
Recognition of Interest in Human Conversational Speech 

Björn Schuller, Niels Köhler, Ronald Müller, and Gerhard Rigoll 

Institute for Human-Machine Communication 
Technische Universität München 
{sch, mur, ri}@mmk.ei.tum.de 

Abstract
Recognition of interest of a speaker within a human dialog 
bears great potential in many commercial applications. Within 
this work we therefore introduce an approach that analyses 
acoustic and linguistic cues of a spoken utterance. A 
systematic generation of more than 5k hi-level features basing 
on prosodic and spectral feature contours by means of 
descriptive statistical analysis and subsequent feature space 
optimization is used to find relevant acoustic attributes. For 
linguistic information integration a bag-of-words 
representation is used relying on a speech recognizer’s output. 
One main aspect is the database of more than 2k spontaneous 
sub-speaker turns recorded and annotated for this analysis. 
Several influence factors as microphone distance and ASR 
versus annotation of spoken content are discussed. Overall 
remarkable performance of a running prototype can be 
reported discriminating between three levels of interest.

1. Introduction

Knowledge of a communication partner’s interest possesses 
great potential in many commercial applications. Similar to 
the work introduced in [7] we are likewise interested in 
curiosity detection e.g. for topic switching, but based on 
speech analysis considering acoustic and linguistic cues. In 
order to quantify a speaker’s interest we introduce three levels 
of interest (LOI) reaching from LOI=0 representing 
disinterest, indifference, and neutrality over LOI=1 standing 
for light interest to LOI=2 representing strong interest. The 
paper is structured as follows: after a short description of data 
collection we describe acoustic and linguistic feature 
computation, feature space optimization and classification, 
and finally provide experimental results and conclusions. 

2. Database
In order to obtain a high number of spontaneous data in view 
of a speaker’s interest, a data collection was carried out with 
11 male subjects ranging from 23a to 45a, mean 29.7a, and 10 
female subjects ranging from 20a to 57a, mean 30.1a. In the 
chosen scenario setup, an experimenter leads a subject through 
an interactive presentation of commercial products. The 
subject’s role is to listen to explanations and topic 
presentations of the experimenter, ask several questions of 
his/her interest, and actively interact with the experimenter 
especially considering his/her interest to the addressed topics 
without respect to politeness. The conversation language is 
English, the speakers are non-natives, yet highly experienced 
in English speaking. Voice data is recorded by two 

microphones, one dynamic passive headset for close talk (CT) 
and one far-field active condenser microphone for distant talk 
(DT) situated 50 cm in front of the subject. The mixed CT and 
DT signal at equal levels will be referred to as (MC) in the 
ongoing. Annotation was carried out by four male labelers 
after pre-segmentation into sub-speaker-turns by one 
annotator. The following table provides an overview of the 
per-LOI-contained samples considering only such with at least 
3 out of 4 inter-labeler-agreement (ILA). The ‘?’ indicates 
phrases that could not be assigned at this ILA level. 

Table 1: Sub-turn LOI distribution in the database 

LOI 0 1 2 ? 
[#] 319 1,762 171 1,677 
[%] 8.1 44.8 4.4 42.7 

As can be seen within the table, LOI 1 is clearly the pre-
dominant LOI in this experiment. This may be due to the fact 
that more speech interaction occurs in the case of general 
interest. The next table shows the distribution of phrases based 
on their ILA in total and relative number. 

Table 2: Inter-labeler agreement in the database 

ILA 4/4 3/4 >2/4 
[#] 580 1,672 2,252
[%] 14.8 42.6 57.3

These figures demonstrate that only around half of the 3,929 
collected sub-speaker-turns are assignable by a minimum ILA 
of 3 out of 4. As a mean overall ILA on these samples 81.4% 
can be named. This may be seen as guideline for comparison 
throughout the up-coming accuracies by automatic 
classification. Additionally the spoken content and nonverbal 
interjections have been labeled. These interjections are 
breathing, confirmation, coughing, hesitation, laughter, long
pause, short pause and other human noise. This additional 
labeling effort shall demonstrate the potential of such events 
within higher semantic analysis. 

3. Acoustic Features 
In respect of the quasi-stationary nature of a speech signal, 
firstly a pre-processing by windowing the signal with a 
Hamming-window function is fulfilled. The signal of interest 
is likewise split into successive 20 ms frames, windowed 
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every 10 ms. In order to obtain a better representation in view 
of LOI content, feature contours containing information about 
intonation, intensity, harmonic structure, formants, and 
spectral development and shape are extracted. In detail these 
are: pitch based on time-domain calculation by auto-
correlation function (ACF), window-function normalization 
and Dynamic Programming (DP) for global cost minimization, 
energy by frame-based signal-energy computation, formants’ 
1-5 amplitude, bandwidth, and frequency based on 18 LPC 
spectrum and DP, Mel-Frequency-Cepstral-Coefficients 
(MFCC) 1-16, spectral flux, 47 semi-tone-band interval 
emphasis and harmonic characteristic based on 1024-point 
DFT-spectrum, Harmonics-to-Noise Ratio (HNR) based on 
ACF in the time-domain, window-function normalization, 
shimmer and jitter of periodic parts, and 19 VOC19-
coefficients [3]. Secondly, the derivation of speed and 
acceleration regression coefficients based on these Low-
Level-Descriptors (LLD) is fulfilled as further information. 
By LLD analysis a classification by means of dynamic 
modeling is already feasible. Yet, basing on our past 
experience [8] and in accordance with the common practice in 
the field [1] [5], we decided for a further processing step: In a 
third stage, higher-level functionals f  are derived by means 
of descriptive statistics in order to project the multivariate 
time-series F  on a static feature vector [4] and thereby 
become less dependent of the spoken phonetic content: 

:f F  (1) 

A systematic generation by calculation of moments, extreme 
values, and further shape characteristics out of each time 
series on a phrase basis leads to more than 5k features aiming 
at broad coverage of prosodic, articulatory and speech quality 
attributes. In detail the 18 functionals are: extreme values, 
extreme value positions, range, mean, centroid, standard 
deviation, quartiles, quartile ranges, 95% roll-off-point, 
Kurtosis, Skewness, and zero-crossing-rate. Thereby the 
number of features presented in [12] is consequently enlarged. 
The idea thereby is not to extract all these features for the 
actual LOI-detection, but to form a broad basis for self-
learning feature-space optimization. 

4. Linguistic Features 
Beyond the analysis of acoustic properties of a speech signal, 
also the spoken content may carry cues in respect of a 
speaker’s interest, and the combination of both analyses could 
be shown highly effective in our past related works in the field 
of speech emotion recognition. [9][10].  
The precondition of linguistic analysis is to obtain the spoken 
content out of an audio-file. Within this work once manual 
annotations have been employed to obtain an impression of 
performance under idealistic speech recognition conditions 
and once a state-of-the-art MFCC and HMM-based tri-phone 
Large-Vocabulary Automatic Speech Recognition (ASR) 
engine was used. 
For linguistic analysis a vector-space-representation popular in 
the field of document retrieval known as Bag-of-Words 
(BOW) has been chosen [2]. The motivation here fore is the 
effective fusibility of obtained linguistic features within the 
acoustic features on an early level [10]. Likewise loss of 
information is postponed to the final decision process allowing 
for the utmost decision basis. A term wi  within a phrase 

,..., ,...,1w w wj S is thereby projected onto a numeric 

attribute xi : w xi i . The precondition is to establish a 

vocabulary ,..., ,...,1w w wi V  of terms of interest. In a first 
approach these are all different terms contained in the 
annotation of the data-set of interest. Throughout feature 
extraction a value for each term in  is calculated: Either 0 
in case of no occurrence in the actual phrase, or 1 in case of a 
binary attribute’s type, respectively its term frequency of 
occurrence (TF) for common BOW representation. A number 
of further refinement approaches exist as normalization to the 
phrase length, the inverse frequency of occurrence in the data-
set known as Inverse Document Frequency (IDF), or 
logarithmic transform (log) to compensate linearity. Thereby 
an offset-constant 0.5c  is chosen, as many zero-occurrence
cases will be observed. Our final per-term feature is calculated 
as follows and proved superior throughout evaluation to the 
named alternatives: 

,
loglog ,

TF wix cTF i  (2) 

A drawback of this modeling technique is the lack of word 
order consideration. Still, great flexibility is obtained in 
comparison to e.g. class based N-Grams. 
In general vocabularies will show too high a dimensionality 
(>1k terms) and contain many redundancy in view of the 
aimed at LOI-detection. Similar to acoustic feature reduction 
as described in the next section two standard techniques in 
linguistic analysis are therefore employed to reduce 
complexity: stopping and stemming. The first method directly 
reduces the vocabulary by eliminating terms of low relevance. 
This is realized based on Shannon’s information as described 
in the ongoing. Stemming on the other hand clusters 
morphological variants of terms belonging to the same 
lexeme, i.e. having the same stem. Thereby the hit-rate of such 
clusters is directly boosted while reducing complexity at the 
same time. However, danger of over-stemming exists, i.e. 
clustering of terms that possess different meanings in view of 
LOI. We decided for an iterated Lovins-Stemmer, here fore, 
which bases on context-sensitive longest match stemming – a 
slight enhancement of the very traditional approach to 
stemming. 

5. Optimization and Classification 
In order to save extraction effort and reduce complexity 
throughout the succeeding classification process, features of 
high individual information are pre-selected by fast 
Information Gain Ratio (IGR) calculation and feature 
selection (FS) of attributes with high IGR (IGR-FS). This 
method bases on Shannon’s information and is suited to find 
features of high individual relevance. Yet, redundancy of 
single high effectiveness is not filtered thereby. Within the 
reduced set by elimination of all zero information features, 
application of Sequential Forward Floating Search (SFFS) [6] 
leads to an optimal set as a whole and the overall minimum 
number of features [10]. SFFS employs a classifier, ideally the 
target one, as optimization criterion. Herein, powerful 
Support-Vector-Machines (SVM) is used to ensure high 
quality throughout selection (SVM-SFFS). SFFS is a Hill-
Climbing search, and allows for forward and backward search 
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steps in order to cope with nesting effects. A search function is 
needed, as exhaustive search becomes NP-hard having such 
high dimensionality. 
In view of optimal classification a variety of suited machine 
learning techniques is considered: instance based classifiers 
(1NN, kNN), Bayesian learners (NB, BN), Decision Trees 
(DT C4.5), and Support Vector Machines (SVM) [13]. Further 
more the construction of ensembles by AdaBoosting, Bagging, 
MultiBoosting, Voting and StackingC [11] to raise the 
performance of single classifiers and combine the strengths of 
diverse such in a synergetic way is tested to respect biases due 
to data sparseness typical in this field [10]. The following 
figure provides an overview of the recognition flow so far: 

Figure 1: Overview Recognition of Interest 

6. Experimental Results 
As a general mean of evaluation, 10-fold stratified cross 
validation (SCV) is employed. Thereby mean accuracies of 
correctly assigned samples throughout randomly shuffled but 
stratified and disjunctive cycles are provided. Alternatively 
speaker-independent accuracies are reported. In the ongoing 
results once for acoustic speech analysis, and once for 
linguistic such will be shown. Finally, the overall result by 
fusion of both information sources is shown. 

Table 3: Classifier comparison, Top 82 SFFS acoustic 
features after IGR pre-selection, MC, 10-fold SCV 

Accuracy [%] LOI 0,1,2 LOI 0 vs. 2 
1NN 76.7 88.8 
kNN 81.6 90.8 
DT C4.5 72.4 84.6 
AdaBoosting C4.5 79.2 88.5 
NB 51.9 79.9 
BN 72.1 82.7 
SVM 80.5 93.0 
StackingC MLR Top 3 81.7 92.5
StackingC MLR Top 2 80.7 92.7

Table 3 shows results for the classifier and ensemble 
comparison within a 10-fold SCV on the named database with 
acoustic features only. Two different settings have been 
considered: discrimination of all three LOI levels, and only of 
LOI 0 vs. LOI 2. The latter scenario has been chosen, as the 
dataset is heavily unbalanced having all LOI included, but 
LOI 0 and LOI 2 are contained in a reasonable balance. At the 
same time this setting demonstrates the effectiveness of 
discrimination of neutral and highly interested phrases. The 
feature-set has been pre-selected and finally reduced in the 
named manner by successive IGR-FS and SVM-SFFS 
resulting in top 82 attributes for maximum performance and 

effectiveness. As can be seen in the table, a discrimination of 
all LOI is realizable in the same region as ILA on the set at 
81.7% accuracy. However, discrimination of the two named 
LOI can be fulfilled with impressive 92.7% accuracy. 
Considering speaker independency 79.5% mean accuracy are 
observed when splitting speakers into two halves and 2-fold 
cross-validating with optimal classifier configuration for full-
blown LOI recognition applying feature reduction to 100 
features by IGR-FS. While this is a speaker independent 
result, it is not the highest obtainable speaker independent 
accuracy, as more speakers could have been used for training 
and the features might have been further optimized by SVM 
SFFS. Yet it already demonstrates that SCV rates are close to 
speaker independent performance. Evaluating LOI 0 vs. LOI 2 
exclusively a leave-one-speaker-out (LOSO) evaluation was 
carried out. Thereby 90.1% mean accuracy were observed 
when randomly selecting 10 speakers for evaluation and 
having SVM as classifier, IGR-FS set reduction to 300 
features and subsequent SVM-SFFS reduction to top 135 
features. The minimum accuracy observed thereby was 84.2%, 
the maximum 96.0% for a specific speaker, each. 
Considering microphone set-up another test was carried out in 
a 10-fold SCV, comparing close-, distant-talk, and mixed 
channel. Features have been reduced by IGR-FS to 1k. As 
classifier SVM were chosen with a polynomial Kernel-
function. 88.1% mean accuracy is observed for CT, 87.8% for 
DT, and 87.6% for MC within the discrimination of LOI 0 vs. 
LOI 2. Likewise rather insignificant influence of microphone 
positioning in the database can be named. 
Within linguistic experiments test-runs employing an actual 
ASR and annotation based runs have been fulfilled. Firstly, a 
look at the minimum term frequencies within the set clearly 
speaks for problems arising when using a real ASR engine: 

Table 4: Term numbers at diverse minimum TF levels, 
annotation-based (left) and ASR-based (right) 

Min. TF Annotation 
Terms [#] 

ASR
Terms [#] 

1 1,485 1,568 
2 645 351 
3 422 191 
4 336 136 
5 277 109 

10 149 51 
20 98 20 
50 48 8 

The table shows more terms of single occurrence than actually 
contained in the vocabulary when using real ASR. This 
comes, as words are partly misrecognized and matched on 
diverse further terms. On the other hand side this diffusion by 
word errors also leads to fewer observations of the same 
terms: Already at a minimum TF of 2 within the database the 
annotation based level overtakes. Yet, BOW relies on high TF 
within a data-set. This can partly be repaired by stemming; 
assuming that phonetic mismatches lead to confusions within 
a lexeme.  
Table 5 shows the 18 most relevant lexemes after iterated 
Lovins stemming and IGR-FS stopping. The final vocabulary 
size thereby is 639 lexemes instead of 1,485 terms. Using 
linguistic features only, maximum mean accuracy within 10-
fold SCV, optimal feature type and SVM reached 79.4% for 
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the full blown LOI analysis based on annotation and 84.2% 
for discrimination of LOI 0 and LOI 2. Using ASR a drop to 
69.8% is observed for LOI 0-2. 29.1% of the phrases led to no 
ASR output, as these sub-speaker-turns only consist of 
interjections or are too short. One of the main differences of 
annotation versus ASR thereby is the included annotation of 
non-verbal interjections or events as described within the 
database section. While the table above shows the high 
ranking of four of these events (in italics, as described in 
database section) on the ranks 1, 2, 8, and 9, a reduction of all 
such only led to an absolute accuracy drop of 1.9% having the 
same setup as described earlier: 10-fold SCV, SVM and LOI 
0-2. Still, it might be of interest considering their automatic 
recognition within future work. 

Table 5: Top 18 lexemes after stemming and IGR-FS 
based stopping. Stems are marked by * 

Rank Stem IGR  Rank Stem IGR 
1 cough. 0.2995  10 a 0.0308 
2 laugh. 0.1942  11 that 0.0305 
3 yeah 0.0514  12 car 0.0275 
4 oh 0.0474  13 *hav 0.0263 
5 *ver 0.0358  14 is 0.0258 
6 if 0.0358  15 I 0.0252 
7 *th 0.0337  16 *s 0.0230 
8 h.noise 0.0325  17 and 0.0219 
9 hesit. 0.0323  18 it 0.0219 

The final table depicts the gain achieved by fusion of acoustic 
and linguistic features on the spontaneous database. SVM 
proved the best choice here. However, only a slight 
improvement is obtained compared to the extra need of an 
ASR unit. 

Table 6: Fusion of linguistic features and Top 82 
SFFS acoustic features after IGR pre-selection, MC, 

10-fold SCV 

Accuracy [%] LOI 0,1,2 LOI 0 vs. 2 
SVM 82.8 93.6 

The F1-measure for LOI 0 thereby was 95.4% and 89.3% for 
LOI 2. 

7. Conclusions
At this point a number of conclusions shall be derived: Firstly, 
acoustic three-level interest recognition reached the inter-
labeler-agreement with 81% accuracy within 10-fold cross-
validation and 80% within 2-fold speaker independent 
evaluation. Discrimination of neutrality and high interest can 
be fulfilled with impressive 93% accuracy within 10-fold 
cross-validation and 90% within speaker-independent 
evaluation. In this test low microphone positioning 
dependency can be reported. Considering linguistic analysis it 
can be stated that it leads to reasonable results as well: 79% 
for full-blown interest detection, 84% for neutrality vs. high 
interest, but a performance drop with genuine ASR occurs 
probably due to non-native speakers, affective speaking style 
influences, many very short phrases (~30%) and lack of 

interjection recognition. Still, the best result is obtained by 
fusion of acoustic and linguistic features reaching 82.8% 
respectively 93.6% for the discrimination of two or three 
levels of interest. Overall, outstanding performances for the 
recognition of spontaneous interest in human communication 
can be reported. Future works will aim at ASR refinement, 
word-class frequencies and further linguistic features, 
inclusion of word- or syllable levels, and context modeling of 
general LOI development. 
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