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Abstract 
Automatic Speech Recognition fails to a certain extent when 
confronted with highly affective speech. In order to cope with 
this problem we suggest dynamic adaptation to the actual user 
emotion. The ASR framework is built by a hybrid ANN/HMM 
mono-phone 5k bi-gram LM recognizer. Based hereon we 
show adaptation to the affective speaking style. Speech 
emotion recognition takes place prior to the actual recognition 
task to choose appropriate models. We therefore focus on fast 
emotion recognition based on low extra feature extraction 
effort. As databases for proof-of-concept we use a single digit 
task and sentences from the well-known WSJ-corpus. These 
have been re-recorded in acted neutral and angrily speaking 
style under ideal acoustic conditions to exclude other 
influences. Effectiveness of acoustic emotion recognition is 
also proved on the SUSAS corpus. We finally evaluate the 
need of adaptation and demonstrate significant superiority of 
our dynamic approach to static adaptation. 

1. Introduction 
Great efforts have been spent to ensure high performance of 
Automatic Speech Recognition (ASR) in view of adaptation 
to noise or speaker characteristics so far. However, among 
disruptive factors in view of high accuracies also speaking 
style diversities can be found, as altered speech due to the 
Lombard effect or speech under stress and emotional 
influences as anger or sadness [1]. It is a known fact that such 
affective speech in general downgrades recognition 
performance of speech or speaker recognition tasks [2, 3]. 
Throughout this contribution we therefore deal with 
adaptation to emotional speaker states for affect-robust speech 
recognition.  

As a starting point we analyze emotional speech data 
dealing with the question whether a performance loss is 
measurable and significant. Thereby we employ a powerful 
hybrid ASR engine built up by an Artificial Neural Network 
(ANN) for phoneme probability estimation profiting from 
discriminative training abilities in combination with a 
Hidden-Markov-Model (HMM). Next, it has to be answered 
whether recognition of the actual underlying affect is 
necessary aiming at dynamic adaptation, or static adaptation 
by inclusion of emotional models once suffices.  

As data is needed to answer these aspects, we will present 
two databases collected throughout these works. Firstly, a 
simple single digit task is considered. Secondly, sentences of 
the well-known Wall-Street-Journal (WSJ) speech database 
have been re-recorded in affective speaking styles, and will be 
released for public access. Likewise, large vocabulary 
continuous speech recognition is covered as more challenging 
task. 

Since robust emotion recognition is a precondition for 
dynamic adaptation, effective and robust methods have to be 
established for speaker independent reliable emotion 
recognition. Thereby we profit from past expertise in the 
community [4, 5] and extend our propagated advances so far 
[6] in view of fast estimation and low extra feature extraction 
effort, as MFCC and energy are already calculated for speech 
recognition. These methods shall also be proven effective on a 
known affective database: the SUSAS corpus. Finally a fully 
working system that firstly estimates the affect and 
subsequently adapts to it is evaluated. 

The paper is structured as follows: firstly, databases of 
affective speech are introduced in section 2; afterwards the 
used ASR engine is described in section 3. Next, we discuss 
adaptation of the engine to cope with affective speech in 
section 4. Section 5 deals with emotion recognition based on 
acoustic features. The contribution ends with results, 
discussion and conclusion in sections 6 and 7. 

2. Databases 
For tests and evaluation databases are needed with phonetic 
transcription of the spoken content and affective and neutral 
speech under the same recording conditions in view of 
speaker, noise, microphone, etc. Also, spoken phrases should 
fit the vocabulary of the ASR engine, and avoid further 
disruptive influences as unknown background noise.  

Under these preconditions we decided to record two 
databases for this exact purpose: a simple single digit task and 
continuous speech. The digit task comprises the digits 0-9 in 
English. For the continuous speech task 26 linguistically 
affect neutral sentences of the well-known WSJ database [7] 
were selected out of the set WSJ1-S3-P0. These phrases have 
an average length of 10.9 words (min. 3 words, max. 18 
words). The reason to base the phrases on WSJ sentences is 
the fact that the acoustic model (AM) of the speech recognizer 
is trained on WSJ and WSJ is well-known in the speech 
recognition community. In order to obtain adequate corpus 
sizes, we decided for acted samples. Though it is disputable 
whether these are natural, they form a reasonable basis for the 
aimed at experiments. Recordings have been fulfilled in an 
anechoic chamber by use of an active condenser microphone 
AKG 1000S MK II at 48 kHz 16 bit sampling in PCM. 
Speech data was recorded directly to a hard-disk. The A/D 
converter had an SNR of 100 dB. For the subsequent test a 
down-sampling to 16 kHz was performed. All recordings 
have been performed in random emotion and content order 
known only to the speaker, to whom the actual text and class 
label was presented on a screen. After capturing the signal 
was instantly replayed to two test persons that supervised the 
recording. Following their phonetic transcription check and 
emotion labeling, a phrase was kept in case of total 
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accordance of the speaker and the test subject. In case of 
disagreement the phrase was saved for later re-recording. In 
order to avoid anticipation effects the collection was spanned 
over four weeks. 10 speakers were involved in the dataset 
creation, 1 of them female. All of the speakers were non-
native speakers with excellent English speaking skills with an 
average age of 26.0 a (min. 23 a, max. 33 a). As emotions 
anger and neutrality were chosen to keep complexity limited 
at this time. Each speaker initially passed one hour training. 

Likewise, the digits 0-9 have been recorded 50 times per 
number and emotion, resulting in a total of 1,000 samples 
named EMO-09 in the ongoing. The WSJ phrases have been 
collected twice per speaker and emotion, each, resulting in 
2x26x10=520 phrases, named EMO-WSJ in the ongoing.  

In order to provide results for acoustic emotion 
recognition on a known public corpus in view of 
comparability and perform tests on spontaneous emotions we 
finally selected the Speech Under Simulated and Actual Stress 
(SUSAS) database [2]. It consists of five domains, 
encompassing a wide variety of stresses and emotions. We 
decided for the 3,949 actual stress speech samples recorded in 
dual-tracking workload or subject motion fear tasks. 4 male 
speakers in an US Apache helicopter cockpit and 7 speakers, 
3 of them female, in roller coaster and free fall actual stress 
situations are contained in this set. Two different stress 
conditions have been collected within the helicopter situation: 
medium stress during warm-up, where the helicopter is on the 
ground but running, and high stress during flight, where pilots 
are flying hover, turn and other maneuvers while speaking. 
Within the further samples also neutral samples, fear during 
freefall and screaming are contained as classes. Likewise a 
total of five emotions, respectively speaking styles, are 
covered. SUSAS samples are constrained to a 35 words 
vocabulary of short aircraft communication commands. All 
files are sampled in 8 kHz, 16 bit. The recordings are partly 
overlaid with heavy noise and background ground controller 
over-talk. However, this resembles realistic acoustic recording 
conditions, as also given in many related scenarios of interest 
as automotive speech interfaces or the mentioned public 
transport surveillance.  

3. Hybrid ANN/HMM ASR Engine 
The ASR system consists of a tied-posteriors acoustic model 
[8] with a multi-layer perceptron (MLP) estimating phoneme 
posterior probabilities and a set of monophone HMMs. 
Thereby discriminative training abilities and easily 
incorporation of seven context frames in an ANN are 
combined with the warping capabilities of HMM. This 
concept has been proven highly effective in the past [8]. 

In a tied-posteriors acoustic model the HMM state 
likelihood is computed as 

 ( ) ( )
( ),

1

J

i i j
j

P j x
p x S c

P j=

∝∑  (1) 

having P(j|x) as a-posteriori phoneme probability of the 
ANN, ci,j as mixture coefficients of each HMM state and P(j) 
as prior probability of each phoneme j. 

In order to feed the HMM with P(j|x) phonemes 
probabilities of the analyzed speech signal are calculated in a 
lower MLP stage. The acoustic features therefore are 12 
MFCCs, the energy and the first and second order derivatives 
resulting in 39 components per frame, one frame computed 

every 10 ms. For the non-linearity within the MLP we apply a 
sigmoid function in the hidden-layer nodes and a softmax 
function in the output nodes. 

The MLP is trained on the WSJ0 [7] speaker independent 
training set using the back-propagation algorithm. The 
function to be optimized is the cross entropy function and the 
topping criterion is an increase of the frame error rate on a 
cross validation set. Phoneme recognition rate on a word level 
is 83.24% in average. 

Overall, the recognition engine employs a closed 
vocabulary of 5k terms, mono-phones and a bi-gram language 
model (LM), trained on WSJ. 8.52% WER is the baseline in 
this configuration. 

4. Emotional Adaptation of Acoustic Models 
In order to test whether adaptation of the AM results in an 
improvement, two methods are viable [9]:  

Firstly, adaptation of the ANN by re-training of vital 
weights in the final layer may be performed. These are 
tracked by calculation of hidden neurons’ variances and 
search for nodes with such high variance. 

Secondly, the mixture-weights ci,j of the HMMs may be 
adapted by MAP-like strategy [10], whereby β is the learning 
rate, ξi,j are the state occupations, and γi,j are the mixture 
occupations. The latter are estimated from the adaptation data 
by Baum-Welch iterations: 
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Both, MLP and HMM adaptation, are fulfilled in a 
supervised manner. 

5. Acoustic Emotion Recognition 
As a basis for feature generation we extract low-level contours 
of a whole phrase. We use the same preprocessing of the audio 
signal as within the ASR engine: 20 ms Hamming-windowed 
frames are analyzed every 10 ms. The starting point is a broad 
feature basis. However, we aim at reduction afterwards, to 
speed up the process by sparing extraction effort. 

For prosodic information we extract contours of elongation, 
intensity, and intonation and estimate durations of pauses and 
voiced syllables. Out of the elongation we calculate the zero-
crossing-rate. Standard frame energy is used to include 
intensity information based on physical relations. Intonation is 
respected by auto-correlation-based pitch estimation. We 
thereby divide the speech signal correlation function by the 
normalized correlation function of the window function and 
search for local maxima besides the origin. Dynamic 
programming is used to back-track the pitch contour in order 
to avoid inconsistencies and reduce error from a global point 
of view. Finally, the named durations are estimated based on 
intensity considering pause duration, and voiced/unvoiced 
parts duration for syllable length based on intonation. 

In order to include voice quality information we also 
integrate the location and bandwidth of formants one to seven, 
harmonics-to-noise-ratio (HNR), MFCC coefficients, and a 
perception conform dB-corrected FFT spectrum as basis for 
low-band energies -250 Hz and -650 Hz, spectral roll-off-
point, and spectral flux. Formant location and bandwidth 
estimation is based on resonance frequencies in the LPC-
spectrum of the order 18. Back-tracking is used here, as well. 
The HNR is calculated as logHNR to better model human 



perception. It also bases on the auto correlation of the input 
signal. The usage of MFCC for affect recognition is highly 
discussed, as these tend to depend too strongly on the spoken 
content. This seems a drawback, as we want to recognize 
emotion independently of the content. However, they have 
been proven successful for this task, yet, and are available 
anyway, as they need to be calculated for the speech 
recognition itself.  

Finally, as articulatory features we use the spectral centroid. 
Overall, parts of these contours are comprised within the 
MPEG-7 LLD standard. Likewise, the following methods may 
be transferred in order to recognize emotion basing on MPEG-
7. 

In former works we showed the higher performance of 
derived functionals instead of full-blown contour classification 
[11]. We therefore use systematic generation of functionals f 
out of multivariate time-series F by means of descriptive 
statistics, a common practice in speech emotion recognition 
[12], on an utterance level: 

 :f F →  (3) 

First of all the contours are smoothed by symmetrical 
moving average filtering with a window size of three, to be 
less prone to noise. Successively, speed (∂) and acceleration 
(∂²) coefficients are calculated for each basic contour. 
Afterwards we compute linear momentums of the first two 
orders, namely mean, centroid, standard deviation, as well as 
extrema, turning points and ranges. In order to keep 
dimensionality within range we decide by expert knowledge 
which functionals to calculate. Table 1 in section 6 provides a 
rough overview of calculated functionals.  

Besides lower extraction time-effort, reduction of features 
also often leads to higher classification performance, as the 
classifier is confronted with less complexity, if only redundant 
information is spared. In former works [6] we demonstrated 
the high effectiveness of wrapper-based search of features 
with the target classifier which aims at optimization of a set as 
a whole. However, selection of an optimal functional set in 
general does not spare base contour extraction effort, unless no 
functional of a base contour is contained within the final set. 
We therefore focus on evaluation of feature group relevance in 
the latter sections. 

Dealing with classification, the optimal learning method is 
broadly discussed [4, 5], similar to the optimal features. In [6] 
we made an extensive comparison including besides Support 
Vector Machines (SVM) Naïve Bayes, k-Nearest Neighbors, 
Decision Trees, and Neural Nets. Further more we 
investigated construction of more powerful classifiers by 
means of meta-classification as MultiBoosting or Stacking. 
However, in our experiments SVM prevailed in view of 
accuracy and effectiveness. We therefore apply these herein. 

SVM - kernel machines - are well known in the machine 
learning community and highly popular at the time due to their 
remarkable performance and generalization capabilities. The 
latter result from the applied structural risk minimization 
oriented training. Generally speaking, SVM base on a linear 
distance-function classification of a two-class problem. 
However, multi-class strategies as one-vs.-one, layer-wise 
decision or one-vs.-all exist. Discriminative training is 
achieved by optimal placement of a separation hyperplane 
under the precondition of linear separability. As a 
consequence, a dual optimization problem has to be solved 
throughout training process. The precondition of linear 

separability is approached by a transformation of the original 
feature space via a kernel function that has to be found 
empirically. Herein we use a couple-wise one-vs.-one decision 
for multi-class discrimination and a polynomial kernel found 
optimal throughout test cycles. For more details on classifiers 
refer to [13]. 

6. Results and Discussion 
We first show our results for emotion recognition based on 
acoustic features, as these are crucial for the following results 
in combination with speech recognition. Table 1, as already 
mentioned in section 5, shows feature contour and derived 
functional numbers. The numbers of duration related feature 
contours are in brackets, as these rely on intonation and 
intensity. However, the table also shows accuracies obtained 
by feature groups in a 10-fold stratified cross validation 
(SCV). Since datasets are sparse in the field of speech emotion 
recognition, this evaluation method, which allows for training 
disjunctive test on all samples, is very popular. 

 
Table 1: Overview of derived acoustic features and group-

accuracy within 10-fold SCV with SVM, database EMO-WSJ. 
 

Group F 
[#] 

F+∂+∂²
[#] 

f 
[#] 

Acc.  
[%] 

HNR 1 1 3 57.9 
Duration (2) (2) 5 61.4 
Intonation 1 3 12 74.6 
Intensity 1 3 11 77.1 
Formants 14 28 105 82.9 
FFT based 5 7 17 86.0 
Elongation 1 1 3 89.8 
MFCC 15 45 120 98.5 
Total 38 88 276 98.1 

 
As can be seen in the table, MFCC is fortunately the most 

relevant single feature group. Their accuracy is even higher 
than use of all features, as the classifier is confronted with too 
high complexity thereby. However, having the N-best features 
based on diverse groups outperforms MFCC standalone: As a 
basis of comparison we also selected the N best functionals by 
SVM Sequential Forward Floating Search (SVM-SFFS), a 
powerful hill-climbing wrapper-based feature selection 
method. Thereby the overall maximum of 99.2% for the 
correct discrimination of angry and neutral sentences could be 
achieved. However, due to space limitations we cannot name 
reduced sets functional wisely. Intensity related features also 
provide a strong basis, and if we combine these only with 
MFCC related ones setting additionally extracted aside we 
end up with an accuracy of 98.7% for the database EMO-
WSJ. Applying SVM-SFFS only on energy and MFCC 
related features as calculated for speech recognition leads us 
to 99.0% accuracy at 40 features. This final set is close to the 
maximum performance of 99.2% having all features as basis 
and can be extracted very fast out of the available features.  

To manifest this on a well known public speech emotion 
database, we perform the same experiment on SUSAS. On the 
spontaneous samples of the SUSAS database we finally 
achieve 77.8% correct recognition rate within 10-fold SCV 
and using SVM applying the full feature set for 5 emotions. 
By feature reduction accuracy is boosted to impressive 84.9% 
in average. Neutrality is thereby recognized with 76.0%, fear 
during freefall with 88.6%, medium stress with 82.2%, high 



stress with 90.6%, and screaming with 97.9% accuracy. 
Neutral samples are exclusively confused with stress, and 
mostly with medium stress. However, if we consider only 
energy and MFCC related features, accuracy drops to 69.9% 
for five classes. Yet, screaming is not confused with neutral. 
If we likewise adapt only to screaming, and neutral speech, 
these features would suffice. Or, if we add high stress as third 
class, we end up with 82.5%. 

Table 2 now shows speech recognition accuracy for the 
database EMO-09 with no adaptation, adaptation to neutral 
and angrily speaking style only, and to both emotions. 
Thereby 2x40 disjunctive digits are used for adaptation in a 
cross-validation.  

 
Table 2: Accuracies with diverse static adaptation scenarios, 

database EMO-09. Adapt. abbreviates adaptation. 
 

Acc. [%] Adapt. 
- 

Adapt. 
N 

Adapt. 
A 

Adapt. 
A+N 

Neutral (N) 91.4 99.5 71.0 93.0 
Anger (A) 47.2 46.0 89.5 90.5 

 
As can be seen, a large gap occurs between neutrally and 

angrily spoken digits. Adaptation to neutral samples already 
boosts performance for neutral speaking style. This comes, as 
the affective adaptation is an adaptation to the acoustic 
conditions, too, and arguably one to the task, as well. The 
same is true for adaptation to angrily samples, when testing 
with such. By anger adaptation the recognition rate is heavily 
boosted for anger samples. However, diametric adaptation 
leads to a downgrading in both cases. Static adaptation to both 
speaking styles results in an overall improvement, but not in 
the maximum obtainable performance. Table 3 shows this in a 
more clear way, by analysis over both emotions at a time. It 
also shows results for dynamic adaptation by integration of 
the actual emotion recognition prior to the speech recognition 
with the discussed 40 MFCC and energy related features. 
Dynamic diametric adaptation shows the worst case risk, if 
always the exact wrong affect is chosen. 

 
Table 3: Overall accuracies with diverse adaptation scenarios, 

database EMO-09. Dyn. abbreviates dynamic, corr. correct, 
diam. diametric adaptation manner. 

 

Adaptation - static 
N 

static 
A 

static 
N+A 

dyn. 
corr. 

dyn. 
diam. 

Acc. [%] 69.5 72.8 80.3 91.8 94.5 58.5 
 
Likewise 2.7% absolute accuracy boost and 32.9% 

relative error rate reduction can be reported for dynamic 
adaptation, which is significant at a level of α=0.05. 

Tests on continuous speech using the EMO-WSJ set 
manifest these results: using 2x40 adaptation phrases in cross-
manner leads to a significant 1.09% absolute, and 2.55% 
relative word error rate (WER) improvement for dynamic 
adaptation compared to static. An absolute WER reduction of 
16.59% can thereby be reported for the anger phrases when 
comparing to no adaptation at all. 

7. Conclusions 
Within this work we showed that affective speech 
downgrades recognition performance if training was fulfilled 
only with emotional neutral phrases. We therefore showed 

adaptation strategies within a hybrid ANN/HMM ASR 
framework. A static adaptation to affective speech helps to 
raise WER, but the maximum performance is only obtained 
by a dynamic adaptation to the underlying affect. Therefore 
fast emotion recognition based on available acoustic features 
could be shown highly effective. A working system that first 
recognizes emotion, and subsequently adapts to it could be 
presented resulting in significant WER improvement. 

In future works we aim at investigation on larger datasets 
incorporating more emotions at a time. 
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