in JS and JR are endpoints of exactly one edge in M .

1

2

3

4

5

6

D1

D2

JS JR

Figure 3: Complete bipartite graph G = (JS, JR, E) with 8 jobs

We calculate the minimum travel times Ω1 and Ω2 as follows: Ωc =
∑
ei−maxM

∑
(i,j)∈M

2 min{δi, δj} ∀c ∈ {1, 2}. Obviously, we only need to solve two assignment problems

which can be efficiently solved in O(n3) using the Hungarian Method (see Kuhn

(1955)).

However, with Algorithm 3 we form optimal sets of storage and retrieval jobs simply

by sorting subsets of jobs in descending order according to δi in n log n steps.
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Algorithm 3: Lower bound - O(n log n)

0. Initialization:
JSc, JRc: Sets with storage and retrieval jobs to be processed by robot c ∈ {1, 2}
We sort all sets in descending order according to δi.
Ωc: Lower bound of robot c
1. Compute:
for c = 1 to 2 do

Ωc =
∑JSc

i=1 ei +
∑JRc

i=1 ei
for each i in JS do

if JR is empty end for
let j be the next job in JRc; remove j from JRc

let (i, j) be a new combined job
Ωc = Ωc − 2 min{δi, δj}

end for
end for
return Ω := max{Ω1,Ω2}

Proof : First, we consider the time when each job is executed separately: Ωc =∑JSc

i=1 ei+
∑JRc

i=1 ei ∀c ∈ {1, 2}. Algorithm 3 combines storage job i with retrieval job

j so that Ωc decreases by 2 min{δi, δj} ≥ 0. After that Algorithm 3 forms another

combination with storage job k and retrieval job l so that Ωc decreases by another

2 min{δk, δl} ≥ 0. This is done until each job in JS is paired with one job in JR.

Due to the sorting in Algorithm 3, the following applies: δi ≥ δk and δj ≥ δl. A swap

of storage jobs i and k or retrieval jobs j and l, does not lead to further reductions

of Ωc. However, Ωc increases by up to 2(δi − δk) or 2(δk − δl) time units. Hence,

the sorting proposed by Algorithm 3 leads to optimal combinations of storage and

retrieval jobs, as no swap of jobs leads to a reduction of Ωc, respectively Ω. �

Property 2 (Precedence relations). Given jobs i, j ∈ J1 or i, j ∈ J2 with: ai = aj,

bi = bj, q
a
i = qaj and qbi = qbj , then there exists an optimum schedule π in which i

precedes j (denoted by i ≺ j), i.e.

Proof : As i and j are identical, swapping their position in π obviously does not

affect the objective function. �

Let π = {π(1), ..., π(x), ..., π(n)} be a solution with x < n, we call π′ = {π(1), ..., π(x)}
a partial solution. Let J(π′) = J1(π′)∪J2(π′) be the jobs in partial solution π′. Let

Cc(π′) = max{Ci} ∀i ∈ J c(π′) be the completion time of robot c ∈ {1, 2} in partial
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solution π′. Let Cmax(π
′) be the optimal makespan under consideration of partial

solution π′.

Definition 3 (Domination). A partial solution π′ dominates π′′ if J(π′) = J(π′′)

and Cmax(π
′) ≤ Cmax(π

′′) applies.

Property 3 (Domination rule: Scenario A, B, C). Partial solutions π′ dominates

π′′ if J(π′) = J(π′′), C1(π′) ≤ C1(π′′), C2(π′) ≤ C2(π′′) and |C1(π′) − C2(π′)| ≤ S

holds.

Proof : Proof by contradiction. Assume Cmax(π
′) > Cmax(π

′′) holds. Given equal

completion times Cc(π′) = Cc(π′′) c ∈ {1, 2} for both partial solutions, with

|C1(π′) − C2(π′)| ≤ S. We consider jobs J∗ = J \ J(π′′) which are not included

in partial solution π′′. Jobs J∗ can complement partial solution π′ without conflict-

ing with any of the already scheduled jobs J(π′).

Let job k ∈ J∗ start at time x and job l ∈ J(π′) be complete at time y. Job k and job

l are executed by opposite robots and hold a potential conflict (δk + δl > S applies).

Both jobs are not conflicting if |x + startk − (y − endl)| ≥ δk + δl − S + 1
2
(qδk + qδl )

applies (Equation 4). We obtain a minimum for startk +endl if k is a retrieval and l

is a storage operation with δk +δl+
1
2
(qδk +qδl ). We obtain a maximum for δk +δl−S

if δk = δl = S. This results in |x− y + 2S + 1
2
(qδk + qδl )| ≥ S + 1

2
(qδk + qδl ).

Thus, if |x−y| ≤ S holds, job k ∈ J∗ is not conflicting with job l ∈ J(π′). This shows

that jobs J∗ provide a valid extension to partial solution π′ if |C1(π′) − C2(π′)| ≤
S holds, with an objective value equal to Cmax(π

′′). This contradicts with the

assumption Cmax(π
′) > Cmax(π

′′).

Obviously, this also applies if Cc(π′) ≤ Cc(π′′) c ∈ {1, 2}. �

Property 3 also holds for instances of Scenario D if robots c ∈ {1, 2} start from their

respective depots at time Cc(π′) and Cc(π′′). This is true if the last job executed

by Robot 1 and 2 is a retrieval job.

Property 4 (Waiting time, semi-active schedule: Scenario A, B). Given a semi-

active schedule, then the waiting time wi never exceeds its execution time ei, i.g.

wi < ei holds ∀i ∈ J .

Proof : Given a semi-active schedule and a sequence π. For Scenario A and B,

qai = qbi = d ≥ 0 holds and either all jobs are storage or all jobs are retrieval

operations, thus ei = 2δi + 2d ∀i ∈ J .
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Proof by contradiction. Assume wπ(k) ≥ eπ(k) holds. Job π(k) starts at time x and

is in conflict with job π(l). In a semi-active schedule each job is positioned at the

earliest non-conflicting point in time, which is: pπ(k) = pπ(l) + dπ(l)π(k). This results

in a waiting time of: wπ(k) = pπ(k) − startπ(k) − x.

The maximum pπ(l) so that the conflict with π(k) remains is pπ(l) = x+ startπ(k) +

dπ(k)π(l)− ε (ε is an arbitrarily small number). With this we also obtain a maximum

for the waiting time: wπ(k) = 2dπ(k)π(l)−ε. This is wπ(k) = 2δπ(k)+2δπ(l)−2S+2d−ε
(Equation 4).

Even if δπ(l) = S the waiting time wπ(k) never exceeds its execution time eπ(k) =

2δπ(k) + 2d. This contradicts with the assumption wπ(k) = eπ(k), unless job π(k) is

not conflicting with any other job.

Let job π(j) precede job π(k) in sequence π. Both jobs are processed by opposite

robots. There is no conflict with job π(k) if the following minimum separation times

are respected: dπ(l)π(j) ≥ dπ(l)π(k) + diπ(k)π(j). With Equations (3) and (4), we obtain

0 ≥ 2δπ(k) − 2S. This shows that even if δπ(k) is equal to S, there are no further

conflicts (see Example in Fig. 4). �
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Figure 4: Waiting times in a semi-active schedule
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3 Solution algorithms

We present three heuristic and one exact approach for the TRSP. First, we determine

the bottleneck robot x and the non-bottleneck robot y using the lower bound pre-

sented in Property 1. If Ω1 ≥ Ω2 holds, Robot 1 is the bottleneck robot, otherwise

this is Robot 2.

In the Descending Sort Procedure (DSP) we fix the schedule of the bottleneck robot

x so that all jobs Jx are predecessors of jobs Jy in sequence π. There are no waiting

times for robot x, as all jobs in Jx are prioritized over all jobs in Jy (wi = 0 ∀i ∈ Jx).
In sequence π, we sort the jobs of robot x and y in descending order according to

the distance from the depot δi. We obtain a semi-active schedule using Algorithm

1 and given sequence π.

Property 5 (Performance ratio: Scenario A, B).

The performance ratio of DSP is 3
2
.

Proof : For Scenario A and B, qai = qbi = d ≥ 0 holds and either all jobs are

storage or all jobs are retrieval operations, hence the execution time of jobs is given

(ei = 2δi + 2d). A schedule obtained with DSP is semi-active and thus Property

4 applies (wi < ei ∀i ∈ J). The completion time of bottleneck robot x is equal to

the lower bound Cx = Ω. Let job χ ∈ Jy be the last conflicting job wχ > 0. We

consider two cases: First, Cχ ≤ Ω. Due to Property 4,
∑

Jy wi <
1
2
Ω holds and the

makespan is equal to Ω +
∑
wi, hence the performance ratio is below 3

2
.

Second, Cχ ≥ Ω. Let γ be the number of time units the completion of χ exceeds

lower bound Ω, γ = Cχ − Ω. The performance ratio holds once we find job ϕ ∈ Jy

that starts before Ω and wϕ + γ ≤ eϕ holds.

The last conflicting job χ in sequence π is in conflict with job j ∈ Jx, δχ + δj > S.

Hence, pχ = djχ + pj and Cχ = djχ + pj + endχ. We get γ = djχ + pj + endχ − Ω

with pj = Ω− endj and obtain: γ = 2δχ − S + d.

Let job ϕ ∈ Jy be the first conflicting job in sequence π. Job ϕ is in conflict with job

i ∈ Jx, δϕ+δi > S. Due to the sorting δϕ ≥ δχ and δi ≥ δj applies. Waiting time wϕ

is: wϕ = pϕ− startϕ with pϕ− pi = diϕ and pi = starti, we obtain wϕ = 2δi−S+ d.

The execution time eϕ = 2δϕ + 2d.

We insert the values in equation wϕ + γ ≤ eϕ, we obtain 2δi− 2S+ 2δχ ≤ 2δϕ. Even

if δi = S the equation holds, since δϕ ≥ δχ applies due to the sorting in DSP. �
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The Earliest Fit Procedure (EFP) is similar to DSP, however we use Algorithm 2

to create an active schedule using the same sequence π. The schedule of bottleneck

robot x remains unchanged, however the jobs of non-bottleneck robot y start at the

earliest non-conflicting point in time under consideration of processing sequence π.

However, EFP is an improvement procedure to DSP, the performance ratio of EFP

remains 3
2
.

Definitions: In a schedule obtained with EFP, let L be a set of jobs that start after

or exactly at time Ω, in other words Ci− ei ≥ Ω holds. Let W be a set of jobs with

a waiting time wi larger 0. Let γ be the number of time units the completion of the

last conflicting job χ ∈ Jy exceeds lower bound Ω, γ = max{Cχ − Ω, 0}. Then the

following applies:
∑

i∈W wi = γ +
∑

j∈L ej.

For an instance of Scenario A and B, the schedule obtained with EFP has some

properties. The execution time ej of a job j ∈ L is always larger than any wait time

wi of a job i ∈ W . We show this with Lemma 1. Under consideration of equation∑
i∈W wi = γ +

∑
j∈L ej, the number of waiting slots |W | is larger or equal to |L|.

In Algorithm 4 we use this circumstance by moving each job of set L to a waiting

slot in W .

Lemma 1 (Waiting time, active schedule: Scenario A, B). Given an active schedule

obtained with EFP, then wi < ej applies ∀i ∈ W , ∀j ∈ L.

Proof : With regard to Property 4, wi < ei holds and due to the sorting in ESA

ei ≤ ej holds ∀i ∈ W , ∀j ∈ L. Waiting slot wi offers enough space for a job

with exactly the same size or smaller. Hence, wi ≥ ej is not feasible, as in an

active schedule job j is scheduled at the earliest possible point in time with no job

positioned later. �

The Best Fit Algorithm (BFA) uses sequence π obtained with EFP and inserts jobs

from set L into waiting slots from set W . We do this by moving job j with the

smallest execution time in L from position k to position k∗− 1 (k∗ < k) in sequence

π, where k∗ is the position of job i with the largest waiting time in W . Hence, k∗−1

is the position before job i and before the job causing the wait time wi. We do this

until no further jobs from L can be moved. It should be noted that the completion

time of bottleneck robot x may rise. However, in Property 6 we show that each

insertion leads to an improvement of the objective value (for Scenario A and B).
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Due to the short runtime, we execute BFA twice so that each robot is the priority

robot once. This has high improvement potential, especially if both robots have

equal or almost equal workloads.

Algorithm 4: Best Fit Algorithm (BFA) - heuristic - O(n2)

0. Initialization:
Initialize with EFP; Sequence π
L: Set of jobs with Ci − ei ≥ Ω, sorted in ascending order according to ei
W : Set of jobs with wj > 0, sorted in descending order according to wi
1. Assignment:
for each i ∈ L do

Pull next job j from W
Insert job i with execution time ei into the waiting slot wj
k is the position of job i and k∗ the position of job j in sequence π
Move job i from position k to k∗ − 1; Update π accordingly

end for
return Sequence π
Use Algorithm 1 to get a semi-active schedule with sequence π

Property 6 (Performance ratio: Scenario A, B).

The performance ratio of BFA is 4− 2
√

2 + γ
Ω

.

Proof : Given an active schedule obtained with EFP. For Scenario A and B, Lemma

1 holds, and therefore wi < ej applies ∀i ∈ W , ∀j ∈ L. Due to equation
∑

i∈W wi =

γ+
∑

j∈L ej, there is at least one waiting slot in W for each job in set L, |W | ≥ |L|.
Let e = min{ej} j ∈ L and w = max{wj} j ∈ W (e > w > 0), then there are at

least e
w

waiting slots in set W for each job in set L. Due to the sorting in EFP the

following applies: δi ≥ δj and w < ei ≥ ej ≥ e holds ∀i ∈ W , ∀j ∈ L. Each job in W

has an execution time of at least e time units. Hence, each job in L is represented

by at least e
w

(e+ w) time units before lower bound Ω + γ.

A Job with execution time e is put into a waiting slot with w time units. The

completion time Cx of the non-bottleneck robot y will decrease by w, however the

completion time Cy of the bottleneck robot x will increase by up to e−w time units.

If all jobs in L have a length of e and all waiting slots in W a length of w, then

the objective value is up to (e − w)/( e
w

(e + w)) times above the lower bound Ω (if

γ = 0). We determine the worst case combination of any e and w, by solving the

following equation:
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max
e,w

{
1 +

e− w
e
w

(e+ w)

}
(11)

max
e,w

{
1 +

ew − w2

ew + e2

}
= 4− 2

√
2 at w = e

√
2− e (12)

We obtain a maximum at w = e
√

2− e with 4− 2
√

2. This is the performance ratio

of BFA, even if the values ei ∈ L or wj ∈ W are not equal (and γ = 0 applies).

Next, we take a closer look at γ. Due to Property 5 the maximum value for γ is

S + d. As γ is not part of the insertion process, this has an effect of up to γ
Ω

on the

performance ratio of BFA. So we get a ratio of 4− 2
√

2 + γ
Ω

. For large values of Ω,

this is approximately ≈ 1.1716. �

The performance ratio of BFA depends on the ratio of w
e

(see Fig. 5). For values

of w
e

near 0 and 1 we obtain a good approximation, however for w
e

= 4 − 2
√

2 the

deviation to the lower bound is the highest.

0.2 0.4 0.6 0.8

1

1.05

1.1

1.15
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p4

w
e

performance ratio

Figure 5: Worst-case performance ratio for w
e

We present a branch-and-bound algorithm (BB) that provides a semi-active sched-

ule with an optimal solution. We use a recursive branch-and-bound implementation

using deep search first. Further, we use an additive lower bound (Property 1) and
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reduce the solution space by using Property 2 and 3. We memorize each solution

set [J(π′), C1(π′), C2(π′)] in Λ if |C1′ − C2′| ≤ S holds. Whenever we solve a new

sub-problem, we check if there is a dominant partial solution in Λ if this is true we

skip this branch. To prevent the algorithm from memory overload we reduce Λ by

removing solution sets with high values for |J ′| first.

Algorithm 5: Branch-and-bound algorithm (BB) - exact

0. Initialization:
π′: Empty sequence
Ω: Lower bound (Property 1)
k = −1: Current stage in sequence π′

UB =∞: Upper bound
Λ = ∅: Set of solution sets
1. Branching:
for each j in J do

if j is not in π′ then
Check precedence relations with Property 2
Go to 2. Bounding (j)

end if
end for
if k = −1 then UB is optimal return UB
else k = k − 1; BOUND
2. Bounding (Job j):
k = k + 1; π′(k) = j
Use Algorithm 1 to get a semi-active schedule considering jobs π′(0) to π′(k)
Create solution set [J(π′), C1(π′), C2(π′)]
Calculate additive lower bound Ω(π′) (using Property 1)
if Ω(π′) ≥ UB or Λ contains solution set then
k = k − 1; BOUND

end if
Add solution set to Λ (Property 3)
if π′ contains all jobs J then

save new best solution UB = Ω(π′)
end if
if UB = Ω then
UB is optimal return UB

end if
Go to 1. Branching

Some adjustments in the implementation of BB and BFA were made for instances

of Scenario D. We predefine the job combinations (i, j) obtained with Algorithm

3. So that storage job i and retrieval job j of each combination (i, j) is executed
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directly after each other and no waiting times between both jobs occur (wj = 0).

Predefined combinations reduce the solution space so that BB obtains considerably

better results in a shorter period of time. However, the downside is that an instance

can only be proven to optimality if BB finds a solution in which UB = Ω holds.

Further, in BFA, we also maintain the predefined combinations so that those do not

tear apart during the insertion process.

4 Computational study

We investigate the performance of BFA and BB in a computational study. All

algorithms are implemented in Java 1.8 and performed with an Intel i7-6700k 4GHz

CPU and 32GiB of RAM. We use the following metrics to determine the performance

of the algorithms.

• OPT: Share of instances proven to optimality

• GAP: Average relative gap to lower bound Ω (Property 1)

• MAX: Maximum relative gap to lower bound Ω (Property 1)

• CPU: Average solving time in seconds/milliseconds

4.1 Benchmark instances #1

The first set of instances #1 is provided by Erdoğan et al. (2014) and consists

of 50 instances, which are considered hard to solve. In order to generate difficult

instances, the authors have linked a random instance generator to a solver to sort

out instances that take less than 1 CPU second to solve. Instances are generated

with 12 − 27 jobs and 9 − 39 slots with d = 0 (Scenario A). We compare BB and

our mathematical program from Section 2.2 with the results taken from Erdoğan

et al. (2014). The authors use two integer programming formulations (TRSP1 and

TRSP2) and a branch-and-bound implementation to solve the instances. Further, all

procedures have a maximum solution time of 7200 seconds. If a procedure exceeds

this time limit, it stops and optimality could not be proven. Hence, for all unsolved

instances the solution time is 7200 seconds. We consider the average solution time in
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seconds (CPU) and the share of instances proven to optimality (OPT). The results

including all procedures are shown in Table 1.

Table 1: Benchmark Instances #1 - 50 instances

OPT CPU

TRSP1∗ 0.04 7089 s

TRSP2∗ 0.68 2767 s

BB∗ 0.80 1897 s

MP from Section 2.2 0.60 2997 s

BB no Property 3 0.72 2138 s

BB with Property 3 1.00 44 s

∗by Erdoğan et al. (2014) (IRIDIS 4 computing cluster)

BB provides an optimal solution for all 50 instances, including six previously un-

solved instances. Without using the domination rule (Property 3), BB only solves

36 instances within the 2 hour time limit.

4.2 Benchmark instances #2

Next we consider large instances for Scenario A with n = {10, 20, ..., 10240} jobs

and uniformly distributed slot distances δ = [1, S]. For all instances S = 80 and

d = 0 (Scenario A) holds. As in previous studies on the subject we use instances

where p̄ ≥ 1.99 applies (Equation 13). Thus, only instances are taken into account

with a balanced workload. We use a random instances generator and skip instances

where p̄ < 1.99 holds. For each set of jobs we use 100 valid instances with p̄ ≥ 1.99.

Each procedure has a maximum solution time of 30 seconds.

1.99 ≤ p̄ =
Ω1 + Ω2

Ω
(13)

We illustrate the OPT values of #2 in Fig. 6. BB provides good results for in-

stances with up to 80 jobs, for larger instances the 30 seconds limit is no longer

sufficient. However, for 320 jobs and more, BFA solves around 90% of the instances,

by providing solutions equal to lower bound Ω. We conclude that most instances
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n = 10 20 40 80 160 320 640 1280 2560 5120 10240
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Figure 6: 1100 #1 benchmark instances

with uniformly distributed distances δ = [1, S] and a limited number of slots are

easy to solve within 30 seconds, as the optimal solution C∗max is mostly equal to

lower bound Ω.

4.3 Benchmark instances #3

We suppose that instances where both robots share equal workloads (Ω1 = Ω2) are

particularly hard to solve if no conflict-free schedule is possible. One method to

achieve this is to sort out invalid instances where Ω1 6= Ω2 holds. However, this can

be rather time-consuming for complex instances and has a direct influence on the

given distributions.

In #3 we use a different method. First, all instances are created in such a way that

the expected workload of both robots is equal. Obviously, this does not mean that

the actual workloads are equal. Indeed we receive an average p̄ value of 1.97. To

achieve p̄ = 2 (Ω1 = Ω2), we add a dummy job with sufficient length e0 = |Ω2 −Ω1|
to the non-bottleneck robot (see Equation 14). This dummy job is then executed

at the beginning of the process in depot slot 0 or S + 1, respectively, so that the

non-bottleneck robot starts at time e0.

2 = p̄ =
Ω1 + Ω2 + e0

Ω
(14)
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In #3 we vary the number of jobs and distribution of the pick-up and delivery

times and the distribution of pick-up and delivery slots. We combine the following

parameter in a full factorial design with 10 instances per case. Al in all, we receive

1 ∗ 4 ∗ 7 ∗ 22 ∗ 10 = 6160 problem instances.

• Number of slots: S = 40

• Number of jobs: n = 20, 40, 80, 160

• 22 Patterns to define the distribution of pick-up slot ai and delivery slots bi

(see Table 2)

• 7 Patterns to define the distribution of pick-up times ati and delivery times bti

(see Table 3)

Study #2 shows that instances with uniformly distributed slot distances δ from slot

1 to S are mostly easy to solve. In the following, we investigate other distributions

of δ, and the influence of those on the performance of our algorithms. We generate

22 patterns (see Table 2) that define the distribution of the pick-up and delivery

slots. For this purpose we divide the storage area into 5 successive blocks with an

equal number of slots per block (Here 8 slots per block). To illustrate a pattern, we

use the following logic: � means that this block is not approached by any robot,

� only by the robot from the left side, � only from the right side and 4 means

that this block is processed by both robots. All storage or retrieval slots are subject

to a discrete uniformly distribution within the assigned block(s). Overall, there are

54 = 1024 possible block combinations. We limit the number of valid patterns to 22.

We do this by excluding symmetrical patterns. Furthermore, the blocks processed

by a robot are successive and both robots process the same number of blocks. In

addition, only those patterns are taken into account where the working area of both

robots completely overlap. With this we obtain the following supposedly hard to

solve patterns:
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Table 2: 22 Patterns: Distribution of pick-up ai and delivery slots bi

1 � � � � � 9 � � � � � 17 � � � � �
2 � � � � � 10 � � � � � 18 � � � � �
3 � � � � � 11 � � � � � 19 � � � � �
4 � � � � � 12 � � � � � 20 � � � � �
5 � � � � � 13 � � � � � 21 � � � � �
6 � � � � � 14 � � � � � 22 � � � � �
7 � � � � � 15 � � � � �
8 � � � � � 16 � � � � �

We generate 7 patterns (see Table 3) to define the distribution of the pick-up and

delivery times, which also defines the respective Scenario. In the first case, we

neglect the pick-up and delivery times (Scenario A [1]). The rest of the data is

created according to practical settings at seaport terminals with twin automatic

rail-mounted gantry cranes (see Fig. 1 left). A common storage area at seaport

terminals has a length of approximately 40 slots. Each slot has space for a 1 TEU

container (Twenty-foot Equivalent Unit), so each slot has a dimension of 6x2.5x13m

and the size of the storage area is 240x25x13m. We assume both cranes (or robots)

share a constant speed of approximately 2 meters per second. Hence, in this scenario

one time unit is equivalent to 3 seconds. An average pick-up and delivery process

has a duration of 36 seconds or 12 time units, this is Scenario B [1]. Due to re-

stacking processes and other delays, we assume that the pick-up and delivery time

is equally distributed between 12 and 36 time units (Scenario C [1]). For the next

pattern we assume that the pick-up process is longer than the delivery time, due to

re-stacking processes at the respective pick-up slot (Scenario C [2]). We generate the

same patterns for Scenario D [1-3] (except case Scenario A [1]), with 50% retrieval

jobs and 50% delivery jobs.
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Table 3: 7 Patterns: Distribution of pick-up ati and delivery bti times

pick-up times

(qai )

delivery times

(qbi )

share of re-

trieval jobs

share of stor-

age jobs

Scenario A [1] 0 0 1.0 0.0

Scenario B [1] 12 12 1.0 0.0

Scenario C [1] [12, 36] [12, 36] 1.0 0.0

Scenario C [2] [24, 36] [12, 24] 1.0 0.0

Scenario D [1] 12 12 0.5 0.5

Scenario D [2] [12, 36] [12, 36] 0.5 0.5

Scenario D [3] [24, 36] [12, 24] 0.5 0.5

We create benchmark instances #3 using the test data generator from Briskorn et al.

(2017). The instances are available online with the project name ’trsp’ using the

following link: www.instances.de/dfg/project.php?project=trsp.

Finally, the BB procedure is subject to a 30-second CPU limit per instance. If BB

exceeds this limit an instance is considered unsolved. Furthermore, we focus on the

performance of BFA and BB, for results of EFP and DFP we refer to Table 7 in the

appendix.

In Table 4 we compare the performance of different pick-up and delivery times. Most

of Scenarios A [1] and B [1] instances can be easily solved and the average gap to

the lower bound is rather low for both procedures with 2, 2 % up to 3.8 %. The

instances of Scenario C [1,2] appear to be more difficult to solve. However, BFA

produces better results in terms of the GAP values. Instances of Scenario C [2]

where qai ≥ qbi holds, are the most difficult to solve with only 13, 3 % of the instances

proven to optimality. However, instances of Scenario D [1,2,3] perform better, which

is basically due to the concept of combined jobs. By combining jobs, we reduce the

solution space, thus BB obtains faster results compared to instances of Scenario C

with an equal number of jobs.

Furthermore, the performance ratio of BFA (4− 2
√

2 + γ
Ω

) holds for all instances of

Scenario A and B. All in all, BFA provides a good approximation for all scenarios

with a maximum deviation to the lower bound of 20, 7%, compared to BB with

88, 3%. BFA appears to be a robust procedure despite the short runtime, as the

GAP range (2, 5% to 6, 2%) and MAX range (14, 2% to 20, 7%) is rather small
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compared to results of BB.

Table 4: Pick-up and delivery times - 7 * 880 instances

BFA BB

Scenario A [1] OPT 0.197 0.697

GAP 0.025 0.022

MAX 0.142 0.173

CPU 0 ms 9893 ms

Scenario B [1] OPT 0.043 0.548

GAP 0.038 0.038

MAX 0.149 0.222

CPU 0 ms 14739 ms

Scenario C [1] OPT 0.000 0.355

GAP 0.042 0.119

MAX 0.160 0.660

CPU 0 ms 19987 ms

Scenario C [2] OPT 0.003 0.133

GAP 0.062 0.273

MAX 0.207 0.883

CPU 0 ms 26214 ms

Scenario D [1] OPT 0.026 0.283

GAP 0.050 0.080

MAX 0.194 0.405

CPU 0 ms 16842 ms

Scenario D [2] OPT 0.005 0.345

GAP 0.052 0.095

MAX 0.177 0.596

CPU 0 ms 15398 ms

Scenario D [3] OPT 0.006 0.261

GAP 0.051 0.110

MAX 0.195 0.751

CPU 0 ms 17643 ms

In Table 5 we sort all 22 patterns in descending order according to the average gap

to the lower bound of BFA (GAP). For 7 patterns BB delivers better results than

BFA and for the other 15 patterns BFA has a lower average gap to the lower bound.

We conclude that BB performs better for supposedly simple patterns, where GAP

is close to 0. However, for patterns with a high deviation to the lower bound, BFA
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performs significantly better. All in all, pattern 16 and 17 provide the instances

with the highest GAP values for both procedures.

Table 5: 22 Patterns - GAP - 22 * 280 instances

id pattern BFA BB

16 � � � � � 0.130 0.348

17 � � � � � 0.098 0.355

15 � � � � � 0.098 0.262

9 � � � � � 0.088 0.186

10 � � � � � 0.081 0.304

20 � � � � � 0.074 0.164

5 � � � � � 0.047 0.098

19 � � � � � 0.044 0.012

4 � � � � � 0.037 0.039

18 � � � � � 0.036 0.213

11 � � � � � 0.033 0.156

8 � � � � � 0.033 0.036

14 � � � � � 0.033 0.033

12 � � � � � 0.032 0.005

6 � � � � � 0.029 0.087

2 � � � � � 0.024 0.025

21 � � � � � 0.022 0.005

3 � � � � � 0.022 0.040

13 � � � � � 0.019 0.015

1 � � � � � 0.016 0.021

22 � � � � � 0.013 0.003

7 � � � � � 0.012 0.002

In our previous tests we could find that many instances could be proven to optimality,

because the optimal solution is equal to lower bound Ω. We call a schedule conflict-

free if no waiting times occur wi = 0 ∀i ∈ J . As for all instances in #3 p̄ = 2 holds,

an instance is conflict-free if the objective value is equal to lower bound Ω. In our

final test we use a fictive upper bound UB = Ω + 1 for BB to determine the share

of conflict-free schedules. We call this LB-TEST, which provides a positive answer

once a conflict-free schedule with a solution equal to Ω is found within a given time

limit (30 seconds).

In Table 6 we illustrate the share of conflict-free schedules according to the respec-
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tive patterns and scenarios. Some patterns are never conflict-free (11,17,18 and 21),

however others perform particularly well. We conclude that the proposed scenarios

have an impact on the LB-TEST, most instances of Scenario A and B can be per-

formed conflict-free, whereas instances of Scenario C and D have a higher conflict

potential.

Table 6: LB-TEST (share of conflict-free schedules) - (40+40+80+120) * 22

instances

id pattern Scenario A Scenario B Scenario C Scenario D

7 � � � � � 1.000 1.000 0.838 0.783

1 � � � � � 1.000 1.000 0.562 0.750

4 � � � � � 1.000 1.000 0.375 0.900

19 � � � � � 1.000 1.000 0.325 0.933

3 � � � � � 1.000 1.000 0.362 0.455

22 � � � � � 1.000 0.975 0.662 0.433

12 � � � � � 1.000 0.975 0.662 0.950

14 � � � � � 1.000 0.975 0.300 0.850

8 � � � � � 1.000 0.975 0.275 0.783

2 � � � � � 1.000 0.900 0.512 0.822

9 � � � � � 1.000 0.200 0.050 0.050

13 � � � � � 0.975 0.475 0.325 0.100

5 � � � � � 0.900 0.250 0.150 0.533

6 � � � � � 0.900 0.225 0.015 0.050

20 � � � � � 0.675 0.000 0.012 0.250

15 � � � � � 0.625 0.475 0.012 0.000

10 � � � � � 0.075 0.000 0.012 0.217

16 � � � � � 0.000 0.000 0.000 0.017

21 � � � � � 0.000 0.000 0.000 0.000

11 � � � � � 0.000 0.000 0.000 0.000

17 � � � � � 0.000 0.000 0.000 0.000

18 � � � � � 0.000 0.000 0.000 0.000

5 Conclusion

We extend the original problem to varying pick-up and delivery times. In the course

of this we also distinguish between storage and retrieval jobs. With the presented
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extensions, the TRSP gains relevance for other practical problems where the pick-up

and delivery times play a major role, e.g. for rail-mounted gantry cranes at container

terminals. We provide an exact branch-and-bound procedure (BB) which dominates

other exact solution approaches for Scenario A due to Property 3. Additionally, we

show that we easily find optimal solutions for instances with a makespan equal to the

lower bound. Furthermore, we present aO(n2) approximation algorithm (BFA) with

a performance ratio to the lower bound of 4−2
√

2+ γ
Ω

for Scenario A and B. However,

in our numerical study we show that BFA also provides good results for Scenario

C and D. In a practical environment, e.g. to increase productivity at container

terminals, it is beneficial to provide a conflict-free schedule. With the presented LB-

TEST we can determine whether a pattern is mostly conflict-free or not. This data

can be adapted to the slot assignment phase to make later operations more efficient.

Future research should extend the presented problem to other relevant real-world

settings. For instance, other systems like cross-over or triple cranes and service

oriented objective functions like tardiness and/or earliness. However, We assume

that the presented algorithms can be adapted to similar problems, especially those

with a storage and retrieval characteristic, and thus serve as a meta-strategy.
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Appendix

Table 7: Number of Jobs - 4 * 1540 instances

n DSP EFP BFA BB

20 OPT 0.027 0.034 0.047 0.478

GAP 0.337 0.187 0.065 0.035

MAX 0.956 0.777 0.207 0.674

CPU 0 ms 0 ms 0 ms 8071 ms

40 OPT 0.016 0.020 0.044 0.418

GAP 0.348 0.169 0.053 0.058

MAX 0.979 0.783 0.199 0.543

CPU 0 ms 0 ms 0 ms 17729 ms

80 OPT 0.006 0.014 0.035 0.324

GAP 0.355 0.155 0.047 0.108

MAX 0.989 0.646 0.181 0.725

CPU 1 ms 2 ms 0 ms 20536 ms

160 OPT 0.003 0.006 0.033 0.279

GAP 0.354 0.145 0.044 0.152

MAX 0.994 0.571 0.172 0.883

CPU 3 ms 6 ms 1 ms 22645 ms
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A decomposition procedure for different

automated yard crane systems

Andreas Wiehl1

1 University of Augsburg

Abstract

This article addresses the problem of scheduling multiple cranes that execute stor-

age and retrieval jobs along a line with non-crossing constraints. Each crane has

a given height, where small cranes pass underneath larger ones under certain con-

ditions. The objective is to minimize the makespan. A practical application for

this scheduling problem occurs at transshipment yards, where one or multiple rail-

mounted-gantries (RMGs) operate on rectangular yard blocks with handover points

at the short sides of the block. We propose a heuristic decomposition procedure to

solve this problem, which deals with three interrelated sub-problems. The assign-

ment of jobs to cranes, the formation of crane cycles and the scheduling of cycles

under consideration of the non-crossing constraints. In a computational study we

investigate the performance of this approach with regard to seven different RMG

systems, some of which are novel in practice and literature.

Keywords: Container terminals, yard crane systems, non-crossing constraints, de-

composition procedure, crane scheduling
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1 Introduction

As a result of the rapidly growing flow of goods in global economy, the requirements

for container yards have changed significantly. At the Port of Hamburg container

handling rises from two million in 1990 up to nine million TEU (Twenty-foot Equiv-

alent Unit) in 2017 (Port of Hamburg (2017)). We observe similar trends for most

large transshipment terminals around the world. During the same period the ca-

pacity of the largest deep-sea vessel rises from around 4,000 TEU in 1990 to 21,413

TEU in 2017. The increasing container flows have a strong impact on operational

challenges at transshipment terminals. Typical objectives are to guarantee service

times or to reduce average handling times of containers. Since the turn of the cen-

tury, automation technology is increasingly being used at container terminals to

meet these requirements.

A typical terminal can be divided into three operative sections. Quay crane oper-

ations at the berth, horizontal container transport between berth and storage and

yard crane operations at the storage block. Due to the scalability of quay cranes

and horizontal transportation, Speer and Fischer (2016) consider container yards

to be a potential bottleneck in terminal operations. One reason for this is that

adding additional yard blocks or cranes to improve yard productivity is highly cost

and space intensive. Thus, the selection of suitable yard systems and the optimized

scheduling of cranes is a crucial factor to ensure a reliable throughput.

In recent years, various yard crane layouts with one or multiple cranes have been

established in practice. This paper treats a widespread layout at transshipment

terminals, where automatic rail-mounted gantries (RMGs) operate on rectangular

blocks arranged orthogonally to the quay with handover areas at both ends of the

block. Such layout ensures a separation between sea- and landside operations and

between automated and non-automated technology. One transfer point is facing the

quay (at seaside) and the other exchanges in- and outbound containers with trucks

and/or trains (at landside). Each crane moves on a rail along the gantry side and

the hoist moves towards the trolley and spreader dimension, to execute container

moves. Fig. 1 depicts five different automated yard crane systems: (1) Single RMG,

(2) Twin RMG, (3) Double RMG, (4) Triple RMG, and (5) Double Twin RMG.

For systems (1)-(4) there exist practical applications at container yards. However,
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Figure 1: Different automated yard crane systems

system (5) is not used in practice, although it is technically possible.

RMGs have to perform different container moves within the storage block, whereas

only some movements are known in advance. Typical objectives are to ensure a high

productivity or to respect due dates of trains, ships or trucks for further transport.

In this context, the paper on hand treats the following scheduling problem: A set

of cranes have to execute storage and retrieval moves of containers at a single yard

block with non-crossing constraints. However, small cranes can pass underneath

larger ones if the spreader of the large crane is lifted. The following question arises:

Which crane should execute which job in which timing sequence so that the overall

makespan is minimal?

In the paper on hand we present a heuristic decomposition procedure that divides
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this problem into three interrelated sub-problems. First, we introduce a mathemat-

ical model that defines the assignment of jobs (container moves) to cranes. Note

that the solution of the model provides a lower bound for the overall problem if we

relax the non-crossing constraints. After this, another mathematical model can be

used to form crane cycles to reduce empty drives during the process. Finally, we

present a truncated branch-and-bound and a tabu search heuristic to obtain feasible

crane schedules. All three sub-problems pursue the objective to minimize the overall

makespan.

The problem under consideration is subject to a few assumptions. We consider the

situation at a single block, where the origin and destination positions of containers

are predefined by the yard operators. We neglect the movement time of trolley

and spreader. This assumption is not restrictive for real-world yard settings, as the

movement of spreader and trolley is usually fast enough to complete its positioning

during the crane movement along the gantry (Jaehn and Kress, 2017). Furthermore,

all containers to be moved are available at the beginning of the process. Cranes

have a constant travel speed. We neglected preemptive container moves and inner

movements, which is a common assumption in situations of high workload.

The remainder of this article is organized as follows: In Section 2 we give a brief

review on literature. A formal description of our problem is given in Section 3. In

Section 4 we present the decomposition procedure, including three sub-problems,

the Single Crane Routing Problem 4.1, the Crane Assignment Problem 4.2 and the

Crane Scheduling Problem 4.3. We investigate the performance of our approach

in a comprehensive numerical study in Section 5. Finally, Section 6 concludes the

article.

2 Literature

For a fundamental review on logistic processes and operations in container terminals,

we refer to Steenken et al. (2004); Stahlbock and Voß (2008). Further, Gharehgozli

et al. (2016) provide a notable overview on recent developments in container terminal

technologies and OR models.

Crane scheduling problems with interferences are widespread in literature. The

survey of Boysen et al. (2017) provides a classification scheme on such systems, which
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categorizes the presented problem as [1D,ends,pass|mvx|Cmax]. A brief summary of

the abbreviations are: its one-dimensional nature (1D), cranes can pass each other

under certain conditions (pass), cranes have a constant travel speed along the shared

pathway (mvx), handover slots are on opposite sides of the block (ends), and the

objective is to minimize the makespan (Cmax).

A majority of literature on yard crane scheduling problems focuses on specific ap-

plications using a given crane setting. First, we consider systems with only one

working unit (e.g. cranes). Sequencing a set of operations on a line with respect

to the makespan is similar to the NP-hard Traveling Salesman Problem. However,

Gademann et al. (1999) show that if only storage and retrieval jobs are considered

this can be solved in polynomial time. Further, Kim and Kim (1997, 1999) present

algorithms for the optimal routing of the Single RMG system at seaport terminals.

For a survey on single crane/machine scheduling at automated storage and retrieval

systems (ASRS) we refer to Boysen and Stephan (2016).

Complexity increases with a second crane, Erdoğan et al. (2014); Boysen et al. (2015)

show that the scheduling problem [1D,2,ends|mvx|Cmax] including twin cranes/robots

is NP-hard in the strong sense. Note that this problem is similar to the Twin RMG

case we cover in the paper on hand.

Carlo and Mart́ınez-Acevedo (2015) evaluate priority rules for the Twin RMG sys-

tem minimizing the makespan. Hu et al. (2016) explore three models for the Twin

RMG in a practical study for the Shanghai Yangsha Terminal with respect to the

makespan. The efficiency of the Double RMG system is examined in a simulation

study by Stahlbock and Voβ (2009). The experiments are based upon practical

scenarios at Container Terminal Altenwerder in Germany. Briskorn and Angeloudis

(2016) present a polynomial time procedure for the Double and Twin RMG sys-

tem under predefined processing sequences of containers. Ehleiter and Jaehn (2016)

treat the Twin RMG system, where one crane performs a given schedule and the

other is dealing with repositioning moves. This situation is commonly called house-

keeping in seaport operations, which is usually an issue in situations of low workload

during night time. Briskorn et al. (2016); Jaehn and Kress (2017) consider preemp-

tive container moves with cooperative cranes for the Twin RMG system. Similar

applications with two working units along a rail occur at ASRS with two stacker

cranes (Kung et al. (2012, 2014)) or two industrial robots (Erdoğan et al. (2014);
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Thomasson et al. (2017)).

Dorndorf and Schneider (2010) examine the Triple RMG system with an online

approach by constructing a new crane schedule whenever a new job is available.

The objective is to increase the productivity. Klaws et al. (2011) investigate the

performance of the Triple RMG system if the handover area is along the long side

of the block.

Only a few articles compare different crane settings. A notable study on the perfor-

mance of the Single, Twin, Double and Triple RMG systems at seaport terminals

is presented by Speer and Fischer (2016). Saanen and Valkengoed (2005) compare

three different crane systems (Single, Double and Twin RMG) by means of simu-

lation. The authors compare all systems according to their throughput, flexibility,

complexity and costs. Another notable simulation study by Kemme (2012) evaluate

the Single, Twin, Double and Trible RMG system with a high degree of detail. The

author examines the performance of 385 block layouts with differing block length,

width and height. In Emde (2017) quay or yard cranes are divided into groups,

where only cranes of the same group interfere. The author finds optimal solutions

for large instances within a few seconds and compares several crane configurations

with multiple groups in a numerical study.

The paper on hand presents a branch-and-bound algorithm to solve the crane

scheduling problem, which is a common approach in literature. In Speer et al.

(2011); Guo et al. (2011) the branch-and-bound algorithm iteratively constructs a

sequence of jobs for each crane. This approach reaches its limits considering multi-

ple cranes and a high number of jobs. Speer et al. (2011) suggest to consider only

a small subset of jobs (no more than 12 jobs) in each run of the branch-and-bound

algorithm. This approach outperforms priority rules in most cases. In addition, the

authors note that the subset size has a considerable effect on the productivity of

crane systems. However, this weakens with an increasing number of jobs.

3 Problem description

For a formal definition consider a single storage block with one or multiple rail

mounted gantry cranes C = {1, ...,m} . Assume that the slots (storage positions)

in the block are arranged along a one-dimensional pathway and are consecutively
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numbered from 0 to S + 1 with slot 0 being the transfer slot of containers on the

seaside and slot S + 1 on the landside. Each gantry crane c ∈ C is associated with

a level lc ∈ {1, ..., L}, whereby the level is also a representation of the height and

width of a crane. We assume a maximum of two cranes with equal levels, i.e. a

maximum of two cranes are mounted to a common rail and share the same height

and width.

All cranes c ∈ C have access to storage slots {1, ..., S}. However, cranes on equal

levels cannot pass each other, therefore, only one has access to transfer slot 0 (seaside

crane) and the other to slot S+ 1 (landside crane). Cranes that are alone on a level

are denoted as cross-over cranes C0 ⊆ C, with access to both transfer slots (0 and

S + 1). Let depot slot hc ∈ {0, S + 1} be the initial and final location of each crane

c ∈ C. Obviously, a crane can only be assigned to a depot slot to which it has

access.

We consider a bidirectional flow of inbound and outbound containers from both

transfer slots (sea- and landside). Each job i ∈ J represents a container move from

pick-up slot ai to delivery slot bi. As we do not consider inner movements, either

ai or bi correspond to transfer slot 0 or S + 1, respectively. This implies whether

job i ∈ J is a storage move ai ∈ {0, S + 1} (inbound container) or retrieval move

bi ∈ {0, S + 1} (outbound container). Let JS be the set of storage jobs, whereas JR

is the set of retrieval jobs. As stated before all jobs J are either storage or retrieval

jobs (J = JS∪JR). We assume that all inbound and outbound containers (i.e. jobs)

are available at the beginning of the process. Preemption of container moves (i.e.

jobs) is not allowed, meaning that a single container can only be lifted and dropped

once before it reaches its delivery slot.

The time horizon under consideration is divided into equally sized intervals [t− 1, t]

t ∈ N+. In the remainder of this paper we refer to a single interval as a time unit.

During a time unit each crane c ∈ C is either working, driving or idle. A driving

crane moves to an immediately adjacent slot in a single time unit, this is with or

without a loaded container. A working crane lifts or lowers its spreader to perform a

pick-up or delivery operation at a specific slot. We assume a deterministic duration

in time units of the pick-up qai ∈ N+ and delivery qbi ∈ N+ operation of each job

i ∈ J . Finally, if a crane neither works nor moves, this is an idle crane.

We assume no fix assignment of jobs to cranes. Obviously, some jobs can only be
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executed by certain cranes. For instance, a job that starts at transfer slot S+ 1 can

only be executed by a landside or cross-over crane. Let J c ⊆ J denote the set of

jobs assigned to crane c ∈ C. We say a partition J1, J2, ..., Jm of jobs is feasible if

every job is assigned to exactly one crane, i.e. J1∪J2∪, ...,∪Jm = J and J c∩J c′ = ∅
∀c 6= c′ ∈ C and all jobs i ∈ J c can be executed by crane c.

A feasible schedule of each crane c ∈ C is defined by a sequence of crane cycles

in which jobs J c are executed. Each crane cycle starts and ends in transfer slot

0 or S + 1. We distinguish three different variants of crane cycles. First, a single

cycle is the individual execution of a container move (single command). Second, the

combination of a storage and retrieval move within one cycle is a dual cycle (dual

command). An empty drive from one transfer slot to another is called empty cycle.

We assume an uninterrupted execution of crane cycles without detours or idle times

within the process. Hence, during a cycle the crane is either driving to a pick-up,

delivery or transfer slot, or the crane is working at a given slot to lift or drop a

container. Fig. 2 displays a feasible crane schedule with all variants of crane cycles.

The example depicts the Double RMG system, where the crane on a higher level is

highlighted and starts at landside slot S + 1. In this example the schedule length of

the small crane is 50 and of the large crane 49 time units. We specify the generation

of crane cycles in more detail in Section 3.1.
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Figure 2: Schematic representation of a crane schedule

After each cycle the corresponding crane either directly starts another cycle or is

idle in a transfer slot to avoid conflicts with other cranes. In Fig. 2 the large crane
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is idle for two time units in depot slot S + 1 to prevent a conflict in slot 5 with the

smaller crane.

As all cranes C share the same pathway along the storage positions, some non-

crossing constraints must hold to avoid collisions. For instance, smaller cranes can

only pass a larger crane if the latter one is not currently lifting or dropping a

container. Assume two different cranes c, c′ ∈ C. The following constraints apply

for any time unit t ∈ N+ and slot s ∈ {0, ..., S + 1} in a feasible crane schedule:

(1) If lc = lc′ : Cranes on equal levels cannot be in the same slot s at time t and

therefore cannot pass each other.

(2) If lc > lc′ : Crane c on a higher level cannot work in slot s at time t if crane c′

on a lower level is in the same slot s at time t.

The objective is to find a feasible partition J1, J2, ..., Jm of jobs and feasible crane

schedules for every crane c ∈ C to process jobs J c that the minimizes the makespan

Cmax. This is defined as the maximum schedule length in time units of all cranes

c ∈ C for delivering containers to their target slots and finally returning to their

depot hc under consideration of the non-crossing constraints. The schedule length

of crane c ∈ C is defined by the time unit when the last cycle of crane c ends.

3.1 Generation of crane cycles

In the following we define parameters and variables necessary for generating crane

cycles. A dual command is a combination of storage job i ∈ JS and retrieval job

j ∈ JR within a crane cycle. This also defines the initial slot ai and final slot bj

of this cycle. However, if job i ∈ J is executed within a single command, there are

two possible slots (0 and S + 1), in which the cycle ends (if i is a storage operation)

or starts (if i is a retrieval operation). And further, we also consider empty crane

cycles from one transfer slot to another.

To reflect this, we define two dummy jobs D0 and DS+1 with no pick-up and delivery

times (qa = 0 and qb = 0), wherein D0 starts and ends in slot 0, and DS+1 in slot

S + 1. A dummy job can either be a storage or retrieval operation. We form

another two sets of storage and retrieval jobs, each contains both dummy jobs,

JS
′
= JS ∪ {D0, DS+1} and JR

′
= JR ∪ {D0, DS+1}.
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Each crane cycle is reflected by a combination of storage job i ∈ JS′
and retrieval

job j ∈ JR′
denoted as (i, j). This also reflects single commands and empty crane

cycles. For instance, a combination between dummy job D0 and DS+1 represents

an empty cycle from transfer slot 0 to S + 1. The distance in time/slot units from

pick-up slot ai to deliver slot bi is denoted as δi = |ai − bi|. Let eij be the execution

time of crane cycle (i, j), with storage job i ∈ JS′
and retrieval job j ∈ JS′

:

eij = qai + δi + qbi + |bi − aj|+ qaj + δj + qbj (1)

Furthermore, each crane cycle starts and ends in transfer slot 0 or S + 1. We

distinguish between four different types of crane cycles. Type 1 starts and ends in

slot 0, for Type 2 this is slot S + 1. If the process starts in 0 and ends in S + 1,

this is Type 3. Finally, from S + 1 to 0 we call this a Type 4 crane cycle. Let tij

indicate a switch of handover slots during a crane cycle; otherwise 0 (Type 1 and

2). Let tij = 1, once ai = 0 and bj = S + 1 (Type 3) and tij = −1, once ai = S + 1

and bj = 0 (Type 4):

ti,j =



0 Type 1: ai = 0, bj = 0

0 Type 2: ai = S + 1, bj = S + 1

1 Type 3: ai = 0, bj = S + 1

−1 Type 4: ai = S + 1, bj = 0

(2)

Let Sij be the start position and Cij the completion time of cycle (i, j) in time

units. Each crane cycle is generated with positions pai and pbi in time units of the

corresponding jobs. Whereas pai and pbi indicate the point in time when half of the

pick-up operation ai or delivery operation bi is executed. Note that job i might also

be a dummy job, then we denote pai and pbi as a dummy operation. We calculate the

operational positions of each cycle as follows:
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pai = Sij +
1

2
qai (3)

pbi = pai +
1

2
qai + δi +

1

2
qbi (4)

paj = pbi +
1

2
qbi + |bi − aj|+

1

2
qaj (5)

pbj = paj +
1

2
qaj + δj +

1

2
qbj (6)

Cij = pbj +
1

2
qbj (7)

3.2 Non-crossing constraints

The following non-crossing constraints can be used to determine if there is a con-

flict between crane cycles of different cranes. Let pxi , p
x
j and pxk be the position of

a storage, retrieval or dummy operation, whereas job i is executed by crane c and

j, k is executed by a different crane c′. The following constraints must hold so that

a conflict free execution is possible:

Non-crossing constraint (8): Let cranes c and c′ be on the same level (lc = lc′). Both

cranes cannot pass or touch each other. Hence, they cannot be in the same slot

at the same time interval. There is a potential conflict between job i ∈ J c and job

j ∈ J c′ if δi+δj > S holds. This conflict is resolved if the following equation applies:

|pxi − pxj | ≥ δi + δj − S +
1

2
(qxi + qxj ) δi + δj > S (8)

Non-crossing constraint (9): Let cranes c and c′ be on different levels (lc 6= lc′). Both

cranes cannot work in the same slot and time interval. There is a potential conflict if

both operations take place in equal slots xi = xj and both are no dummy operations

(qxi > 0 and qxj > 0). This conflict can be resolved if the following constraint holds:

|pxi − pxj | ≥
1

2
(qxi + qxj ) + 1 xi = xj (9)
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Non-crossing constraint (10): Let crane c be on a higher level than crane c (lc > lc′).

Crane c cannot work in the same slot and time interval if crane c′ is driving or idle.

Assume crane c′ executes operation pxj and then drives to operation pxk. There is

a potential conflict if xj < xi < xk or xj > xi > xk applies. This conflict can be

resolved if the following constraint holds:

|pxj +
1

2
qxj + |xi − xj| − pxi | ≥

1

2
(qxi + qxj ) + 1 xj < xi < xk ∨ xj > xi > xk (10)

Assume crane c′ is idle from operation pxj to pxk. There is a potential conflict if both

operations take place in equal slots xi = xj. This conflict can be resolved if one of

the following constraints holds:

pxj −
1

2
(qxi + qxj ) > pxi ∨ pxi > pxk +

1

2
(qxi + qxk) xi = xj = xk (11)

4 Decomposition procedure

To solve instances of real-world size in acceptable time, we propose a heuristic decom-

position procedure. We suggest to divide the overall problem into three interrelated

sub-problems.

First, we create a feasible partition of jobs J to cranes C, i.e. J1, J2, ..., Jm (Crane

Assignment Problem (CAP)). Second, we define a set of crane cycles ∆c for each

crane c under consideration of the previously determined set of jobs J c (Single Crane

Routing Problem (SCRP)). And finally, we create a feasible schedule of all crane

cycles ∆c of cranes c ∈ C under consideration of the non-crossing constraints (Crane

Scheduling Problem (CSP)).

1. Crane Assignment Problem (CAP, Section 4.2)

2. Single Crane Routing Problem (SCRP, Section 4.1)

3. Crane Scheduling Problem (CSP, Section 4.3)

We will discuss the SCRP in the upcoming Section 4.1, although this is second in

the hierarchy of the decomposition procedure, as this approach is used in the CAP.
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4.1 Single Crane Routing Problem

We consider a single crane c and a given set of storage and retrieval jobs J c. The ob-

jective is to determine an optimal sequence to carry out container moves J c assigned

to crane c and finally returning to the respective depot hc so that the makespan is

minimal.

The makespan of a single crane c depends on the generation of crane cycles using

storage jobs JSc and retrieval jobs JRc assigned to crane c. We formulate this using a

complete bipartite graph G = (JS
′c, JR

′c, E). Edges (i, j) ∈ E represent all possible

crane cycles of crane c. Each crane cycle (i, j) ∈ E has some properties, execution

time eij in time units (see Equation 1) and type tij (see Equation 2). Further, let

parameter q indicate if a switch of handover slots is necessary during scheduling.

Hence, q = 0 if all crane cycles start and end at depot slot hc of crane c, otherwise

q = 1.

1

2

D0

DS+1

3

4

D0

DS+1

JSc JRc

Figure 3: Complete bipartite graph G = (JS
′c, JR

′c, E)

The objective is to find a subset of crane cycles ∆c ⊆ E so that
∑∆c

(i,j) eij is minimal,

where all vertices in JSc and JRc are endpoints of exactly one cycle (edge) in ∆c.

Dummy jobs D0 and DS+1 can be part of more than one cycle in ∆c. Further, the

number of Type 3 (tij = 1) and Type 4 crane cycles (tij = −1) in ∆c must be equal.

And last, if parameter q = 1 there is at least one Type 3 and one Type 4 crane

cycle in ∆c. An optimal routing is obtained with a solution ∆c and the routing rules
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presented in this section.

Fig. 3 shows an illustration of graph G with two storage and two retrieval jobs.

Thereby, job 1 starts in slot 0, job 2 in S + 1, job 3 ends in slot 0 and job 4 in slot

S + 1. We have colored Type 3 edges red and Type 4 edges blue. An example for

a valid solution is ∆c = {(1, 4), (2, 3)} or ∆c = {(1, DS+1), (2, 4), (DS+1, 3)}.
The following mathematical program defines this problem for a single crane c. Bi-

nary variable xij is one if crane cycle (i, j) is in ∆c.

Minimize

JS′c∑
i

JR′c∑
j

xij · eij (12)

subject to

JSc∑
i

xij = 1 ∀j ∈ JR′c (13)

JRc∑
j

xij = 1 ∀i ∈ JS′c (14)

JS′c∑
i

JR′c∑
j

xij · tij = 0 (15)

JS′c∑
i

JR′c∑
j

xij · |tij| ≥ q (16)

xij ∈ {0, 1} ∀i ∈ JS′c, ∀j ∈ JR′c (17)

Objective function (12) minimizes the makespan. Constraints (13) ensure that each

storage job in JSc is connected with exactly one retrieval job in JR
′c, and Constraints

(14) provide that each retrieval job in JRc is combined with exactly one storage job

in JS
′c. Constraints (15) enforce that the number of Type 3 and 4 edges in ∆c is

equal. Constraints (16) ensure that there is at least one Type 3 or 4 edge in ∆c if

q = 1. And finally, (17) guarantees that the variable xij is binary.
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Single crane routing rules

Given an optimal set of crane cycles ∆c for a single crane c derived from a solution of

the mathematical model above. We obtain an optimal routing/makespan for crane

c in polynomial time if the following rules apply:

• If hc = 0, we start with a Type 1 or 3 crane cycle

• If hc = S + 1, we start with a Type 3 or 4 crane cycle

• Each Type 1 or 4 cycle is followed by a Type 1 or 3 cycle

• Each Type 2 or 3 cycle is followed by a Type 2 or 4 cycle

Any violation of these rules will result in at least one additional empty cycle from one

handover slot to another. For each additional empty cycle the makespan increases

by S + 1 time units.

Obviously, we obtain an optimal routing for crane c if these rules apply during the

entire process. Note that there is always at least one schedule where all routing

rules apply. This is true as the number of Type 3 and 4 cycles (i.e. changes of

the handover sides) is equal. And second, there is at least one set of Type 3 and 4

cycles if a job is on the opposite side of depot slot hc (i.e. q = 1). Finally, we obtain

the optimal makespan of a single crane c by summing up the execution times of all

crane cycles under consideration:
∑∆c

(i,j) eij.

Complexity

The survey of Boysen and Stephan (2016) provides a classification scheme on such

problems, which categorizes the problem above as [Efree|IO2|Cmax]. A brief summary

of the abbreviations are: each loaded move starts or ends at a handover point, which

handles both storage and retrieval jobs (Efree), two handover slots are located at

both ends of the block (IO2), and the objective is to minimize the makespan (Cmax).

Gharehgozli et al. (2014) proves that this problem can be solved in polynomial

time with O(n5) steps even if a two dimensional storage area is considered. The

authors show that a maximum of n2 Assignment Problems have to be solved, each

of which can be efficiently solved in O(n3) where n is the number of jobs. Note

that an optimal solution for the Assignment Problem is obtained in O(n3) using the

Hungarian Method developed by Kuhn (1955) and improved by Munkres (1957).
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4.2 Crane Assignment Problem

Given a set of storage and retrieval jobs J and a set of cranes C. The objective is

to find a feasible partition J1, J2, ..., Jm of jobs so that the maximum workload of

each crane c ∈ C to process jobs J c is minimal. The workload of each crane c ∈ C
is defined as the minimum time units to execute jobs J c and return to depot hc if

we relax the non-crossing constraints.

We achieve this by extending the SCRP from Section 4.1 to fit multiple cranes. Note

that an optimal solution of the CAP provides a lower bound for the overall problem.

First, we define which crane can be assigned to which job. We differentiated between

3 types of cranes according to the access to transfer slot 0 or S + 1, respectively:

cc =


−1 1: Seaside crane with access to handover slot 0

1 2: Landside crane with access to handover slot S+1

0 3: Cross-over crane with access to both handover slots

∀c ∈ C (18)

We distinguish three variants vij of crane cycles (i, j) ∀i ∈ JS′ ∀j ∈ JR′
. A crane

cycle either starts and ends in the same transfer slot (0 or S + 1) or a crane cycle

starts and ends in different transfer slots:

vij =


−1 1 : ai = 0 and bj = 0

1 2 : ai = S + 1 and bj = S + 1

0 3 : ai 6= bj

∀i ∈ JS′ ∀j ∈ JR′
(19)

Obviously, a seaside crane can only perform crane cycles bounded to slot 0 and a

landside crane only those directed to transfer slot S + 1. However, crossover cranes

C0 ⊆ C can perform all three job variants. At the start and at end of the process

each crane is located at their dedicated depot slot hc ∈ {0, S + 1}. Let parameter

dc ∈ {−1, 1} specify this in our model. Let dc = −1, if the start and end slot is 0,

otherwise, for dc = 1 the depot slot is S + 1.

The following mathematical model represents the CAP. Variables xijc reflect the as-

signment of crane cycles (i, j) to subsets J c c ∈ C, taking value 1 if the assignment
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is done and 0 otherwise. The auxiliary variable Ω represents the maximum workload

of all cranes c ∈ C. The CAP can be formulated as follows:

Minimize

Ω (20)

subject to

Ω ≥
JS′∑
i

JR′∑
j

xijc · eij ∀c ∈ C (21)

JS∑
i

C∑
c

xijc = 1 ∀j ∈ JR′
(22)

JR∑
j

C∑
c

xijc = 1 ∀i ∈ JS′
(23)

JS′∑
i

JR′∑
j

xijc · tij = 0 ∀c ∈ C0 (24)

JS′∑
k

JR′∑
l

xklc · |tkl| ≥ xijc · vij · (−dc) ∀i ∈ JS′
, ∀j ∈ JR′

, ∀c ∈ C0 (25)

xijc · vij · cc = xijc · |cc| ∀i ∈ JS′
, ∀j ∈ JR′

, ∀c ∈ C (26)

xijc ∈ {0, 1} ∀i ∈ JS′
, ∀j ∈ JR′

, ∀c ∈ C (27)

Objective function (21) serves to minimize the maximum workload Ω of all cranes

c ∈ C. Constraints (22) enforce that each storage job in JS forms a crane cycle with

a retrieval job in JR
′

assigned to a crane c ∈ C. Constraints (23) provide that each

retrieval job in JR forms a crane cycle with a storage job in JS
′

assigned to a crane

c ∈ C. Constraints (24) ensure that the number of Type 3 and 4 cycles assigned to

cross-over crane c ∈ C0 is equal. Inequalities (25) enforce that there is at least one

Type 3 and 4 cycle assigned to cross-over crane c ∈ C0 if there is at least one Type

1 (dc = 1) or Type 2 (dc = −1) job variant vij assigned to crane c (see Equation

19). And finally, (27) ensures that the variable xijc is binary.
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4.3 Crane Scheduling Problem

Given a set of crane cycles ∆c for each crane c ∈ C. Let n′ be the total number of

crane cycles. A feasible solution of the proposed scheduling problem requires two

components. First, we have to define a processing sequence of crane cycles (i, j) ∈ ∆c

for each crane c ∈ C. Each crane cycle is then intended to be processed without

idle times if possible. To avoid additional empty cycles we assume that the single

crane routing rules from Section 4.1 must apply in a feasible processing sequence.

Second, in order to resolve conflicts between crane cycles of different cranes, we

define another sequence that regulates which crane cycle is prioritized and which

has to wait in the transfer slot. To resolve conflicts between two cycles the non-

prioritized crane is idle at the current depot slot for a sufficiently large number of

time units until the conflict is resolved. We use the non-crossing constraints defined

in Section 3.2 to identify and resolve such conflicts.

We combine both requirements in sequence π, which defines a feasible processing

order for all cranes C and the priority order of crane cycles. We prioritize a cycle

if it is before another cycle in sequence π. The objective is to find a sequence

π = (π(1), ..., π(n′)) for all crane cycles ∆c ∀c ∈ C so that the makespan is minimal,

where π(k) is the kth crane cycle in π, k ∈ {1, ..., n′}. The makespan being defined

as the maximum completion time of all crane cycles in π: Cπ(k) ∀k ∈ {1, ..., n′}.
In the following subsections we propose two heuristic procedures for this scheduling

problem.

4.3.1 Truncated branch-and-bound

In the following we present a recursive truncated branch-and-bound algorithm to

generate a feasible schedule from given sets of crane cycles ∆c c ∈ C. This also

computes the position data and completion times of all crane cycles.

We use an additive lower bound LB for effective bounding. Here, the execution times

of all cycles not included in schedule π′ are added to the current crane completion

times. In the branching process each crane cycle is positioned at the earliest possible

point in time under consideration of the current processing and priority sequence

π′ during branching. We do this by moving a cycle forward in time until no more

conflicts occur. We identify conflicts using the non-crossing constraints presented in
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Section 3.2.

A majority of conflicts can be resolved by shifting the crane cycle forward in time.

However, a conflict between an idle crane and a prioritized working crane on a

higher level cannot be resolved by this strategy. It can be very time consuming to

resolve such deadlock situations in the process of branching. Hence, we prioritize

all crane cycles executed by cranes on lower levels over those assigned to cranes

on higher levels in sequence π′. As this restriction cuts off parts of the solution

space, we call it a truncated branch-and-bound algorithm. However, we assume

that this branching rule has a rather small effect on the optimal result in contrast

to a significantly reduced solution space.

We initialize algorithm BB with an arbitrary sequence π and a sufficiently large

number for the upper bound UB.

Algorithm Truncated branch-and-bound algorithm (BB)

0. Initialization:
π: Initial sequence of crane cycles; π′: Empty sequence
UB: Upper bound; LB: Additive lower bound
(i, j)c: Last crane cycle processed by crane c ∈ C; k = −1: Current position in π′

1. Branching:
for j = 1 to n do

if π(j) is not in π′ then
Let c be the crane to execute cycle π(k)
if branching rule apply for π(j) then
k = k + 1; π′(k) = j
Sπ(k) = C(i,j)c

go to 3. Bounding (π(j))
end if

end if
end for
if k = −1 then return UB
else k = k − 1; BOUND
2. Check for conflicts:
for l = 1 to k − 1 do

if non-crossing constraints 8 - 11 do not apply with π(l) and π(k) then
Let x be the minimum number of idle time units for π(k) to resolve the conflict
with π(l); Resolve the conflict: Sπ(k) = Sπ(k) + x
Update position data of crane cycle π(k) with Equations 3 - 7
Go to 2. Check for conflicts

end if
Next l

end for
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Update last crane cycle processed: (i, j)c = π(j); Go to 3. Bounding
3. Bounding:
Let ∆′c be the crane cycles not in sequence π′ for each crane c ∈ C
Calculate lower bound LB = maxc{C(i,j)c +

∑∆′
c

(k,l) e(k,l)} ∀c ∈ C
if LB ≥ UB) then k = k − 1; BOUND end if
if π′ contains all crane cycles then UB = LB (new best solution) end if
Go to 1. Branching

4.3.2 Tabu search

We suggest a tabu search heuristic to find good solutions in reasonable time for large

instances. Given sets of crane cycles ∆c c ∈ C.

We initialize the meta-heuristic with an arbitrary sequence π to which the single

crane routing rules from Section 4.1 apply.

Algorithm Tabu search algorithm (TS)

0. Initialization:
π: Initial feasible sequence of crane cycles; UB: Upper bound;
Ψ: Empty tabu list; Add π to tabu list Ψ set noimp = 0
1. Neighbour solution:
Φ: Empty neighbourhood set
for i = 1 to n′ do

for j = 1 to n′ do
if cycles π(i) and π(j) are on the same level then

Swap crane cycles: π′ = π; π′(i) = π(j); π′(j) = π(i)
if Single crane routing rules hold for each crane in π′ and π′ /∈ Ψ then

add π′ to Φ
end if

end if
end for

end for
2. Improvement:
UB′ =∞
for each π′ ∈ Φ do

UB′′ = compute makespan of sequence π′

if UB′′ < UB′ then UB′ = UB′′; π = π′

end for
if UB′ < UB then UB = UB′; noimp = 0 else noimp+ +
if noimp = 10 then STOP
Go to 1. Neighbour solution

In each iteration we generate a set of neighborhood sequences Φ. The neighborhood

consists of all possible interchanges of two arbitrary crane cycles on equal levels
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within sequence π. However, we only add those sequences to set Φ where the routing

rules from Section 4.1 apply and those that are not included in tabu list Ψ. After

computing all sequences in Φ we select sequence π with the lowest makespan for the

next iteration. We obtain a feasible sequence π using algorithm BB and determine

it after the first feasible sequence is found.

To avoid reconsideration of a solution we set it tabu for the next 1000 iterations using

list Ψ. Afterwards we start the next iteration considering sequence π. Once we reach

a certain number of iterations with no improvement, the algorithm determines (in

this study we set noimp = 10). To prevent TS from getting stuck in a local optimum

we suggest to restart the algorithm with different randomized initial sequences π.

5 Computational study

In the following we present a computational study based on realistic data. We em-

pirically evaluate the performance of seven different RMG Systems for three typical

scenarios at transshipment yards. During the course of this, we also investigate the

performance of our proposed decomposition approach.

We implemented the mathematical models using the IBM ILOG CPLEX Optimiza-

tion Studio (version 12.7.1.0) and the branch-and-bound and tabu search algorithm

is implemented in Java 1.8. All tests are performed with an Intel R© CoreTM i7-6700k

CPU running at 4GHz and 32GB of memory, on the operating system Windows 10

64 bit. The components of our decomposition procedure are implemented as follows:

• CAP: Mathematical model ⇒ CPLEX 12.7.1.0

• SCRP: Mathematical model ⇒ CPLEX 12.7.1.0

• CSP-BB: Branch-and-bound algorithm ⇒ Java 1.8

• CSP-TS: Tabu search algorithm ⇒ Java 1.8

The mathematical models CAP and SCRP are subject to a 30-second CPU limit.

We use the CPLEX standard MIP gap of 0.0001 %. Further, we initialize CSP-BB

with a sufficiently large number for the upper bound and a initial sequence π. The

crane cycles in π are sorted in ascending order according to level of the assigned
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crane, and in case of equality according to the index. CSP-BB is also subject to

a 30-second CPU limit. We use the first feasible sequence π obtained with BB to

which the rules from Section 4.1 apply to initialize CSP-TS. Finally, we determine

the tabu search heuristic after 10 iterations with no improvement of the current

best solution. We restart this procedure ten times with randomized feasible initial

sequences π and return the best solution of all iterations, which defines the solution

of CSP-TS.

5.1 Instances generation

All instances are created with the test data generator introduced by Briskorn et al.

(2017) and are available online under the project name ’ASSIGN ’ using the following

link: www.instances.de/dfg/project.php?project=ASSIGN

The data is based on typical practical settings at seaport terminals. A common

storage area has a length of approximately 40 TEU. Hence, S = 40 is a reasonable

assumption. Each slot has space for a 1 TEU container (Twenty-foot Equivalent

Unit) with a length of approximately 6m. The parameter settings are based on the

simulation model of Speer (2017). We assume that all cranes share a constant speed

of 2 meters per second. Hence, a time unit is equivalent to 3 seconds. An average

pick-up and delivery process has a duration of 36 seconds, i.g. 12 time units. We

assume constant pick-up and delivery times ati, b
t
i = 12 ∀i ∈ J .

A bidirectional flow of containers is considered. Hence, each container is subject to

one of four moving directions. We consider three scenarios of container movement

(see Table 1). In Scenario 1, the four moving directions are uniformly distributed.

In many practical scenarios the share of transshipment containers is significantly

larger than the share of containers at landside. Scenario 2 considers only inbound

and outbound containers at seaside. This is a practical situation at night time when

there is no hinterland service. In Scenario 3, a majority are inbound container at

seaside. This practical setting occurs when a ship needs to be unloaded quickly

and only a few prioritized containers are passed to the landside. The pick-up and

delivery slots are randomly drawn from a uniform distribution on the interval [1, S].

In this study we vary the number of containers n = 12, 24, 36, 48, 60, which is a

practical assumption as there are usually no more than 50 container moves known
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in advance that are accessible. We create 100 instances per case. All in all, we

receive 3 ∗ 3 ∗ 100 = 900 problem instances with the following properties:

• Number of slots: S = 40

• Number of jobs: n = 12, 24, 36, 48, 60

• Pick-up and delivery times: ati, b
t
i = 12

• Storage positions ai and bi inside the block are randomly drawn from a uniform

distribution on the interval [1, S]

• Share of container moving directions (see Table 1)

Table 1: Moving directions of containers

Seaside Landside

Scenario Inbound Outbound Inbound Outbound

1 0.25 0.25 0.25 0.25

2 0.50 0.50 0.00 0.00

3 0.75 0.00 0.00 0.25

We investigate the performance of seven different RMG systems with up to four

cranes (see Table 2). To model a crane system we specify the crane type cc and the

depot slot dc for each crane c ∈ C in each system. It should be noted that systems

[3, 3], [4, 2] and [4, 3] are not yet in use in practice but represent realistic extensions

of the existing systems.
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Table 2: RMG systems

System Name |C| |L| Crane type(s) cc Depot slot(s) dc

[1, 1] Single RMG 1 1 0 −1

[2, 1] Twin RMG 2 1 −1, 1 −1, 1

[2, 2] Double RMG 2 2 0, 0 1,−1

[3, 2] Triple RMG 3 2 −1, 1, 0 −1, 1,−1

[3, 3] - 3 3 0, 0, 0 −1, 1,−1

[4, 2] - 4 2 −1, 1,−1, 1 −1, 1,−1, 1

[4, 3] - 4 3 −1, 1, 0, 0 −1, 1, 1,−1

5.2 Computational results

Consider an instance I. Let ω(I) =
∑J

i (δi+ qai + qbi ) be the total loaded workload of

instance I if we do not consider empty drives and idle times. Let E(solI) =
∑∆

(i,j) eij

be the sum of the execution time of all crane cycles ∆ = ∆1∪, ...,∪∆m in a solution

solI of instance I. Note that E(solI) does not include idle times. We define the

share of empty drives in all crane cycles ∆ in solution solI as follows:

empty(solI) :=
E(solI)− ω(I)

E(solI)
(28)

Let Ω(solI) be the maximum workload including empty drives and Cmax(solI) the to-

tal makespan of a solution solI using instance I. In our decomposition approach the

value of Ω(solI) is obtained with the mathematical model for CAP and Cmax(solI)

with CSP-BB or CSP-TS. We define the relative gap of solution solI with respect

to lower bound Ω(solI) as follows:

gap(solI) :=
Cmax(solI)− Ω(solI)

Ω(solI)
(29)

Note that gap(solI) represents the share of additional time due to idle times (i.e.

conflict time) of the bottleneck crane in solution solI , which is the last crane that

returns to its depot in this solution.
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We introduce another metric to measure the performance of different RMG systems.

Let per(sol1I , sol
2
I) be the minimum average handling time of containers in seconds

of two solution, where sol1I is obtained with CSP-BB and sol2I by using CSP-TS. We

divide the minimum overall makespan of both solutions by the number of container

moves n of instance I and multiply this by 3 seconds, as a single time unit is

equivalent to 3s.

per(sol1I , sol
2
I) :=

min{Cmax(sol1I), Cmax(sol2I)}
n

· 3s (30)

In the following Subsections 5.2.1 - 5.2.5 we evaluate the average share of empty

drives (empty) in crane cycles, the average relative gap (gap) and the average han-

dling time per container move in seconds (per) for different sets of instances. Fur-

thermore, we also examine the average solution times in milliseconds (cpu(ms)) and

the number of optimal solved instances using mathematical model CAP (sol(#))

within the 30 seconds time limit. And finally, the number of instances proven to

optimality of the overall problem (opt(#)).

All numerical values that correspond to the presented results are given in the ap-

pendix (see Tables 3, 4 and 5).

5.2.1 Solution times

The SCRP can be solved in a negligible time for all problem instances, thus we only

consider the average solution times of the other procedures. Tables 3, 4 and 5 in the

appendix illustrate the average solution times in milliseconds (cpu(ms)). Note that

CAP and CSP-BB cannot solve all instances within the given 30 seconds time limit.

Especially instances with more than 24 jobs are more challenging to solve. With

regard to procedures CSP-BB and CSP-TS, it is noticeable that Scenario 3 instances

have a higher average solution time than those of the other scenarios. Furthermore,

CAP cannot solve all instances within the 30 seconds time limit (sol(#)). The

runtime increases with a higher number of jobs, and it is also noticeable that systems

including crossover cranes for Scenario 1 and 2 have a higher runtime for CAP.
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5.2.2 Share of empty drives

Fig. 4 suggest that including more storage and retrieval jobs leads to a reduction of

the average share of empty drives (empty) in crane cycles for Scenario 1 and 2. This

is basically due to the fact that dual cycles can be formed more and more beneficially

using a higher number of jobs. It is also worth mentioning that the systems without

cross-over cranes ([2, 1] and [4, 2]) have a higher share of empty drives in Scenario

1, as there are fewer possibilities to form dual cycles.

This shows that the presented mathematical model (CAP) provides reasonable re-

sults for Scenario 1 and 2. However, for Scenario 3 the share of empty drives is much

higher with up to 30 %. The reason for this is that almost all jobs are executed in

a single command.
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Figure 4: Average share of empty drives
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Figure 5: Average relative gap CSP-BB
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Figure 6: Average relative gap CSP-TS
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5.2.3 Relative gap

In Figures 5 and 6 we analyze the average relative gap of the CSP-BB and CSP-

TS procedure. Obviously, the more crane cycles are available the more possibilities

exist to schedule these, and thus idle times can be reduced. We assume that a high

number of scheduling options leads to fewer conflicts in general and eventually to

lower gap values. This effect can be shown especially for instances with up to 36 jobs,

however the gap values for CSP-BB increase for larger instances. This shows that

the 30 second time limit for CSP-BB is not suitable for instances with 48 jobs and

more. CSP-TS performs better for larger instances. However, there are also limits,

especially with regard to systems [3, 3] and [4, 3] and instances with more than 36

jobs. Furthermore, we determine that CSP-BB performs better for pure cross-over

systems ([2, 2] and [3, 3]) and CSP-TS is better with non-cross-over systems ([1, 2]

and [4, 2]).

5.2.4 Handling time per container move in seconds

Figure 7 shows the average handling time per container move of all crane systems

and scenarios. As defined above, the best solution from CSP-BB and CSP-TS is

used for the per values. Note that we highlight these values in Tables 3, 4 and 5 in

the appendix if CSB-BB leads to a better result than CSP-TS.

It can be observed that the number of available cranes in a system has a strong

influence on the performance. This decreases with a higher number of cranes, mainly

due to more conflicts in systems with multiple crane. Note that in Scenario 2 all

landside cranes remain idle during the entire process. This has a negative impact

on the performance, especially for systems [2, 1] and [4, 2]. Note that this influence

might be reduced by allowing preemptive moves, which we have not considered in

this work.
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Figure 7: Average handling time per container move in seconds

It can also be seen that the handling times for Scenario 3 are particularly long.

This is due to a higher share of empty drives in this scenario. Furthermore, the

average handling time decreases for all crane systems in Scenario 1 and 2 with a

higher number of jobs. This effect is particularly strong from 12 to 24 jobs and

then declines steadily. In the interval from 12 to 60 jobs, the average handling time

is reduced by about 6 up to 11 seconds depending on the system. This effect is

especially strong for system [3, 3] and Scenario 1, with an improvement of 11, 53

seconds.

5.2.5 Instances proven to optimality

Despite the heuristic character of the decomposition approach some instances can be

proven to optimality. We consider an instance to be optimally solved if the solution
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of CAP is optimal (sol(#)) and one of the subsequent procedures (CSP-BB or CSP-

TS) finds a solution that is equal to the lower bound obtained with CAP. In other

words, if we find a conflict free schedule of the bottleneck crane.

Tables 3, 4 and 5 in the appendix illustrate the number of instances proven to

optimality (opt(#)). A majority of instances with up to two cranes can be solved

optimally. However, this is not the case if we consider more than two cranes. One

reason is the higher conflict potential of such systems. Another reason is that at

least two cranes share the same depot slot, which most likely leads to conflicts at

the beginning and end of the process.

6 Conclusion

This article treats a decomposition procedure for different automated yard crane

systems. The objective is to minimize the makespan. We deal with the integration

of three interrelated problems, and provide solution approaches for all sub-problems.

As most literature in this area deals with specific crane settings (e.g. Double RMG),

we present an approach that addresses various crane systems, which makes them

comparable in different practical scenarios. The proposed approach provides good

solutions near the lower bound in a short time for problem instances of realistic

size. The presented computational study offers new insights to certain metrics re-

garding different RMG systems (e.g. share of empty drives or average handling time

per move). The numerical results suggests that considering a large number of con-

tainer moves leads to a reduction of empty drives and a higher productivity of crane

systems.

Future research should explore the effects of other realistic scenarios on the per-

formance of different crane systems. Some of the assumptions, like the negligible

movement time of the trolley/spreader may be relaxed. We propose to extend the

model for other practical relevant objectives, like minimizing crane completion times

or tardiness of containers. In addition, the approach could also be altered to reflect

the influence of new crane technologies or block layouts, like multi-transportation

of containers or multiple handover points at each side.
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Appendix

Table 3: Computational results of Scenario 1

CAP CSP-BB CSP-TS

n ms sol(#) empty cpu(ms) gap cpu(ms) gap per(s) opt(#)

[1, 1] 12 9 100 0.079 0 0.000 0 0.000 146.12 100

[1, 1] 24 30 100 0.050 0 0.000 0 0.000 140.58 100

[1, 1] 36 102 100 0.044 0 0.000 0 0.000 139.65 100

[1, 1] 48 284 100 0.040 0 0.000 0 0.000 139.37 100

[1, 1] 60 519 100 0.033 0 0.000 0 0.000 138.15 100

[2, 1] 12 7 100 0.098 0 0.020 6 0.020 80.48 55

[2, 1] 24 22 100 0.072 6386 0.012 12 0.001 74.99 96

[2, 1] 36 70 100 0.059 22372 0.038 42 0.000 73.33 97

[2, 1] 48 186 100 0.052 24764 0.045 87 0.000 72.89 99

[2, 1] 60 415 100 0.048 28639 0.061 187 0.000 72.09 100

[2, 2] 12 58 100 0.083 0 0.029 0 0.075 76.14 52

[2, 2] 24 1303 99 0.050 0 0.004 6 0.008 70.66 80

[2, 2] 36 13227 59 0.044 9 0.000 34 0.001 69.87 59

[2, 2] 48 16713 46 0.040 1885 0.000 154 0.001 69.75 45

[2, 2] 60 14822 54 0.033 1471 0.000 556 0.002 69.11 53

[3, 2] 12 22 100 0.092 0 0.157 6 0.157 59.29 3

[3, 2] 24 295 100 0.057 348 0.067 97 0.070 50.73 0

[3, 2] 36 2193 97 0.046 29738 0.059 431 0.054 49.27 0

[3, 2] 48 3786 92 0.041 30000 0.090 1337 0.053 48.99 0

[3, 2] 60 3254 96 0.034 30000 0.108 3391 0.054 48.62 0

[3, 3] 12 121 100 0.087 0 0.153 0 0.158 58.41 0

[3, 3] 24 3580 97 0.050 0 0.097 4 0.193 51.61 0

[3, 3] 36 11755 64 0.044 31 0.046 61 0.070 48.76 0

[3, 3] 48 11986 64 0.040 2395 0.022 255 0.065 47.50 0

[3, 3] 60 12573 65 0.033 28609 0.017 714 0.067 46.88 0

[4, 2] 12 13 100 0.138 0 0.136 22 0.136 49.30 4

[4, 2] 24 42 100 0.076 284 0.111 114 0.122 42.05 0

[4, 2] 36 133 100 0.062 29976 0.100 522 0.102 40.44 0

[4, 2] 48 693 100 0.062 30000 0.191 2065 0.085 39.57 0

[4, 2] 60 7263 85 0.056 30000 0.275 5112 0.089 39.28 0

[4, 3] 12 72 100 0.125 0 0.218 10 0.219 49.50 0

[4, 3] 24 2486 99 0.055 20 0.199 67 0.206 42.84 0

[4, 3] 36 9178 87 0.045 7604 0.139 288 0.181 39.91 0

[4, 3] 48 14944 58 0.040 30000 0.139 910 0.173 39.74 0

[4, 3] 60 14874 64 0.034 30000 0.164 2267 0.182 40.26 0
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Table 4: Computational results of Scenario 2

CAP CSP-BB CSP-TS

n ms sol(#) empty cpu(ms) gap cpu(ms) gap per(s) opt(#)

[1, 1] 12 7 100 0.079 0 0.000 0 0.000 145.25 100

[1, 1] 24 21 100 0.050 0 0.000 0 0.000 140.78 100

[1, 1] 36 70 100 0.044 0 0.000 0 0.000 139.66 100

[1, 1] 48 173 100 0.040 0 0.000 0 0.000 139.00 100

[1, 1] 60 375 100 0.033 0 0.000 0 0.000 138.29 100

[2, 1] 12 9 100 0.079 0 0.000 0 0.000 145.25 100

[2, 1] 24 21 100 0.050 0 0.000 0 0.000 140.78 100

[2, 1] 36 68 100 0.044 0 0.000 0 0.000 139.66 100

[2, 1] 48 174 100 0.040 0 0.000 0 0.000 139.00 100

[2, 1] 60 382 100 0.033 0 0.000 0 0.000 138.29 100

[2, 2] 12 52 100 0.092 0 0.034 2 0.034 76.75 49

[2, 2] 24 213 100 0.054 18 0.012 44 0.015 71.61 60

[2, 2] 36 4717 90 0.046 18173 0.020 278 0.015 71.07 51

[2, 2] 48 8022 75 0.042 21423 0.019 1010 0.014 70.59 36

[2, 2] 60 8218 76 0.034 25936 0.023 3070 0.018 70.47 22

[3, 2] 12 31 100 0.080 0 0.047 6 0.047 76.81 0

[3, 2] 24 308 100 0.050 96 0.024 80 0.024 72.12 0

[3, 2] 36 11254 70 0.044 30000 0.016 392 0.017 71.02 0

[3, 2] 48 15818 48 0.040 30000 0.014 1304 0.016 70.51 0

[3, 2] 60 16936 45 0.033 30000 0.017 3388 0.016 70.29 0

[3, 3] 12 73 100 0.099 0 0.254 2 0.254 63.44 0

[3, 3] 24 2257 96 0.054 2 0.178 52 0.184 55.68 0

[3, 3] 36 2378 94 0.046 1893 0.107 281 0.160 51.71 0

[3, 3] 48 3518 91 0.042 30000 0.110 954 0.158 51.53 0

[3, 3] 60 6810 83 0.034 30000 0.133 2511 0.174 52.31 0

[4, 2] 12 29 100 0.080 0 0.051 6 0.051 77.05 1

[4, 2] 24 249 100 0.050 89 0.025 84 0.026 72.19 0

[4, 2] 36 9504 75 0.044 30000 0.017 415 0.019 71.04 0

[4, 2] 48 15817 48 0.040 30000 0.014 1354 0.016 70.53 0

[4, 2] 60 16939 45 0.033 30000 0.019 3506 0.018 70.44 0

[4, 3] 12 87 100 0.098 0 0.259 5 0.259 63.68 1

[4, 3] 24 2459 95 0.054 2 0.177 32 0.190 55.62 0

[4, 3] 36 3197 91 0.046 1812 0.111 165 0.169 51.93 0

[4, 3] 48 3416 91 0.042 30000 0.106 571 0.173 51.37 0

[4, 3] 60 6120 84 0.034 30000 0.134 1519 0.178 52.37 0
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Table 5: Computational results of Scenario 3

CAP CSP-BB CSP-TS

n ms sol(#) empty cpu(ms) gap cpu(ms) gap per(s) opt(#)

[1, 1] 12 9 100 0.313 0 0.000 0 0.000 192.87 100

[1, 1] 24 21 100 0.317 0 0.000 0 0.000 196.30 100

[1, 1] 36 61 100 0.315 0 0.000 0 0.000 194.36 100

[1, 1] 48 147 100 0.314 0 0.000 1 0.000 193.54 100

[1, 1] 60 304 100 0.315 0 0.000 0 0.000 195.08 100

[2, 1] 12 8 100 0.313 1065 0.000 0 0.000 145.44 100

[2, 1] 24 15 100 0.317 6601 0.004 0 0.000 147.18 100

[2, 1] 36 47 100 0.315 4201 0.002 1 0.000 145.94 100

[2, 1] 48 124 100 0.314 5100 0.003 1 0.000 145.46 100

[2, 1] 60 270 100 0.315 5401 0.002 2 0.000 146.47 100

[2, 2] 12 45 100 0.314 1 0.000 2 0.001 96.59 99

[2, 2] 24 14913 51 0.317 832 0.000 45 0.000 98.21 51

[2, 2] 36 13627 55 0.315 7034 0.006 343 0.000 97.22 55

[2, 2] 48 14408 53 0.314 24569 0.020 2723 0.000 96.80 50

[2, 2] 60 17077 45 0.315 30000 0.042 10775 0.000 97.59 41

[3, 2] 12 12 100 0.313 625 0.042 86 0.042 76.11 1

[3, 2] 24 47 100 0.317 30000 0.042 1424 0.022 75.25 0

[3, 2] 36 10209 77 0.315 30000 0.031 8128 0.014 74.05 0

[3, 2] 48 13852 55 0.314 30000 0.034 29180 0.011 73.55 0

[3, 2] 60 14223 54 0.315 30000 0.053 78698 0.009 73.93 0

[3, 3] 12 49 100 0.314 1 0.060 18 0.081 68.47 0

[3, 3] 24 12081 60 0.317 19746 0.025 453 0.031 67.14 0

[3, 3] 36 10705 65 0.315 30000 0.030 3249 0.024 66.43 0

[3, 3] 48 11869 62 0.314 30000 0.073 12440 0.025 66.16 0

[3, 3] 60 11714 64 0.315 30000 0.086 34718 0.031 67.07 0

[4, 2] 12 9 100 0.313 415 0.045 90 0.045 76.16 0

[4, 2] 24 32 100 0.317 30000 0.038 1403 0.021 75.22 0

[4, 2] 36 353 100 0.315 30000 0.045 7950 0.015 74.07 0

[4, 2] 48 1698 95 0.314 30000 0.068 28853 0.011 73.56 0

[4, 2] 60 943 98 0.315 30000 0.104 75848 0.010 73.97 0

[4, 3] 12 24 100 0.319 24 0.112 66 0.113 56.97 0

[4, 3] 24 296 100 0.318 30000 0.099 1075 0.087 54.69 0

[4, 3] 36 2042 94 0.316 30000 0.126 6340 0.080 53.35 0

[4, 3] 48 3178 91 0.314 30000 0.149 22178 0.090 53.57 0

[4, 3] 60 4276 88 0.316 30000 0.308 59902 0.099 54.28 0
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V Fazit und Ausblick

In diesem Kapitel werden die zentralen Ergebnisse der vorgestellten Beiträge noch-

mals gebündelt zusammengefasst und Ansatzpunkte für künftigen Forschungsbedarf

aufgezeigt.

1 Fazit

Mit der vorliegenden Dissertationsschrift sollte ein wesentlicher Beitrag zur Opti-

mierung von automatisierten Lagersystemen mit Interferenzen geleistet werden.

Im Zentrum standen dabei insbesondere Containerterminals, die infolge des zuneh-

menden Welthandels vor vielfältigen Herausforderungen stehen. Wie dargestellt wur-

de, arbeiten teilweise mehrere RMGs gemeinsam an einem Lagerblock, um Container

möglichst effizient zwischenzulagern bzw. für den weiteren Transport bereitzustellen.

Dieser Abschnitt des Containerterminals stellt jedoch einen potentiellen Engpass im

System dar, weshalb ein Hauptfokus dieser Dissertation darauf lag, zugrunde lie-

gende Optimierungsprobleme genauer zu untersuchen bzw. darzustellen, um darauf

aufbauend schließlich entsprechende Optimierungsverfahren zu entwickeln.

• Kapitel II – Beitrag R1 verfolgte in diesem Zusammenhang das Ziel, zunächst

ein gemeinsames Testbed für verschiedene Optimierungsprobleme am Lager-

block zu etablieren. Es wurde daher ein Generator vorgestellt, der es ermöglicht,

Testinstanzen für eine Vielzahl praktischer Problemstellungen in Bezug auf

die Kransteuerung an Containerterminals zu erzeugen. Wie aufgezeigt wurde,

deckt das zugrunde liegende generische Modell dabei nicht nur Szenerien be-

reits existierender Arbeiten ab, sondern vor allem auch solche, die noch nicht

von der Forschung erfasst wurden. Dazu gehört bspw. die Unterstützung von

Containerbewegungen in drei Dimensionen oder die Modellierung von verschie-
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denen praxisrelevanten Vorrangbeziehungen (engl. precedence constraints).

Zu Beginn des Projekts war allerdings noch nicht ersichtlich, welche Szenarien

der Generator letztendlich abbilden würde. Durch die Zusammenarbeit mit ei-

nem Praxispartner sowie mit weiteren Forschern aus diesem Fachbereich wurde

das generische Modell in einem fortwährenden Prozess daher erweitert bzw. an

praktische Situationen angepasst. Ein Beispiel hierfür war die Aufnahme der

stacking value in das generische Modell. Wie in Beitrag R1 ebenfalls heraus-

gearbeitet wurde, erfolgt die Vergabe der Container-Stellplätze in der Praxis

häufig nach Prioritätsregeln, wobei unter anderem die Destination, Beschaffen-

heit oder Terminierung des Containers eine entscheidende Rolle spielen. Dieser

Umstand wurde mit der stacking value abgebildet.

Durch das vorgegebene Generierungsschema können zudem unbeabsichtigte

Verzerrungen bei der Erstellung von Testdaten verhindert werden. Ein weite-

rer Vorteil dieses Generators ist, dass erstellte Datensätze öffentlich zugänglich

sind und somit auch für zukünftige Forschung genutzt werden können. Bislang

existieren bereits zwei wissenschaftliche Publikationen, bei welchen der Gene-

rator Anwendung findet (siehe Ehleiter und Jaehn (2016); Jaehn und Kress

(2017)). An weiteren Projekten, die ebenfalls auf diesen Generator zurückgrei-

fen, wird derzeit zudem gearbeitet. Auch in Beitrag R2 und R3 wurden die

Testdaten mithilfe des Generators erstellt und öffentlich zugänglich gemacht.

Eine Übersicht der bisher zur Verfügung gestellten Datensätze kann online ab-

gerufen werden (www.instances.de/dfg/published.php).

• Kapitel III – In Beitrag R2 lag der Schwerpunkt darauf, das bereits bekannte

NP-schwere twin robots scheduling problem (Erdoğan et al., 2014) weiter zu

erforschen und an gleichartige Problemstellungen, insbesondere an Container-

terminals, anzupassen. Wie bei dem hierzu beschriebenen Praxisproblem dar-

gestellt wurde, führen zwei Industrieroboter Arbeiten an gegebenen Positionen

entlang einer gemeinsamen Schiene aus. Neben der Entwicklung von exakten

Verfahren zur Lösung des Optimierungsproblems ging es vor allem darum, die

zeitliche Auswirkung der auftretenden Interferenzen näher zu betrachten. Mit

dem für die vorliegende Dissertationsschrift entwickelten und in Beitrag R2
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präsentierten Approximationsverfahren konnte für zwei der betrachteten Sze-

narien gezeigt werden, dass durch die Behinderungen der beiden Roboter im

Worst-Case bei hinreichend großen Instanzen bis zu 17,16% zusätzliche Zeit

(d.h. Wartezeit) entsteht.

Ein weiterer wichtiger Aspekt lag zudem darin festzustellen, bei welchen Pro-

bleminstanzen Behinderungen zwischen beiden Roboter auftreten und welche

Auswirkungen dies auf die Gesamtbearbeitungszeit hat. Zu Beginn der For-

schungsarbeit war dabei bekannt, dass eine ausgeglichene Arbeitslast beider

Roboter eine wesentliche Voraussetzung darstellt, um schwer lösbare Instanzen

zu erstellen. Eine zentrale Erkenntnis von Beitrag R2 war in diesem Zusam-

menhang, dass sich selbst große Instanzen mit bis zu 10.240 Aufträgen mittels

der vorgestellten Verfahren zumeist exakt lösen lassen, sofern die Lieferposi-

tionen gleich verteilt entlang der gemeinsamen Schiene angenommen werden.

Aus diesem Grund wurden die Auswirkungen von vermeintlich konfliktreichen

Verteilungsmustern der Lagerpositionen detaillierter untersucht. Mithilfe des

vorgestellten LB-Tests konnte schließlich eine Aussage über den Anteil kon-

fliktfreier Ablaufpläne in Bezug auf die vorgestellten Verteilungsmuster und

Szenarien getroffen werden.

• Kapitel IV – In Beitrag R3 wurde das Ziel verfolgt, einen allgemeinen An-

satz für verschiedene RMG-Systeme mit mehreren Kränen zu entwickeln, bei

welchen bspw. kleine Kräne unter bestimmten Voraussetzungen einen großen

Kran passieren können. Hier stellt sich jedoch grundsätzlich die Frage, welche

Auswirkung die Bereitstellung eines zweiten oder dritten Krans hat, bspw. in

Bezug auf die Produktivität der RMG-Systeme.

Aus diesem Grund wurde in Beitrag R3 ein Ansatz entwickelt, der verschiede-

ne RMG-Systeme mit bis zu zwei Kränen pro Ebene bzw. Schiene unterstützt.

Ziel war es, einerseits in der Praxis bekannte Systeme abzubilden (Twin, Dou-

ble oder Triple RMG), andererseits aber auch solche, die sich in praktischen

Anwendungen noch nicht etabliert haben. Das in Beitrag R3 vorgestellte Op-

timierungsproblem wurde dabei aufgrund seiner hohen Entscheidungstiefe in

drei zusammenhängende Teilprobleme zerlegt. Damit verbunden wurde für je-

des der Probleme ein Lösungsverfahren präsentiert. In einer umfangreichen
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numerischen Studie konnte in diesem Zusammenhang gezeigt werden, dass

der gewählte heuristische Dekompositions-Ansatz für die sieben untersuchten

RMG-Systeme für Probleminstanzen mit bis zu 36 Containerbewegungen gute

Ergebnisse nahe oder gleich der unteren Schranke liefert. Zudem konnte dar-

gelegt werden, dass durch eine gemeinschaftliche Betrachtung von Ein- und

Auslagerungen innerhalb eines Kranzyklus (dual cycles) eine Reduzierung der

Leerfahrten erzielt werden kann. Dieser Effekt nimmt mit der Anzahl an be-

trachteten Containerbewegungen zu.

Des Weiteren liefert die in Beitrag R3 vorgestellte Studie grundlegende Er-

kenntnisse hinsichtlich der Produktivität von verschiedenen RMG-Systemen

in drei praxisrelevanten Szenarien. Insgesamt steht mit dem in diesem Beitrag

entwickelten Ansatz somit ein für praktische Anwendungen relevantes Verfah-

ren zur Verfügung, das ausführlich untersucht wurde.

Zusammenfassend lässt sich schließlich festhalten, dass mit den drei vorgestellten

Arbeiten ein bedeutender Beitrag zur Optimierung von Kransystemen mit Interfe-

renzen geleistet wurde. Dennoch existiert durchaus noch weiterer Forschungsbedarf,

weshalb abschließend ein kurzer Ausblick auf Anknüpfungspunkte für künftige For-

schungsprojekte gegeben wird.

2 Ausblick

Einige Punkte wurden im Rahmen der vorliegenden Arbeit nicht untersucht und

können Gegenstand weiterer Forschungsarbeiten sein. So stellt bspw. für den vorge-

stellten Dekompositions-Ansatz die Betrachtung von potentiellen Konflikten schon

bei der Zuordnung von Containern zu Kränen eine vielversprechende Erweiterung

dar, die in Zukunft einer genaueren Analyse bedarf. Mithilfe von weichen Nebenbe-

dingen im Zuordnungsmodell könnte eingegrenzt werden, dass nicht mehrere Kräne

am selben Stellplatz arbeiten bzw. sich dort behindern.

Ein weiterer Lösungsansatz der vorgestellten Probleme ist die intelligente Vorverar-

beitung von Probleminstanzen. So könnten beispielsweise optimale bzw. konfliktfreie

Teillösungen vorgerechnet und in Hashtabellen abspeichern werden. Diese können

dann zu einem späteren Zeitpunkt zur effizienten Lösung von großen Probleminstan-
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zen verwendet werden.

Die überwiegende Mehrheit der bisherigen Forschung betrachtet Interferenzen zu-

dem lediglich in einem eindimensionalen Modell, obwohl beispielsweise ein RMG

Containerbewegungen in einem dreidimensionalen Raum durchführt. Dieser Um-

stand sollte in Zukunft stärker als bisher geschehen hinterfragt und ggf. bestehende

Modelle um eine bzw. zwei Dimensionen erweitert werden.

Zukünftige Forschungsarbeiten könnten sich darüber hinaus auch mit einer mögli-

chen Erweiterung der vorgestellten Ansätze um serviceorientierte Zielfunktionen

beschäftigen. Dazu gehören unter anderem die Einhaltung von Fristen oder die Mi-

nimierung von Verspätungen an der Land und Seeseite.

Auch die Berücksichtigung von ökologischen Aspekten stellt neben den aus der For-

schung bekannten Zielfunktionen eine durchaus sinnvolle Erweiterung dar. Der Ener-

giewandel von fossilen Brennstoffen hin zu erneuerbaren Energien bei gleichzeitig

steigendem Welthandel führt auch zu einer zunehmenden Bedeutung der nachhalti-

gen Containerlogistik. Ergänzend zu ökonomischen Aspekten sollte auch ein energie-

effizienter Ablauf bei der Optimierung von Kranabläufen eine tragende Rolle spielen.

Beispielsweise kann kinetischen Energie, die durch das Abladen von Containern ent-

steht, wiederverwendet werden. Durch die kurzzeitige Speicherung der Energie und

die Synchronisation von Ab- und Aufladeprozessen könnte so zukünftig ein energie-

sparender Ablauf am Lagerblock ermöglicht werden.
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