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Abstract
In today’s affective databases speech turns are often labelled on
a continuous scale for emotional dimensions such as valence or
arousal to better express the diversity of human affect. How-
ever, applications like virtual agents usually map the detected
emotional user state to rough classes in order to reduce the mul-
tiplicity of emotion dependent system responses. Since these
classes often do not optimally reflect emotions that typically
occur in a given application, this paper investigates data-driven
clustering of emotional space to find class divisions that better
match the training data and the area of application. Thereby we
consider the Belfast Sensitive Artificial Listener database and
TV talkshow data from the VAM corpus. We show that a dis-
criminatively trained Long Short-Term Memory (LSTM) recur-
rent neural net that explicitly learns clusters in emotional space
and additionally models context information outperforms both,
Support Vector Machines and a Regression-LSTM net.
Index Terms: emotion recognition, affective databases, long
short-term memory

1. Introduction
Up to now, annotators of databases that are used to train and
evaluate emotion recognition engines either focus on assigning
discrete classes like anger, happiness, or neutral to the emo-
tionally coloured speech turns [1, 2] or they try to use contin-
uous scales for predefined emotional dimensions such as va-
lence, arousal, or dominance [3, 4]. Yet, both strategies are
suboptimal: in the first case the class division has to be de-
termined in advance e.g. by defining emotional prototypes that
typically occur in a given database. This implies inflexible,
fixed classes that can only be changed by combining or split-
ting certain classes to reduce or increase the ‘emotional gran-
ularity’ [5]. Annotating and modelling emotional dimensions
is more flexible and precise since annotation tools like FEEL-
trace [6] enable a quasi-infinite resolution of human affect. Yet,
when evaluating and processing the output of emotion recog-
nisers that provide continuous values for valence, arousal, etc.,
the emotional continuum has to be discretised again, e.g. in or-
der to reduce the multiplicity of possible system responses of
an emotionally sensitive virtual agent. A common pactice is to
use a mapping to quadrants such as positive-active, positive-
passive, negative-active, and negative-passive [7]. However,
these classes often do not optimally reflect typical emotional
states that occur within the training data or are to be expected
when applying the emotion recognition engine in a real-world
scenario. For example in [8], the positive-passive quadrant had
to be excluded since it did not occur in the training set. This

suggests that a categorisation of affective sates in the valence-
arousal space should not just involve a simple discretisation of
the axes but rather closely investigate continuous annotations of
the training examples to find meaningful classes.

In this paper we apply a data-driven clustering of the
valence-arousal space in order to find classes that better fit the
data our recogniser is trained on, and to optimally model the
affective states that actually occur in the specific recognition
task. Between two and six emotional states are determined
via k-means clustering of the training data. Thereby we con-
sider two databases with completely different distributions in
emotional space: the Belfast Sensitive Artificial Listener (SAL)
database [3] where the occurrence of positive and negative emo-
tions is relatively balanced, and TV talkshow data from the Vera
am Mittag (VAM) corpus [4] which contains mainly negative
emotions. For emotion recognition, both databases imply the
great challenge of having to deal with all data - as observed and
recorded - and not only with manually selected ‘emotional pro-
totypes’ as in many other databases.

Further, we introduce a novel emotion recognition strategy
that is optimally suited to distinguish between the determined
emotional clusters and models emotional history by including
long-range temporal dependencies into the recognition process.
Our technique applies Long Short-Term Memory (LSTM) re-
current neural nets that are explicitly trained on the clusters in
a valence-arousal space. By jointly modelling the emotional di-
mensions, we show that our approach outperforms the LSTM
used for regression as introduced in [9]. Furthermore, our ex-
periments reveal that our discriminative LSTM prevails over
standard Support Vector Machines (SVM) that are trained on
the same task but do not model contextual information.

The structure of this paper is as follows: Section 2 intro-
duces the emotional speech databases that are used in this work,
Section 3 gives an overview over the features that are extracted
from the speech signal, and Section 4 outlines the principle of
an LSTM recurrent neural net. Finally, experimental results are
given in Section 5 before concluding in Section 6.

2. Databases
2.1. SAL

The first database we used is the Belfast Sensitive Artificial Lis-
tener data which is part of the final HUMAINE database [3].
We considered a subset which contains 25 recordings in total
from four speakers (two male, two female) with an average
length of 20 minutes per speaker. The data contains audio-
visual recordings from natural human-computer conversations
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that were recorded through a SAL interface designed to let
users work through a range of emotional states. Data has been
labelled continuously in real time by four annotators with re-
spect to valence and activation using a system based on FEEL-
trace [6]. The adjusted values for valence and activation were
sampled every 10 ms to obtain a temporal quasi-continuum. As
continuous ground truth label we used the mean of the four an-
notators.

The 25 recordings have been split into turns using an energy
based Voice Activity Detection. A total of 1 692 turns is accord-
ingly contained in the database. The turns were once randomly
divided into training (1 102 turns) and test (590 turns) splits for
the experiments. Both sets contain all speakers, thus results are
not speaker independent, which in turn would not be feasible
with only four speakers. Labels for each turn were computed
by averaging the frame level valence and activation labels over
the complete turn.
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Figure 1: Annotations of the speech turns in the SAL database
with cluster midpoints and class borders (dashed lines) deter-
mined via k-means clustering

Finally, k-means clustering (with Euclidean distance) was
conducted to find between two and six clusters and the cor-
responding class borders in a two-dimensional valence-arousal
space. Figure 2 shows the cluster midpoints obtained for four
clusters (black points) as well as the annotations of all ut-
terances in the training set in terms of small circles. While
three clusters roughly correspond to the common quadrants, one
cluster centre marks an emotional state of neutral valence and
slightly negative arousal which can hardly be assigned to one of
the quadrants but obviously represents a typical affective user
state when interacting with virtual agents.

2.2. VAM

The second emotional speech corpus used in this paper is the
VAM database [4]. It contains 947 spontaneous and emotion-
ally coloured utterances from 47 guests of the German talkshow
“Vera am Mittag” and was recorded from unscripted, authentic
discussions. For speaker independent evaluation we randomly
selected ten speakers for testing while utterances from the re-
maining 37 speakers were used as training set. A large num-
ber of labellers was used to obtain continuous transcriptions for
the emotional dimensions valence, arousal, and dominance (17
labellers for one half of the data, six for the other). In our ex-
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Figure 2: Annotations of the speech turns in the VAM database
with cluster midpoints and class borders (dashed lines) deter-
mined via k-means clustering

periments we omitted dominance as further dimension since we
found that arousal and dominance are correlated with a high cor-
relation coefficient of 0.9. This limits the gain of additionally
incorporating the dominance dimension.

As can be seen in Figure 2, due to the topics discussed in
the talkshow (friendship crises, defalcation, etc.) mostly nega-
tive emotions occur in the database. This points out the need to
determine emotional clusters that are representative for affec-
tive states occurring within the database. Of course we cannot
expect an emotion recognition or automatic TV-show annota-
tion system trained on the valence dimension of VAM data to
reliably detect utterances of positive valence, since such speech
turns hardly occur in the corpus. In the case of four clusters, all
cluster midpoints represent negative valence (see Figure 2).

Feature Group Features in Group No.
Signal energy Root Mean-Square and log. en-

ergy
2

Pitch Fundamental Frequency F0, 2
measures for probability of voic-
ing

3

Voice Quality Harmonics-To-Noise Ratio 1
Cepstral MFCC 16
Time Signal Zero-Crossing-Rate, max. and

min. value, DC component
4

Spectral Energy in bands 0-250Hz,
0-650Hz, 250-650Hz, 1000-
4000Hz

4

10%, 25%, 50%, 75%, and 90%
Roll-Off

5

Centroid, Flux, and relative posi-
tion of maximum and minimum

4

SUM: 39

Table 1: 39 acoustic low-level-descriptors

3. Features
Table 1 lists the 39 acoustic low-level-descriptors that were ex-
tracted from the audio signal to train and evaluate our emotion
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recognition system. Additionally, first and second order tempo-
ral derivatives were used, resulting in 117 features. 51 statis-
tical functionals such as maximum, minimum, mean, quartiles,
percentiles, centroids, etc. had been applied, so that the total
set consists of 5 967 features. To reduce the feature space di-
mensionality, relevant features were determined via Correlation
based Feature Subset (CFS) selection. Furthermore, all features
were normalised to have zero mean and unit variance.

4. Long Short-Term Memory
In order to optimally distinguish the emotional classes obtained
through clustering as described in Section 2, we applied dis-
criminatively trained Long Short-Term Memory recurrent neu-
ral nets. They were originally introduced by [10] who found that
long time lags are inaccessible to existing recurrent neural net-
works (RNNs) since the backpropagated error either blows up
or decays over time (vanishing gradient problem). An LSTM
layer is composed of recurrently connected memory blocks,
each of which contains one or more recurrently connected mem-
ory cells, along with three multiplicative ‘gate’ units: the input,
output, and forget gates. The gates perform functions analo-
gous to read, write, and reset operations. More specifically, the
cell input is multiplied by the activation of the input gate, the
cell output by that of the output gate, and the previous cell val-
ues by the forget gate (see Figure 3). Their effect is to allow
the network to store and retrieve information over long periods
of time. If, for example the input gate remains closed, the ac-
tivation of the cell will not be overwritten by new inputs and
can therefore be made available to the net much later in the se-
quence by opening the output gate. This principle overcomes
the vanishing gradient problem and gives access to long range
context information.
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Figure 3: LSTM memory block consisting of one memory cell:
input, output, and forget gate collect activations from inside and
outside the block which control the cell through multiplicative
units (depicted as small circles); input, output, and forget gate
scale input, output, and internal state respectively; ai and ao

denote activation functions; the recurrent connection of fixed
weight 1.0 maintains the internal state

LSTM networks have demonstrated excellent performance
in many tasks that profit from context modelling, e.g. phoneme
recognition [11] or keyword spotting [12]. In [9] a regression
technique was used to train LSTM networks for the prediction
of continuous values for valence and arousal under considera-
tion of emotional history (those networks will be referred to as
Regression-LSTMs in the following). In this work, however,
we discriminatively train an LSTM on the discrete clusters in a
way that the size of the output layer corresponds to the number
of different emotional clusters that shall be distinguished. For

a given speech turn, the activations of the network outputs in-
dicate the probability of the corresponding cluster. Similar to
[9], the size of the input layer is equal to the number of acoustic
features. In our experiments the hidden LSTM layer contained
100 memory blocks of one cell, each. To improve generalisa-
tion, zero mean Gaussian noise with standard deviation 0.6 was
added to the inputs during training. The networks were trained
using Resilient Propagation (rProp).

5. Experiments
For both databases we evaluated the performance of our dis-
criminatively trained LSTM, the Regression-LSTM as used in
[9], and Support Vector Machines on six different emotion
recognition tasks: the distinction of two to six emotional clus-
ters as well as the assignment to one of the four quadrants in the
valence-arousal space. In contrast to the discriminative LSTM
and SVM, the Regression-LSTM outputs continuous values for
valence and arousal which were discretised afterwards, accord-
ing to the clusters and quadrants they would have been assigned
to using the minimum Euclidean distance. In order to be able
to carry out feature selection separately for valence and arousal,
two spearate networks (one for valence and one for arousal) had
been trained for Regression-LSTM-based emotion recognition
while for the discriminative LSTM and for SVM only one clas-
sifier had been trained directly on the discrete cluster or quad-
rant indices to jointly classify valence and arousal.

Cluster 2 3 4 5 6 4(q)
features 109 132 125 111 102 129
LSTMd

accuracy 77.1 61.0 50.7 41.4 40.0 50.5
recall 67.1 55.5 46.4 40.1 37.5 48.1
precision 77.1 59.5 44.6 36.3 35.2 51.6
F1-measure 71.7 57.4 45.5 38.1 36.3 49.8
LSTMr

accuracy 70.8 47.1 30.9 38.0 27.5 34.9
recall 58.9 48.6 33.4 33.0 27.8 58.9
precision 64.3 50.0 31.0 34.5 24.3 35.4
F1-measure 61.5 49.3 32.2 33.8 26.0 35.6
SVM
accuracy 66.1 51.4 38.6 30.0 27.1 41.4
recall 55.3 46.6 38.1 30.3 26.0 41.4
precision 57.6 43.7 34.6 27.9 23.7 42.2
F1-measure 54.9 42.0 32.8 25.2 21.8 38.9
dummy
accuracy 68.3 60.2 44.1 31.7 30.7 35.9
recall 50.0 33.3 25.0 20.0 16.7 25.0

Table 2: SAL database: number of selected features and results
for the discrimination of 2, 3, 4, 5, and 6 emotional clusters
as well as for the 4 quadrants (4q) when using discriminatively
trained LSTM (LSTMd), Regression-LSTM (LSTMr), Sup-
port Vector Machines (SVM), or a ‘dummy’ feature (for chance
reference)

Table 2 shows the performance of the different classifiers
for six different recognition tasks using the SAL database. For
chance reference, the results obtained through a single constant
‘dummy’ feature resulting in picking the majority class at any
time are included. Note that due to unbalanced class distribu-
tions, accuracy is a rather inappropriate performance measure.
Thus, we used the F1-measure as the harmonic mean between
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unweighted recall and unweighted precision for performance
comparison. As can be seen, the discriminative LSTM out-
performs both, the Regression-LSTM and SVM. Since in the
SAL database all quadrants are sufficiently ‘occupied’ (see Fig-
ure 1), the F1-measure for the discrimination of four quadrants
is slightly higher than for the discrimination of four emotional
clusters. However, this is not true for the VAM corpus (see
Table 3). There, two quadrants are almost unoccupied (see Fig-
ure 2), which leads to better F1-measures for the discrimination
of four clusters and highlights the importance of defining class
borders according to the application and the database respec-
tively rather than just discretising emotional space to equidistant
fields.

Cluster 2 3 4 5 6 4(q)
features 155 150 141 145 132 140
LSTMd

accuracy 82.1 71.3 59.0 45.6 48.2 74.4
recall 80.7 75.8 63.0 50.3 47.4 41.3
precision 75.8 69.2 59.5 47.6 47.6 36.8
F1-measure 78.2 72.3 61.2 48.7 47.5 38.9
LSTMr

accuracy 85.6 72.3 52.8 43.1 43.6 67.2
recall 80.8 71.5 55.5 45.9 41.3 38.8
precision 80.0 71.4 57.8 49.2 32.7 42.5
F1-measure 80.4 71.5 56.6 47.5 36.5 40.6
SVM
accuracy 81.5 68.7 53.8 46.2 45.1 71.8
recall 75.1 70.5 56.8 50.1 45.0 41.1
precision 74.4 67.6 56.0 49.2 43.2 48.1
F1-measure 74.7 68.9 56.1 47.9 43.3 40.1
dummy
accuracy 76.4 51.8 43.1 28.2 33.9 52.3
recall 50.0 33.3 25.0 20.0 16.7 25.0

Table 3: VAM database: number of selected features and results
for the discrimination of 2, 3, 4, 5, and 6 emotional clusters as
well as for the 4 quadrants (4q) when using discriminatively
trained LSTM (LSTMd), Regression-LSTM (LSTMr), Sup-
port Vector Machines (SVM), or a ‘dummy’ feature (for chance
reference)

Apart from the quadrant discrimination and the task of dis-
tinguishing two clusters in the VAM corpus, the discriminative
LSTM again prevails over the Regression-LSTM and the SVM.

On both datasets, the absolute F1-measure is rather low
compared to results for the discrimination of ‘prototypical emo-
tions’ as published in [13], for example. Yet, in real-life appli-
cations of emotion recognition, not only unambiguous emotions
have to be classified. The challenge for next-generation emotion
recognition systems is rather to develop advanced classifiers us-
ing long-range context to continuously deal with all data - as it
is necessary for the databases used herein.

6. Conclusion
In this work we investigated data-driven clustering of the
valence-arousal space as an alternative to quadrant-based quan-
tisation that ignores typical emotions occurring in a given sce-
nario. Furthermore, we designed a novel discriminative LSTM
network which exploits long-range context information and out-
performs conventional Support Vector Machines in terms of
emotional cluster classification performance.

In future works we will focus on emotion detection in order
to detect sudden strong emotions within long sequences of neu-
tral affect. Moreover, we will investigate the benefit of updating
emotion prediction using bidirectional LSTM networks.
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