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Abstract
It is common knowledge that affective and emotion-related
states are acoustically well modelled on a supra-segmental level.
Nonetheless successes are reported for frame-level processing
either by means of dynamic classification or multi-instance learn-
ing techniques. In this work a quantitative feature-type-wise
comparison between frame-level and supra-segmental analysis
is carried out for the recognition of interest in human conver-
sational speech. To shed light on the respective differences the
same classifier, namely Support-Vector-Machines, is used in
both cases: once by clustering a ‘bag of frames’ of unknown
sequence length employing Multi-Instance Learning techniques,
and once by statistical functional application for the projection
of the time series onto a static feature vector. As database serves
the Audiovisual Interest Corpus of naturalistic interest.
Index Terms: interest recognition, multi-instance learning, fea-
ture relevance

1. Introduction
Opposing the majority of works in the field of speech signal
analysis in search of emotion-related states that operate on a
supra-segmental level, ever since works also operate directly
on the frame-level [1, 2, 3, 4, 5]. In fact, certain application
fields may require online incremental processing [6], and several
other modalities are often processed on this level, e. g. facial
expression and body gesture analysis, as well as neuro impulses
and general bio-signals. Thus, (incremental) frame-level speech
processing allows for easy integration with these modalities,
potentially even in an early fusion.

Usually frame-level analysis of speech in search of affective
cues is carried out employing only cepstral features and energy
by Hidden Markov Models. This limitation of feature type is
mostly stemming from the tools employed, which are usually
designed for speech rather than emotion recognition. Few direct
comparison exist [3, 7] that also consider further feature types
employed in supra-segmental recognition of emotion-related
states as pitch or Harmonics-to-Noise ratio: there it is shown that
the supra-segmental modelling is superior. This is well in line
with other studies (e. g. [8]) that considered only cepstral and
energy feature information. Interestingly, also a gain by com-
bination of frame-level and supra-segmental modelling could
be demonstrated [8]. Yet, to the best knowledge of the authors,
no study so far carried out a quantitative type-by-type direct
comparison of these two.

To this aim Multi-Instance (MI) Learning techniques are
applied in this work to classify a sequence of frames of unknown
length on the frame-level by the exact same classifier as a single

projected vector on the supra-segmental level. In principle, such
a comparison could be made using Gaussian Mixture Models
as done in [3] or any majority voting scheme. However, by
that the frame-level information is not processed in one pass,
i. e. only one frame is seen at a time. In contrast, the supra-
segmental analysis profits from features derived from a whole
emotionally or syntactically meaningful unit – usually words,
chunks [7], or speech turns [1, 4, 5, 9]. This is overcome herein
by processing a ‘bag of frames’ in one pass with one of the most
popular classifiers in the field – a Support Vector Machine in an
MI variant [10].

The data analysed is human-to-human conversational speech.
The considered affective cues are three levels of interest reaching
from bored to highly interested which bears great potential in
many applications as customer interest detection, student tutor-
ing systems or automatic meeting analysis [11]. While a fusion
of further multiple streams as linguistic analysis of the spoken
content, eye activity, and facial expression and contextual knowl-
edge may help improve on this task [12], this work focuses on
the so far strongest stream in an automatic detection scenario:
the acoustic feature information.

Throughout the remainder of this paper the features on frame
and supra-segmental level are introduced in sec. 2, the required
classification paradigms in sec. 3, the data used in the evaluation
in sec. 4, before presenting results and concluding in sec. 5, and
sec. 6.

2. Frame-level and Supra-segmental
Features

The basis is a set of 37 typical acoustic Low-Level-Descriptors
well known to carry information about paralinguistic effects
shown in Table 1. The features cover the common types pitch,
energy, formants, cepstral, and voice quality:

Energy: these features model intensity, based on the ampli-
tude in different intervals, with different weighting and transfor-
mation.

Pitch: this is the acoustic equivalent to the perceptual unit
pitch. It is measured in Hz and bases on the autocorrelation
function.

Formants: formants (i. e. spectral maxima) are known to
model spoken content, especially lower ones. Higher ones how-
ever also represent speaker characteristics. Each one is fully
represented by its position, amplitude and bandwidth.

Cepstral: Mel Frequency Cepstral Coefficients (MFCC)
features (homomorphic transform with equidistant band-pass-
filters on the Mel-scale) tend to strongly depend on the spoken
content. Yet, they have been proven highly beneficial in practi-
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cally any speech and most audio processing tasks.
Voice quality: jitter and shimmer are micro-perturbations

based on pitch and intensity reflecting voice quality. As further
low-level voice quality feature Harmonics-to-Noise Ratio (HNR)
is added.

In order to calculate low-level descriptors, first the speech
signal is transformed to 16 kHz, 16 bit. In general, a Ham-
ming window function is used, except for the calculation of F0
and HNR where a Hanning window has been chosen. 100 fps
are used with semi-overlapping windows. Energy resembles
simple log frame energy. F0 and HNR calculation base on auto-
correlation in the time domain with window correction. Formants
base on 18-point LPC with root-solving and a pre-emphasis fac-
tor α = 0.7. F0 and formant trajectories are globally optimized
by use of dynamic programming. Low-level descriptors are
smoothed by according techniques as semi-tone-interval filters
or simple moving average low-pass-filtering to overcome noise.
As a next step delta coefficients are added for each low-level
descriptor.

A strictly systematic generation of features was chosen for
the construction of a large feature space as basis for the supra-
segmental analysis. Such an approach generally leads to >1k
features.

Following the typical static classification strategy used in
emotion recognition, next a total of 19 statistical functionals is
applied to each of the 2 x 37 low-level descriptors. The obtained
multivariate time series of variable length is projected onto a
single 1 406 dimensional feature vector. Here again it is decided
for a typical selection of common functionals covering the first
four statistical moments, quartiles, extremes, ranges, positions,
and zero-crossings as depicted in as shown in Table 2.

The three position related functionals lead to a sub-group of
features with the physical unit of ms which are often treated as
duration features, though having a number of diverse low-level
descriptors as basis. It is refrained from inclusion of further
duration related features such as those based on, e. g. lengths
of pauses or syllables because this information cannot easily be
integrated in the strictly systematic generation approach: it is
modelled in a general value series rather than in a time series.
Also, such information requires additional higher level analysis
and would thus violate a fair comparison with the frame-level
processing.

Table 1: Low-Level Descriptors used.

37 Low-Level Descriptors
Pitch (F0), Frame Energy, Envelope
Mel-Frequency Cepstral Coefficients (MFCC) 1-16
Formant 1-5: Amplitude, Bandwidth and Position
Shimmer, Jitter
Harmonics-to-Noise Ratio (HNR)

Note that this exact feature set was has proven itself in a
number of emotion [8] and further emotion-related classification
tasks as intimacy [9] and the aimed at interest recognition [12,
11].

3. Single and Multi-Instance Learning
In Multi-Instance Learning a ‘bag of instances’ is labelled by
the same label. Usually the idea behind is that the labels of indi-
viduals withing the bag are not known and may differ. However,

Table 2: Functionals applied to Low-Level Descriptor contours
used for systematic construction of a 1 406 dimensional acoustic
feature space on the supra-segmental level.

19 Functionals
Mean, Centroid, Std. Dev. Quartiles 1, 2, 3
Skewness, Kurtosis Quartile 1 - Minimum
Zero-Crossing-Rate Quartile 2 - Quartile 1
Max/Min Value, Range Quartile 3 - Quartile 2
Relative Max/Min Position Maximum - Quartile 3
95 % Roll-Off-Point

one instance being of the class of the bag is sufficient for it to
be labelled, accordingly. There is some practical consideration
why this may be adequate to model emotion in speech: as shown
in [13], emotional turns usually contain a high percentage of
neutral speech: on average among emotions 42.5 % of the words
in emotional turns were shown to be neutral. Thus, a bag (e. g.
all frames of a speech turn) labelled as angry may also contain
neutral instances (e. g. frames) without ‘pollution’ of the training
material. Further, operating on a frame-level, multiple instances
will be short silences or potentially dominant background noises
rather than speech of the target speaker, thus also not portraying
the target emotion. In this respect Multi-Instance Learning seems
generally well suited to model emotion in a detection scenario.

However, in this work it is primarily employed to provide
equal testing conditions when comparing frame-level and supra-
segmental level modelling of emotional speech by using the
same classification principle: as in [14] each frame belonging
to a sub-speaker turn is assigned to the same bag. This bag
is labelled with the sub-speaker turn label – just as the feature
vector obtained by statistical functional based projection onto
a single vector. This allows to classify a sequence of unknown
length and a single vector with the same basic classifier – in
this work Support Vector Machines (SVM) in a Multi-Instance
implementation (MI-SVM) [15]. For a detailed description of
MI-SVM the reader is referred to [10].

4. Audiovisual Interest Corpus
In the scenario setup, an experimenter and a subject are sitting
on both sides of a desk. The experimenter plays the role of a
product presenter and leads the subject through a commercial
presentation. The subject’s role is to listen to explanations and
topic presentations of the experimenter, ask several questions of
her/his interest, and actively interact with the experimenter con-
sidering his/her interest to the addressed topics without respect
to politeness. Visual and voice data is recorded by a camera and
two microphones, one headset and one far-field microphone.

After the final recording the Audiovisual Interest Corpus
(AVIC) shows the following parameters and statistical figures
for audio: audio sampling rate: 44.1 kHz, audio quantisation:
16 Bit, left audio channel: lapel microphone, right audio channel:
far-field microphone. 21 subjects (10 of them female) took part,
three of them Asian, the others European. The language through-
out experiments is English, and all subjects are very experienced
English speakers. Three age categories were defined during the
specification phase (<30 years, 30-40 years, >40 years) for bal-
ancing. The mean age of male subjects resembles 32.7 years,
of female subjects accordingly 30.1 years. The total recording
time for males resembles 5:14:30 h, for females 5:08:00 h. By
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age categories the recording times are 4:40:40 h for <30 years,
4:10:20 h for 30-40 years, 1:31:30 h for >40 years. Likewise, a
total of 10:22:30 h was recorded.

To acquire reliable labels of a subject’s ‘Level of Interest’
(LOI) as detailed in the ongoing, the entire material was seg-
mented in speaker and sub-speaker turns and subsequently la-
belled by 4 male annotators, independently. The LOI is annotated
for every sub-speaker turn.

Five LOI were distinguished in the first place: LOI-2 – Disin-
terest (subject is bored listening and talking about the topic, very
passive, does not follow the discourse), LOI-1 – Indifference
(subject is passive, does not give much feedback to the exper-
imenter’s explanations, unmotivated questions if any), LOI0 –
Neutrality (subject follows and participates in the discourse, it
can not be recognised, if she/he is interested or indifferent in
the topic), LOI1 – Interest (subject wants to discuss the topic,
closely follows the explanations, asks some questions), LOI2 –
Curiosity (strong wish of the subject to talk and learn more about
the topic).

For automatic processing a fusion of these LOI to a ‘master
LOI’ was automatically fulfilled by the following scheme of
different cases of Inter Labeller Agreement (ILA) and confidence
bounds:

• Same rating by all annotators: ILA 100 %;
Master LOI := LOI of majority

• Same rating by 3 of 4 annotators: ILA 75 %;
Master LOI := LOI of majority

• Same rating by 2 annotators: ILA 50 %
> If other 2 annotators agree:
Master LOI := ‘?’ (undefined)
> If other 2 annotators disagree:
Master LOI := median LOI.
In this case an additional confidence measure C is de-
rived from the standard deviation σ of the LOI over all
annotators: C = 1− 0.5 · σ.

The overall annotation contains sub-speaker and speaker turn
segments in millisecond resolution, spoken content, non-verbals,
individual annotator tracks, and Master LOI with confidence in
XML-format provided by use of ANVIL. A sub-speaker turn is
thereby defined by a turn lasting longer than 2 sec. Turns are
split by punctuation and syntactical and grammatical rules until
each segment lasts shorter than 2 sec.

The database comprises 12 839 sub-speaker turns. There
is a total of 18 581 spoken words, and 23 084 word-like units
including non-linguistic vocalisations (19.5%). A very low κ-
value of κ = 0.09 and standard deviation for the LOI of the
labellers of σ = 0.54 is observed for the database at this point.
The ILA is therefore pruned of undefined sub-speaker turns
(labelled with ‘?’) and sub-speaker turns of the medium LOI
with a confidence C < 1.0. Through this reduction of sub-
speaker turns, the agreement of the four annotators increases
to a substantial κ-value of κ = 0.62 with σ = 0.23, and the
distribution of the instances over the LOI is more balanced.

As too few items for LOI-2 and LOI-1 have been seen, these
were clustered together with LOI0, resulting in an LOI scale of
LOI0 to LOI2. Thereby final values of κ = 0.66 with σ = 0.20
are observed. The exact LOI-distribution of the single labellers
and ILA in this reduced set of sections is as depicted in Table 3.

For further details on the corpus as the annotation workflow,
inter-labeller kappa-values, original distribution and mapping
onto a regression problem the reader is referred to [12].

Table 3: Distribution of the Level of Interest (LOI) over various
labellers (Lab.) after the rejection of diffuse sub-speaker turns
(SST). Mean µ and standard deviation σ of the LOI are also
provided within the interval [0;2].

#SST LOI0 LOI1 LOI2 µLOI σLOI
Lab. 1 257 569 170 0.91 0.65
Lab. 2 311 526 159 0.85 0.67
Lab. 3 175 643 178 1.00 0.60
Lab. 4 311 652 33 0.72 0.52
Male 150 306 64 0.83 0.62

Female 166 204 106 0.87 0.75
ILA 316 510 170 0.85 0.68
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Figure 1: Absolute accuracy in percent correct per feature type
by supra-segmental (bold printed) and bag-of-frames modelling.
SVM in 3-fold speaker-independent cross-validation. AVIC
database.
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Figure 2: Relative (bold printed) and absolute delta accuracy
in percent per feature type, i. e. gain by supra-segmental over
bag-of-frames modelling. SVM in 3-fold speaker-independent
cross-validation. AVIC database.

5. Experimental Comparison
In the following the results on the AVIC corpus for the analysis
of interest in speech by either frame-level or supra-segmental
modelling are presented. As evaluation strategy a speaker-
independent 3-fold cross-validation is employed. This is ob-
tained by partitioning the database into three speaker groups,
each in age and gender balance, as carried out in [11].

Figure 1 visualises the respectively obtained mean accura-
cies in percent correctly assigned sub-speaker turns per feature
group for the bag of frames by MI-SVM in comparison to the
supra-segmental modelling by SVM. Polynomial kernels are
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each used. Multi-class discrimination is obtained by pairwise
one-vs.-one decisions. Learning is carried out by Sequential
Minimal Optimisation.

As can be seen from these figures, spectral information pre-
vails in both cases – the frame and the supra-segmental level.
However, in supra-segmental analysis formants come first (band-
width first, subsequently position and last amplitude), followed
by cepstral information. This is reversed on the frame-level,
where MFCC dominate. The combination of all feature types
leads to an improvement only on the frame-level. This could
be overcome in supra-segmental modelling by optimising the
feature space by an adequate de-correlating search and target
function, as done in [12]. However, in this work the focus lies on
differences rather than on highest obtainable accuracy obtained
by optimisation with repeated measurement on the same dataset.

Comparing accuracies on frame and supra-segmental level,
it is obvious that the latter is to be preferred in any case. Still,
differences exist with respect to the individual gap concerning
the feature type. Figure 2 depicts this differences in accuracy by
absolute and relative gain of supra-segmental over bag of frames
accuracy. Obviously, pitch profits most from supra-segmental
representation (>50 % relative improvement) – just as one would
assume. Least profit is observed for cepstral features (<20 %
ralative improvement) – again well meeting expectation. The
other feature types are found around 30 % relative improvement.
Interstingly, also the combination off all feature types shows
lower benefit. However, this may partly stem from increased
vector dimension (cf. above).

6. Conclusion
In this work the differences between frame-level and supra-
segmental features were quantitatively revealed for speaker-
independent recognition of three levels of naturalistic interest in
conversational human speech. It was shown that pitch, the band-
width of formants, and energy profit most from supra-segmental
analysis, while MFCC suffer less from frame-level modelling
than any other considered type. Further, the relevance of feature
groups was analysed, whereby spectral and cepstral come first,
followed by prosodic and least voice quality features. How-
ever, more elaborate voice quality features [16] may change this
picture. Also, Support Vector Machines were used throughout.
While the whole context of frames was provided to the SVM,
other architectures as the Long-Short-Term-Memory networks
introduced in [17] that learn the optimal context size or Hidden
Markov Models and general Dynamic Bayesian Networks with
warping ability may lead to different findings on frame-level.

While Multi-Instance Learning served mostly for better com-
parability in this work, future ambitions might truly benefit from
its power to allow for corrupted bags with respect to neutral or
differently emotional speech. However, this will probably rather
be beneficial on the word level, i. e. ‘bags of words’, but in an
acoustic feature vector sense with frame series projected onto
one vector per word.

Further, as stated, the ability to add new frames to existing
bags may well be utilised to allow for incremental processing.
Here, it will be interesting to analyse the improvement of an
estimate for a larger unit as a speech turn with an increasing
amount of frames available.
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