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Abstract

Apart from the usually employed MFCC, PLP, and en-
ergy feature information, also duration, low order for-
mants, pitch, and center-of-gravity-based features are
known to carry valuable information for phoneme recog-
nition. This work investigates their individual perfor-
mance within segment-based acoustic modeling. Also,
experiments optimizing a feature space spanned by this
set, exclusively, are reported, using CFSS feature space
optimization and speaker adaptation. All tests are carried
out with SVM on the open IFA-corpus of 47 Dutch hand-
labeled phonemes with a total of 178k instances. Exten-
sive speaker dependent vs. independent test-runs are dis-
cussed as well as four different speaking styles reaching
from informal to formal: informal and retold story telling,
and read aloud with fixed and variable content. Results
show the potential of these rather uncommon features, as
e.g. based on F3 or pitch.

Index Terms: phoneme-recognition, prosodic features,
acoustic modeling, feature space optimization, ASR

1. Introduction

In order to advance the performance of today’s speech
recognition engines, many efforts are undertaken from
an architectural point of view. As a certain saturation
point seems to have been reached, recently more efforts
are also spent on re-investigation of features. Apart from
the predominant MFCC and PLP, a variety of prosodic,
and other spectral characteristics is not used on a broad
basis, though well known to carry information about
phonemes. Further, these features are often extracted for
other speech analysis purposes as e.g. emotion recogni-
tion, or detection of non-verbals [1]: likewise they could
be integrated at “no cost” in a system that recognizes e.g.
emotion and speech. At the same time it seems interest-
ing how much these such features also model phonetic
content.

This paper therefore reports on observed accuracies
for diverse feature types on the large Dutch IFA-Corpus
of hand-labeled phonemes. We discuss feature type rel-
evance and the impact of speaking style on the overall
accuracy.
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The paper is structured as follows: sect. 2 introduces
the used IFA-corpus used. Next, sect. 3 discusses the fea-
ture set considered for experiments. In sect. 4 and sect. 5
classification and feature selection will be described. Fi-
nally, extensive experimental results are presented in sect.
6, and discussed in sect. 7.

2. IFA-Corpus

In this work we decided for a hand-segmented and hand-
labeled corpus on the phoneme level, to minimize sta-
tistical noise deriving from mis-alignment. The public
IFA corpus [2] of manually transcribed Dutch speech
seems a good choice. It consists of 18 speakers (9 male
and 9 female) of which 8 speakers (4 male and 4 fe-
male, 15 to 66 years of age) were chosen for phonemic
segmentation of 51782 segmented words, 187544 seg-
mented phonemes based on complete recordings within
47 phoneme classes. It provides two-channel record-
ings: a head-mounted dynamic microphone and a fixed
HF condenser microphone. Again, we chose the head-
mounted recording to minimize other influences such as
room acoustics. Eight speaking styles reaching from in-
formal to very formal are contained. These will be ig-
nored in first tests. However, later on we will provide
separate results for these speaking styles. In this set the
larger subset is marked as “valid” with respect to label-
ing. Only these instances will be used in the ongoing.
Results for data-driven experiments can be found e.g. in

[3].

3. Prosodic and Spectral Features

A number of acoustic features is provided for this corpus
and tests to be run. For our experiments we consider the
set of 6+4 Low-Level-Descriptors (LLD) and functionals,
as depicted in table 1 [2]. LLD thereby cover prosodic
feature types, namely pitch and intensity, as well as spec-
tral, that is low order formant positions, and center-of-
gravity (COG). As segmentation is provided, functionals
such as values at five different relative time intervals can
be used. Further, minimum, maximum, mean and stan-
dard deviance are contained. Note that no delta coeffi-
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LLD

C Center-of-Gravity
I Intensity

F'1 Formant Position
F'2 Formant Position
F'3 Formant Position

Functional

Min Min. value inside seg.
Max Max. value inside seg.
TimeO Value at start of seg.
Timel Value 1/4 of seg.
Time2 Value at center of seg.

P Pitch Time3 Value 3/4 of seg.
Smooth F1 Pos. Time4 Value at end of seg.
Smooth F2 Pos. Tmax Rel. time of Max. (0-4)

Smooth F3 Pos.
Smooth Pitch

Tmin Rel. time of Min. (0-4)
Mean Mean Value (FO only)
StdDev Stand. Dev. (FO only)

Table 1: Low-Level-Descriptor (LLD) and functional
types used for feature space construction.

cients are added and pitch and formants exist in two ver-
sions: a smoothed version by global view and DP vs. a
raw individually frame by frame extracted version. In to-
tal, 92 static features per segment result from application
of functionals to the LLD.

4. Classification

Herein we do not employ Gaussian Mixtures for classifi-
cation of phonemes, as would usually be the case in an
HMM framework. We rather use Support Vector Ma-
chines (SVM) with polynomial Kernel, pairwise multi-
ple class discrimination, and Sequential Minimal Opti-
mization (SMO) as introduced in [4]. This choice derives
from the fact that we use a larger feature space than in
usual phoneme recognition, which mostly bases on a 39-
dimensional feature vector based upon first 12 MFCC and
frame energy plus speed and acceleration coefficients. As
opposed to this, our feature vector consists of the 92 fea-
tures, as introduced in 3, which is intended to be enlarged
in future applications, where cepstral coefficients will be
added. Further, we usually employ hybrid architectures
combining discriminative abilities of Neural Nets [5] or
SVM [6] with the warping capabilities of HMM. This
also motivates provision of results based on SVM.

5. Feature Selection

Next, we consider removal of irrelevant and redundant
information, as it often improves the performance of ma-
chine learning algorithms. Such feature selection re-
tains only a subset of the original features, and reveals
relevance of features - ideally, the set which gives the
best possible classification accuracy. Exhaustive search
is computationally prohibitive in our case, except for a
small number of dimensions, as it would involve gener-
ating and testing 2" — 1 possible combinations with n
being the dimension of the feature space. Likewise we
are forced to search for suboptimal solutions. In gen-
eral, there are two approaches to feature selection: fil-
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ter and wrapper methods. Open-loop filter methods do
not use classifier feedback to determine best features. In
this group, well known Correlation-based Feature Sub-
set Selection (CFSS) or Information-Gain-Ratio Attribute
Evaluation (IGR) and Principal Components Analysis
(PCA) are found. As opposed to this, in closed-loop
wrapper methods, the classifier’s error serves as target
function combined with a search function. Best known,
Sequential Forward Floating Selection (SFFS) belongs to
this group besides e.g. genetic or random search. We
decided for a de-correlation by CFSS that optimizes a
feature set rather than finding individually relevant fea-
tures as IGR, and likewise achieves very high compres-
sion rates at high accuracy levels. At the same time it is
a fast selection. At its heart is a heuristic for evaluating
the worth or merit of a subset of features. This heuristic
takes into account the usefulness of individual features
for predicting the class label along with the level of inter
correlation among them [7]. The hypothesis behind this
heuristic is: good feature subsets contain features highly
correlated with (predictive of) the class, yet uncorrelated
with (not predictive of) each other. In test theory the same
principle is used to design a composite test for predict-
ing an external variable of interest. In this situation the
features are individual tests which measure traits related
to the variable of interest (class) by Pearson’s correlation
where all variables have been standardized.

CFSS first calculates a matrix of feature-class and
feature-feature correlations from the training data, and
then searches the feature subset space using e.g. a best
first search, as herein. This search starts in a hill-climbing
manner with an empty set of features and generates all
possible single feature expansions. The subset with the
highest evaluation is chosen and expanded in the same
manner by adding single features. If expanding a subset
results in no improvement, the search drops back to the
next best unexpanded subset and continues from there.
Given enough time, a best first search will explore the
entire feature subset space, so in common to limit the
number of subsets expanded that result in no improve-
ment. The best subset found is returned when the search
terminates. We use a stopping criterion of five consecu-
tive fully expanded no-improving subsets.

6. Experimental Results

To provide results for speaker-dependent and indepen-
dent evaluation, we employ j-fold stratified cross vali-
dation (SCV) and leave-one-speaker-out (LOSO). This
allows for training disjunctive results on the whole cor-
pus. We report mean accuracies of correctly assigned
phonemes vs. all phonemes.

In table 2 results for speaker dependent analysis are
shown for each of the 4 female speakers indexed as F20N,
F28G, F40L, and F60E and the four male speakers in-
dexed as M15R, M40K, M56H, and M660O in [8]. The



Speaker ID F20N F28G F40L F60E
Features [#] 30 36 30 32
Instances [#] 24999 35243 24452 31440
Accuracy [%] 57.02 65.34 59.84 59.36
Mean Acc. [%] 60.77
Speaker ID M15SR M40K MS6H M660
Features [#] 25 35 31 35
Instances [#] 15706 15798 21747 9238
Accuracy [%] 4945 5280 5298  61.60
Mean Acc. [%] 53.22
Total Acc. [%] | 58.16

Table 2: Accuracy per speaker, speaker-dependent anal-
ysis, CFSS, IFA-Corpus, 178623 phonemes, SVM, 3-fold
SCV. If MFCC plus A and AA are used with all function-
als as shown in table 1 under same conditions, 75.66%
total accuracy are obtained (76.87% mean accuracy fe-
male; 73.42% male speakers).

table shows the number of valid instances contained for
these speakers in the IFA corpus. At this point all mate-
rial is used, independent of the speaking style. Note that
notably fewer instances are available for the male speak-
ers. Also, accuracy per phoneme is significantly lower
for them.

Next, in table 3, we show the same results for speaker
independent analysis. A LOSO evaluation per gender
was used, here, and reveals a clear downgrade in accu-
racy of almost 10% absolute. No positive effect could be
obtained by speaker normalization to zero mean and +1
standard deviance with use of the whole speaker context
for each speaker. Again, female speakers’ phonemes are
recognized with higher accuracy, probably deriving from
the higher amounts of available data. Feature space opti-
mization was carried out only once per gender rather than
individually per speaker.

Speaker ID F20N F28G F40L F60E

Features [#] 29

Instances [#] 24999 35243 24452 31440
Accuracy [%] 50.51 53.25 54.20 51.17
Mean Acc. [%] 52.30

Speaker ID M15R M40K M56H M660

Features [#] 30

Instances [#] 15706 15798 21747 9238
Accuracy [%] 39.79 40.76 4629 5345
Mean Acc. [%] 44.32
Total Acc. [%)] | 49.51

Table 3: Accuracy per speaker, speaker-independent
analysis, CFSS, IFA-Corpus, 178623 phonemes, SVM,
LOSO.

The distribution of features found within speaker de-
pendent and independent feature selection is depicted in

2372

table 4. No significant difference can be found for female
or male speakers and speaker independent vs. speaker de-
pendent recognition. However, raw features are clearly
preferred by the selection over their smoothed versions.
First come COG and intensity. Then especially F1 and
F2 show a high contribution: both by raw and smoothed
features. Interestingly, also F3 has a remarkable weight
in terms of total number of features. Pitch is among least
important as well - as to be expected, yet it seems note-
worthy that pitch features are selected.

raw raw/smooth

Dim.[#] |C I F1 F2 F3 P
f

sd 7 5 44 53 272 20

si 7 5 572 52 1/0 2/0
m

sd 8 5 44 5/1 12 1/1

si 8 5 3/4 50 2/1 11

Table 4: Distribution of features: speaker dependent

(sd) and independent (si) analysis, CFSS, IFA-Corpus,
178623 phonemes, SVM, 3-fold SCV/LOSO.

Next, we consider effect of diverse speaking styles:
Table 5 reveals the influence of speaking style on the
overall accuracy. Of the original eight categories as
named in [8], we use only four by clustering the read
aloud styles into such with variable content and such
with fixed content as opposed to the informal styles story
telling with sight contact to an interviewer, and story re-
telling without sight contact. A clear impact on accuracy
can be observed, as would also be expected: from infor-
mal to formal accuracy raises within 10-fold SCV by 15%
absolute, thus clearly stressing the difficulty of informal
speech handling.

Style inform. retold readvc read fc
Gender f
Features [#] 28 31 29 33
Instances [#] 14627 11847 46679 42981
Accuracy [%] 47.10 53.52 58.65 61.78
Gender m
Features [#] 16 26 29 32
Instances [#] 2917 8694 14917 32961
Accuracy [%] 23.89 43.81 49.92 55.32
Total Acc. (%] | 43.24 49.41 56.54 58.98

Table 5: Accuracy per speaking style: informal, re-
told, read aloud with variable (vc) and fixed (fc) con-
tent, CFSS, IFA-Corpus, 175623 phonemes, SVM, 10-fold
SCV.

In table 6 we also show feature distribution after
CFSS for the different speaking styles. Again, a very con-
stant picture is observed: while speaking style highly in-



fluenced recognition performance, it apparently has only
little effect on feature distribution. Gender has more in-
fluence at this point, which however may well derive from
fewer instances for male speakers, as denoted. The only
tendency is a decreasing relevance of intensity and the
rather unusual F3 Position with increasing informality.

raw raw/smooth
Dim. [#] | C I F1 F2 F3 P
f
Informal | 7 4 4/2 3/3 1/0 1/1
Retold 7 5 572 4/3 1/0 2/0
Read vc 7 5 4/3 4/1 1/0 2/0
Read fc 7 5 5/3 52 1/1 2/0
Mean 70 48 70 63 13 2.0
m
Informal | 5 2 2/1 3/0 0/0 1/0
Retold 7 3 33 50 1/0 2/0
Read vc 8 5 33 50 1/0 1/1
Read fc 8 5 43 50 12 1/1
Mean 70 38 55 45 13 138

Table 6: Distribution of features per speaking style: in-
formal, retold, read aloud with variable (vc) and fixed
(fc) content, CFSS, IFA-Corpus, 175623 phonemes,
SVM, 10-fold SCV.

7. Conclusion and Outlook

In this paper we showed results for recognition of
pre-segmented phonemes on the IFA corpus with non-
cepstral features as alternatives for acoustic modeling.
Throughout experiments no “real surprise” was observed
with respect to feature importance: center of gravity
comes first, followed by intensity, and formant positions
1-3, while formant 3 is almost least. Its non-the-less mea-
surable importance may thereby arguably derive from
the extra contrasting category of front rounded vowels in
Dutch, as F3 is needed to distinguish this natural class
from the [-round, -back] vowels.

Last comes pitch, yet it still contributes to the
phoneme recognition task. Thereby the question whether
this is due to its prosodic, or its non-prosodic function
qua underlying the contrast between [voiced] and [voice-
less] segments. Same applies mutatis mutandis for inten-
sity presumably being a good discriminator between [+/-
consonantal] segments, and within the [+cons] category
between [+/- sonorant] segments.

In general raw feature variants are preferred over
smoothed ones.

Roughly 60% accuracy can be reported employing
only these non-cepstral features, already, as opposed to
the usual rates around 80% plus by MFCC [9]. Consid-
ering speaking style, expectancy is also fulfilled: best ac-
curacy is observed for the formal reading aloud of fixed
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content, followed by variable content, and more informal
styles retelling or freely telling stories. However, the re-
sults show the generally high capability of prosodic and
spectral features for the discrimination of phonemes al-
ready “stand-alone”.

In future works we aim at inclusion of the features
found most relevant in an SVM/HMM ASR framework.
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