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Abstract

The performance of automatic speech recognition systems
strongly decreases whenever the speech signal is disturbed by
background noise. We aim to improve noise robustness focus-
ing on all major levels of speech recognition: feature extraction,
feature enhancement, and speech modeling. Different auditory
modeling concepts, speech enhancement techniques, training
strategies, and model architectures are implemented in an in-car
digit and spelling recognition task. We prove that joint speech
and noise modeling with a global Switching Linear Dynamic
Model (SLDM) capturing the dynamics of speech, and a Lin-
ear Dynamic Model (LDM) for noise, prevails over state-of-the-
art speech enhancement techniques. Furthermore we show that
the baseline recognizer of the Interspeech Consonant Challenge
2008 can be outperformed by SLDM feature enhancement for
almost all of the noisy testsets.
Index Terms: ASR, SLDM, feature enhancement, Consonant
Challenge

1. Introduction
Aiming to counter the performance degradation of speech
recognition systems in noisy surroundings, as for example the
interior of a car, a variety of different concepts have been de-
veloped in recent years. The common goal of all noise compen-
sation strategies is to minimize the mismatch between training
and recognition conditions, which occurs whenever the speech
signal is distorted by noise. Consequently two main methods
can be distinguished: one is to reduce the mismatch by focus-
ing on adapting the acoustic models to noisy conditions. This
can be achieved by either using noisy training data or by joint
speech and noise modeling. The other method is trying to deter-
mine the clean features from the noisy speech sequence while
using clean training data.
Preprocessing techniques for speech enhancement aim to com-
pensate the effects of noise before the feature-based speech
representation is classified by the recognizer which has been
trained on clean data. The state-of-the-art speech signal pre-
processing that is used as a baseline feature extraction algo-
rithm for noisy speech recognition problems is the Advanced
Front End (AFE) two-step Wiener filtering concept introduced
in [1]. As shown in [2], methods based on spectral subtrac-
tion like Cepstral Mean Subtraction (CMS) [3] or Unsupervised
Spectral Subtraction (USS) [4] reach similar performance while
requiring less computational cost than Wiener filtering. Fur-
ther attempts to reduce the mismatch between test and training

conditions are Mean and Variance Normalization (MVN) [5] or
Histogram Equalization (HEQ) [6], [7], a technique which is
often used in digital image processing to improve the contrast
of pictures. In speech processing HEQ is a powerful method to
improve the temporal dynamics of feature vector components
distorted by noise.
Another technique for noise robust speech recognition is intro-
duced in [8] where a Switching Autoregressive Hidden Markov
Model (SAR-HMM) had been extended to an Autoregressive
Switching Linear Dynamical System (AR-SLDS) for improved
noise robustness. The AR-SLDS includes an explicit noise
model by modeling the dynamics of both the raw speech sig-
nal in the time domain and the noise.
This paper examines a model based preprocessing approach to
enhance noisy features as it is proposed in [9]. Here a Switch-
ing Linear Dynamic Model (SLDM), which can be considered
as Kalman filter, is used to describe the dynamics of speech
while another Linear Dynamic Model captures the dynamics
of additive noise. Both models serve to derive an observation
model describing how speech and noise produce the noisy ob-
servations and to reconstruct the features of clean speech.
The paper is organized as follows: Section 2 outlines the SLDM
used for feature enhancement in this work, while in Section 3
the concept is evaluated in an isolated digit and spelling recog-
nition task. Section 4 introduces a the noisy speech database of
the Interspeech Consonant Challenge 2008 [10] and compares
the performance of the Consonant Challenge baseline recog-
nizer and the recognizer using SLDM feature enhancement.

2. Switching Linear Dynamic Models

Model based speech enhancement techniques are based on mod-
eling speech and noise. Together with a model of how speech
and noise produce the noisy observations, these models are used
to enhance the noisy speech features. In [9] a Switching Lin-
ear Dynamic Model is used to capture the dynamics of clean
speech. Similar to Hidden Markov Model (HMM) based ap-
proaches to model clean speech, the SLDM assumes that the
signal passes through various states. Conditioned on the state
sequence the SLDM furthermore enforces a continuous state
transition in feature space.

2.1. Modeling of Noise

Unlike speech, which is modeled applying an SLDM, the mod-
eling of noise is done by using a simple Linear Dynamic Model

Accepted after peer review of full paper
Copyright © 2008 ISCA

September 22-26, Brisbane Australia1789

10
.2

14
37

/I
nt

er
sp

ee
ch

.2
00

8-
49

2



(LDM) obeying the following system equation:

xt = Axt−1 + b+ vt (1)

Thereby the matrix A and the vector b simulate how the
noise process evolves over time and vt represents a Gaussian
noise source driving the system. A graphical representation of
this LDM can be seen in Figure 1. As LDM are time-invariant,
they are suited to model signals like colored stationary Gaus-
sian noise. Alternatively to the graphical model in Figure 1 the
equations

p(xt|xt−1) = N (xt;Axt−1 + b, C) (2)

p(x1:T ) = p(x1)
QT

t=2 p(xt|xt−1) (3)

can be used to express the LDM. Here, N (xt;Axt−1 +
b, C) is a multivariate Gaussian with mean vector Axt−1 + b
and covariance matrix C, whereas T denotes the length of the
input sequence.
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Figure 1: Linear Dynamic Model for noise

2.2. Modeling of Speech

The modeling of speech is realized by a more complex dynamic
model which also includes a hidden state variable st at each
time t. Now A and b depend on the state variable st:

xt = A(st)xt−1 + b(st) + vt (4)

Consequently every possible state sequence s1:T describes
an LDM which is non-stationary due to A and b changing over
time. Time-varying systems like the evolution of speech fea-
tures over time can be described adequately by such models. As
can be seen in Figure 2, it is assumed that there are time depen-
dencies among the continuous variables xt, but not among the
discrete state variables st. This is the major difference between
the SLDM used in [9] and the models used in [11] where time
dependencies among the hidden state variables are included. A
modification like this can be seen as analogous to extending a
Gaussian Mixture Model (GMM) to an HMM. The SLDM cor-
responding to Figure 2 can be described as follows:

p(xt, st|xt−1) = (5)
N (xt;A(st)xt−1 + b(st), C(st)) · p(st)

p(x1:T , s1:T ) = p(x1, s1)
TY

t=2

p(xt, st|xt−1) (6)
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Figure 2: Switching Linear Dynamic Model for speech

To train the parameters A(s), b(s) and C(s) of the SLDM
conventional EM techniques are used [12]. Setting the number
of states to one corresponds to training a Linear Dynamic Model
instead of an SLDM to obtain the parameters A, b and C needed
for the LDM which is used to model noise.

2.3. Observation Model

In order to obtain a relationship between the noisy observation
and the hidden speech and noise features, an observation
model has to be defined. Figure 3 illustrates the graphical
representation of the zero variance observation model with
SNR inference introduced in [13]. Thereby it is assumed
that speech xt and noise nt mix linearly in the time domain
corresponding to a non-linear mixing in the cepstral domain.
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Figure 3: Observation model for noisy speech yt

2.4. Posterior Estimation and Enhancement

A possible approximation to reduce the computational com-
plexity of posterior estimation is to restrict the size of the search
space applying the generalized pseudo-Bayesian (GPB) algo-
rithm [14]. The GPB algorithm is based on the assumption that
the distinct state histories whose differences occur more than r
frames in the past can be neglected. Consequently, if T denotes
the length of the sequence, the inference complexity is reduced
from ST to Sr whereas r � T . Using the GPB algorithm, the
three steps collapse, predict and observe are conducted for each
speech frame [9].
The Gaussian posterior obtained in the observation step of the
GPB algorithm is used to obtain estimates of the moments of xt.
Those estimates represent the de-noised speech features and can
be used for speech recognition in noisy environments. Thereby
the the clean features are assumed to be the Minimum Mean
Square Error (MMSE) estimate E[xt|y1:t].

3. Isolated Digit and Spelling Recognition
3.1. Speech Database

The digits “zero” to “nine” as well as the letters “A” to “Z” from
the TI 46 Speaker Dependent Isolated Word Corpus [15] are
used as speech database for the noisy digit and spelling recog-
nition task. The database contains utterances from 16 different
speakers - 8 female and 8 male speakers. For the sake of better
comparability with the results presented in [8], only the words
which are spoken by male speakers are used. For every speaker
26 utterances were recorded per word class whereas 10 samples
are used for training and 16 for testing. Consequently the over-
all training corpus consists of 80 utterances per class while the
test set contains 128 samples per class.

3.2. Noise Database

In order to cover a wide spectrum of in-car noise conditions,
speech is superposed by noise recorded in four different BMW
vehicles (530i, 645Ci, M5, and Mini) at three different condi-
tions: driving over a smooth city road at 50 km/h (CTY), driving
over big cobbles at 30 km/h (COB), and driving on a highway
at 120 km/h (HWY). The car noises are the same as in [16]. Ta-
ble 1 shows the mean SNR levels for all four car types at each
driving condition.

In spite of SNR levels below 0 dB, the noisy test sequences
are still well audible since the recorded noise samples are low-
pass signals with most of their energy in the frequency band
from 0 to 500 Hz. Consequently, there is no full overlap of the
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Table 1: Mean SNR levels for noisy speech utterances

Car Noise SNR Car noise SNR
530i, CTY -8 dB 645Ci, CTY -3 dB
530i, HWY -15 dB 645Ci, HWY -13 dB
530i, COB -23 dB 645Ci, COB -19 dB
M5, CTY -4 dB Mini, CTY -5 dB
M5, HWY -11 dB Mini, HWY -15 dB
M5, COB -21 dB Mini, COB -24 dB

spectrum of speech and noise.
Apart from car noises (CAR), two further noise types are used
in this work: first, a mixture of babble and street noise (BAB)
at SNR levels 12 dB, 6 dB, and 0 dB, recorded in downtown
Munich. This noise type is relevant for in-car speech recogni-
tion performance when driving with in an urban area with open
windows. Furthermore, additive white Gaussian noise (AWGN)
has been used (SNR levels 20 dB, 10 dB, and 0 dB).

3.3. Experiments and Results

For every digit an HMM was trained, whereas each HMM con-
sists of 8 states with a mixture of three Gaussians per state.
13 Mel-frequency cepstral coefficients (MFCC) as well as their
first and second order derivatives were extracted. In addition
the usage of Perceptual Linear Prediction (PLP) features [17]
instead of MFCC was evaluated. Attempting to remove the ef-
fects of noise, various speech enhancement strategies were ap-
plied: Cepstral Mean Subtraction, Mean and Variance Normal-
ization, Histogram Equalization, Unsupervised Spectral Sub-
traction, and Advanced Front-End Wiener Filtering [1]. How-
ever, as can be seen in Table 2, for stationary lowpass noise like
the “CAR” and “BAB” noise types, the best average recognition
rate can be achieved when enhancing the speech features using
a global Switching Linear Dynamic Model [9] for speech and a
Linear Dynamic Model for noise.

Table 2: Mean isolated digit recognition rates for different noise
types, noise compensation strategies, and features (training on
clean data)

Strategyfeat. clean CAR BAB AWGN
SLDMMFCC 99.9% 99.5% 99.3% 87.8%
HEQMFCC 99.9% 98.2% 96.5% 77.5%
CMSPLP 99.8% 97.7% 97.9% 72.7%
MVNMFCC 99.8% 94.9% 93.3% 79.1%
CMSMFCC 99.8% 97.0% 97.2% 72.2%
HEQPLP 99.9% 97.2% 95.3% 66.5%
USSMFCC 99.1% 93.5% 92.3% 53.2%
AFEMFCC 100.0% 87.9% 92.8% 64.1%
nonePLP 99.9% 81.1% 90.6% 67.7%
noneMFCC 99.9% 75.1% 88.4% 63.3%
AR−SLDSnone 97.4% 47.2% 78.5% 93.3%

For speech disturbed by white noise, the best recogni-
tion rate (93.3%, averaged over the different SNR conditions)
is reached by the autoregressive Switching Linear Dynamical
Model (AR-SLDS) introduced in [8], where the noisy speech
signal is modeled in the time domain as an autoregressive pro-
cess. This concept is however not suited for lowpass noise at

negative SNR levels: for the “CAR” noise type a poor recog-
nition rate of 47.2%, averaged over all car types and driving
conditions, was obtained for AR-SLDS modeling.
In case an HMM recognizer without feature enhancement is ap-
plied, PLP features perform slightly better than MFCC.
Table 3 summarizes the mean recognition rates of an HMM rec-
ognizer without feature enhancement for three different train-
ing strategies: training on clean data, Mismatched Conditions
Training, and Matched Conditions Training. Mismatched Con-
ditions Training denotes the case when training and testing is
done using speech sequences disturbed by the same noise type
but at unequal noise conditions (SNR levels and driving condi-
tions respectively). Matched Conditions Training means train-
ing and testing with exactly identical noise types and noise con-
ditions.
The best MFCC feature enhancement methods were also ap-
plied in the spelling recognition task (see Table 4). Again, for
noisy test data, SLDM perform better than conventional tech-
niques like HEQ.

Table 3: Mean isolated digit recognition rates of an HMM rec-
ognizer without feature enhancement for different noise types
and training strategies: Matched Conditions (MC), Mismatched
Conditions (MMC) and with clean data

Training clean CAR BAB AWGN
clean data 99.9% 75.1% 88.4% 63.3%
MMC 79.4% 96.9% 98.7% 68.5%
MC 99.9% 99.7% 99.7% 99.2%

Table 4: Mean spelling recognition rates for different noise
types and noise compensation strategies (training on clean
data)

Strategyfeat. clean CAR BAB AWGN
SLDMMFCC 92.7% 83.0% 81.6% 64.2%
HEQMFCC 91.8% 70.2% 69.4% 48.2%
CMSMFCC 93.0% 73.8% 69.8% 47.1%
noneMFCC 91.0% 58.8% 66.6% 44.3%

4. Consonant Challenge
Since the SLDM speech modeling concept prevailed for the
recognition tasks described in Section 3, it was also applied
to the challenging task of consonant recognition which is
outlined in [10] (Interspeech Consonant Challenge 2008). The
database was designed to compare human and automatic speech
recognition performance. Each speech utterance consists of a
vowel-consonant-vowel (VCV) combination, whereas different
stress conditions are used. The overall speech corpus contains
10368 tokens (24 speakers · 24 consonants · 2 stress types · 9
vowel contexts). The training material consists of all utterances
spoken by 8 female and 8 male speakers whereas the samples
of the remaining 4 female and 4 male speakers is used as
testset.
In contrast to the noisy speech sequences used in Section
3 where the spectrum of speech and noise do not overlap
completely, the VCV utterances are superposed by noises
whose spectral characteristics are similar to the spectrum of
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speech. Thereby the SNR levels of the noisy speech testsets
vary between 0 dB and -6 dB.
To enhance the MFCC features of the noisy VCV utterances,
a global SLDM which captures the dynamics of speech
was trained using the whole clean Consonant Challenge
training corpus. As for the digit and spelling recognition
task, the SLDM consisted of 32 hidden states and the history
parameter r = 1 was used. The Linear Dynamic Model
for noise was derived separately for each noisy test utterance
using the first and last 10 frames of the corresponding sequence.

Table 5: Consonant recognition accuracies of the Consonant
Challenge baseline recognizer with and without SLDM feature
enhancement for clean (testset 1) and noisy data (testsets 2 to
6)

testset SNR baseline SLDM
1 ∞ 88.5% 78.9%
2 -6 dB 12.0% 10.4%
3 -2 dB 5.5% 12.2%
4 -2 dB 4.2% 11.5%
5 0 dB 4.2% 7.0%
6 -6 dB 7.6% 17.2%
7 -3 dB 7.8% 10.4%

Table 5 compares the consonant recognition accuracies of
the baseline recognizer described in [10], using MFCC features
and HMM with 3 states and 24 Gaussian mixtures, with a recog-
nizer applying additional feature enhancement with a Switching
Linear Dynamic Model as explained before. The HMM set-
tings were the same as for the baseline recognizer. For the clean
testset recognition accuracy decreases through the SLDM al-
gorithm, however, when noise is added to the test utterances,
SLDM feature enhancement leads to improved accuracies. The
best improvement could be obtained for testset 6, where the
recognition accuracy was increased by almost 10%. The only
exception is testset 2 for which accuracy slightly decreased af-
ter feature enhancement. Nevertheless the absolute values of the
accuracies for the baseline recognizer as well as for the recog-
nizer with additional SLDM feature enhancement are at a low
level as they are still too close to the probability of guessing
(4.2%). A reason for this are the negative SNR levels and the
similarity of the spectrum of speech and noise which hinders
the separation of the speech signal from the noise source.

5. Conclusion
The digit and spelling recognition task in this work examines
various auditory modeling, feature enhancement, speech mod-
eling, and training strategies for a wide range of different noise
types. Thereby speech enhancement with a Switching Linear
Dynamic Model prevails for lowpass car noises, whereas au-
toregressive speech modeling using an AR-SLDS was proven
to be the best technique for white noise. Mismatched Condi-
tions Training is able to improve noisy speech recognition rates
with respect to clean training. An upper border for the recog-
nition performance is determined when using Matched Condi-
tions Training, which assumes perfect knowledge of the noise
properties.
The effect of applying a Switching Linear Dynamic Model as a
technique of model based feature enhancement was also evalu-

ated on the noisy consonant recognition task of the Interspeech
Consonant Challenge 2008, where the SLDM concept was able
to improve the recognition accuracies of 5 out of 6 noisy testsets
with respect to the Consonant Challenge baseline recognizer.
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