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Abstract
Additional sub-phrase level information is believed to improve 
accuracy in speech emotion recognition systems. Yet, 
automatic segmentation is a challenge on its own considering 
word- or syllable boundaries. Further more clarification is 
needed which timing level leads to optimal results. In this 
paper we therefore quantitatively discuss three approaches to 
segment-level features based on 276 statistical hi-level 
prosodic, articulatory and speech quality features. Apart from 
the choice of the optimal segmentation scheme also fusion of 
segments with respect to classification and combination of 
diverse timing levels is analyzed. Tests are carried out on the 
popular Berlin Database of Emotional Speech (EMO-DB). 
Significant improvement over existing works can be reported 
for combination of phrase-level features with relative time 
interval features. 

1. Introduction
Emotion recognition is one of the challenges in order to 
approach human communication [1]. As analysis of affective 
intents in conversational speech is maturing, some general 
trends with respect to features, their selection and 
classification can be observed [2]. Most today’s works rely on 
global phrase-wise statistics of derived low-level-descriptors 
(LLD) referring to intonation, intensity, duration and spectral 
development [3, 4]. Thereby a multivariate time-series, having 
a dynamic nature, is transformed into a single static feature 
vector for each emotional phrase or clip. Typical operations 
for such functional generation are linear moments as means, 
standard deviation, Kurtosis and Skewness, quartiles, quartile 
ranges, extremes and their ranges, or floor- and up-level-times. 
Such descriptive statistical analysis combined with static 
classification, e.g. by Support Vector Machines or Neural 
Nets, could be shown superior to direct dynamic processing by 
means of e.g. Hidden Markov Models (HMM) or Dynamic 
Bayesian Nets in the past [5]. However, recently sub-segment-
based approaches are evolving questioning whether the phrase 
level is the right choice for functional generation [6, 7]. 
Popular are word-based statistics, which however require 
correct segmentation, or partitioning of an utterance without 
respect to the spoken content in relative intervals. Further 
more lower-level segmentation based on voicing probability 
or intensity levels seems a possibility. Apart from the right 
choice of segments also a fusion scheme for analysis of a 
complete utterance is crucial. The most simple choice would 
be majority voting over single segment decisions. Such votes 
may also be weighted by confidence levels or segment 
durations. Depending on the type of segment construction 
either a dynamic number of segments with respect to the 
phrase length or number of words, syllables or voiced 

segments contained is obtained, or a static number when 
splitting in relative time-intervals as thirds, or quarters. In this 
case a super vector can be constructed and classified in the 
conventional way. Especially within the fusion with other 
information sources as facial expression such timing levels 
may occur on a higher level, as facial expression analysis may 
deliver outputs on a multiple frames per second (fps) level. 
The aim of this paper therefore is the quantitative 
experimental discussion of sub-phrase-level timing in speech 
emotion recognition in order to boost performance compared 
to mere phrase-level features. Furthermore we aim at 
investigation whether emotion recognition is possible already 
within short speech clips, say macro-frames, compared to 
speaker- or phoneme recognition where an estimate is 
provided on a frame-basis.

The paper is structured as follows: Section 2 deals with the 
database used. In section 3 acoustic features are introduced in 
general. Section 4 is the core aspect of this paper: schemes for 
segmentation. Section 5 discusses classification and feature 
selection in the framework of segment-based speech emotion 
recognition. In the following section 6 experimental results are 
introduced and finally conclusions are drawn in section 7. 

2. Database

In order to provide results on a public corpus we decided for 
the Berlin Emotional Speech database (EMO-DB) [8]. It 
consists of 816 phrases in total. The emotion set resembles the 
“Big 6”, besides an exchange of surprise in favor of boredom. 
10 German sentences of emotionally undefined content have 
been acted in these emotions by 10 professional actors, 5 of 
them female. Throughout perception tests by 20 subjects, 10 
of them female, 488 phrases have been chosen that were 
classified as more than 60% natural and more than 80% 
clearly assignable. The database is recorded in 16 bit, 16 kHz 
under studio noise conditions. 84.3% mean accuracy is 
reported within a human perception test in [8]. As the spoken 
content is predefined in this database we do not use linguistic 
features in this work, as in our former works [9]. 

3. Acoustic Features 
In former works [5] we compared static and dynamic feature 
sets for the prosodic analysis and demonstrated the higher 
performance of derived static features. Before single segments 
are constructed we will describe the general feature set that 
will be applied at each timing level. As an optimal set of such 
global features is broadly discussed [2,3,4], we consider an 
initially large set of 276 acoustic hi-level features which 
cannot all be described in detail here. However, the target is to 
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become utmost independent of the spoken content and ideally 
also of the speaker, but model the underlying emotion with 
respect to prosodic, articulatory and voice quality aspects. The 
feature basis is formed by the raw contours of zero crossing 
rate (ZCR), pitch, first seven formants, energy, spectral 
development, and Harmonics-to-Noise-Ratio (HNR). The 
following table shows the distribution of features among their 
general type. Thereby duration based features rely on common 
bi-state dynamic energy threshold segmentation and voicing 
probability. 

Table 1: Distribution of the features 

Type Pitch Energy Duration Formant 
[#] 12 11 5 105 

Type HNR MFCC FFT ZCR 
[#] 3 120 17 3 

In order to calculate the according Low-Level-Descriptors 20 
ms frames of the speech signal are analyzed every 10 ms using 
a Hamming window function. Pitch is detected by the auto 
correlation function (ACF) with window compensation and 
dynamic programming (DP) for global error minimization. 
HNR also relies on the ACF. The values of energy resemble 
the logarithmic mean energy within a frame. Formants base on 
18-point LPC spectrum and DP. We use their position and 
bandwidth, herein. For spectral development we use 15 MFCC 
coefficients and a FFT-spectrum out of which we calculate 
spectral flux, Centroid and 95%-roll-off-point after dB(A)-
correction according to human perception. Low-pass SMA 
filtering smoothes the raw contours prior to the statistical 
analysis. First and second order regression coefficients are 
subsequently calculated. The higher level features are then 
derived by means of descriptive statistical analysis as linear 
moments, extremes, ranges, quartiles, or durations, and 
normalized. Overall the final per-segment feature vector 
consists of 276 features. 

4. Segmentation Schemes 
A variety of potential segmentation schemes exists in general. 
However, we focus on automatic segmentation without the 
necessity of word- or syllable-boundary detection, which is 
prone to errors and demands for considerable extra-effort as 
word alignment with an Automatic-Speech-Recognition 
(ASR) engine. We rather examine the impact on accuracy of 
fast and simple “blind” strategies that neglect spoken content 
but can easily be realized in real-time and partly allow for 
direct stream processing: Apart from the global time interval 
(GTI) we firstly investigate absolute time intervals (ATI). 
Thereby a phrase or speech stream is split into macro-frames 
at a set time interval, e.g. 500 msec. The idea is to test whether 
speech emotion recognition can be realized at a fixed frame 
rate compared to speaker recognition e.g. for fusion with a 
facial expression analysis stream. Interestingly, a dynamic 
number of macro-frames are obtained with respect to the 
overall length if a single phrase is analyzed. This demands for 
a different classification strategy as HMM or DBN, as a time-
series on a higher level is obtained, or multi-instance learning 
with a suited fusion scheme as weighted majority vote. 
As a second approach Relative Time Intervals (RTI) are 
obtained by splitting an utterance at fixed relative positions, 
e.g. halves or thirds. Afterwards, features are extracted for 

each part in the same manner as for GTI. A super-vector is 
constructed for classification by fusion of all segment features 
plus global features, which is named GRTI. 
The variant ATIR combines absolute time intervals and the 
idea of relative positions. The advantage is the compensation 
of RTI’s drawback that utterances of different lengths lead to 
sub-segments of different lengths. Likewise 500 msec 
segments are constructed at fixed relative positions as shown 
in figure 1. Thereby not all parts of the sample are contained 
in the analysis. GATIR compensates this by addition of global 
features. Figure 1 visualizes these variants and shows two 
utterances of different length to demonstrate the effect of each 
variant:

GTI:
0

0

ATI:
1 2 3 4 5

1 2 3 4 5 6 7

GRTI:
1 2 3

0

1 2 3
0

GATIR:
1 2 3

0

1 2 3
0

Figure 1: Notation segmentation schemes showing a short and 
a long utterance each. Numbers shown refer to segment-index.
GTI: global time intervals, ATI: absolute time-intervals, RTI 

relative time intervals, ATIR: absolute time intervals at 
relative positions, GATIR: exemplary combination of 

segmental and global features 

5. Classification and Feature Selection 
In order to find the optimal classifier we demonstrate 
recognition performance for a multiplicity of classifiers. 
Among these are instance based nearest neighbor (1NN and 
kNN), a multi-layer Perceptron (MLP) as neural network 
representative, a decision tree (C4.5), Naïve Bayes (NB) and 
Bayesian Networks (BN), as well as ensemble construction 
with a single base classifier type by AdaBoosting, Bagging, 
and MultiBoosting and combination of diverse base classifiers 
by Stacking and Stacking with confidences (StackingC) with 
Multiple Linear Regression (MLR) as Meta-Level classifier. 
More details on classifiers and their setup is found in [9]. In 
order to classify a phrase that is split into several segments, a 
super-vector is constructed combining features of all 
segments. However, this is only possible if the number of 
segments is constant. ATI, as described in section 4, is 
therefore only considered herein to provide an impression of 
the possibility of emotion recognition out of short clips. 

Apart from the choice of an optimal classifier also selection of 
the most relevant features is important as it saves computation 
time considering real-time processing and boosts performance 
as some classifiers are susceptible to high dimensionality. 
Therefore search for the right features seems mandatory. We 
chose SVM-SFFS within acoustic feature selection as it has 
proven a reasonable choice compared to NP-hard exhaustive 
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search and proved a good choice in former works [9]. The 
search is performed by forward and backward steps 
eliminating and adding features in a floating manner to an 
initially empty set. As relevance criterion the target classifier, 
namely SVM, is employed in a wrapper manner. Thereby a set 
is optimized as a whole rather than finding single attributes of 
high relevance. As a super vector is constructed, we can select 
features of different time segments in one pass. Thereby it can 
also be seen which time segment contributes mostly to the 
final decision. The optimal number of features is afterwards 
determined in accordance to the highest observed accuracy 
throughout selection. 

6. Recognition Results 
As a general mean of evaluation we employ 10-fold stratified 
cross validation (SCV). This validation method is used in 
many other works on the EMO-DB. However, the cross 
validation factor j has an important influence on the accuracies 
reported, as with a higher j more training data is available per 
run. Figure 2 in the next column therefore shows global 
features (GTI) with the full feature vector for diverse cross-
validation factors using SVM as classifier for comparability 
reasons with other works serving as a baseline. 
Table 2 clarifies the choice of the right classifier. For this test 
also only GTI was chosen. 

Table 2: Comparison of classifiers and ensembles, full 
276 dim. and optimal feature vector by SVM-SFFS, 

10-fold SCV, EMO-DB, GTI

Accuracy [%] All
features 

Optimal
set 

1NN 63.5 75.8 
kNN 67.6 78.9 
MLP 84.8 86.5 
C4.5 61.1 61.5 

AdaBoosting C4.5 72.3 74.6 
Bagging C4.5 70.7 74.8 

MultiBoosting C4.5 72.5 74.6 
NB 73.6 74.0 
BN 72.1 74.4 

SVM 84.8 87.5 
StackingC MLR 
kNN BN MBC4.5 

78.1 83.2 

StackingC MLR 
1NN NB SVM C4.5 

76.2 80.5 

Voting
1NN NB SVM C4.5 

76.0 79.9 

StackingC MLR 
1NN NB C4.5 

75.4 79.9 

Voting
1NN NB C4.5 

73.2 78.5 

As can be seen in the table SVM lead to the overall best result 
and are therefore chosen in the ongoing. The table also shows 
the accuracy for each classifier when the feature set is 
optimized by SVM-SFFS. Note that all classifiers show better 
performance with the reduced set, though Decision Trees are 
less prone to this effect, as they already prune features by 
information gain. 

78
79
80
81
82
83
84
85
86

2 10 18

j [#]
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cu
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cy

 [%
]

 Figure 2: Influence of the cross-validation factor j, all 
features, j-fold SCV, EMO-DB  

As a first variant apart from utterance-level features we 
consider absolute time intervals (ATI). The database is split 
into clips firstly, and then classified. Thereby the sample size 
of 488 is raised through segmentation. Table 3 shows obtained 
results and the number of clips for the two diverse splitting 
frame lengths chosen.

Table 3: Absolute Time Intervals, all 276 features, 
SVM, 10-fold SCV, EMO-DB, ATI

ATI 0.5 sec 1.0 sec 
Clips [#] 2,569 1,430 
Accuracy [%] 67.2 70.7 

As can be seen in the table, emotion recognition is possible 
already on short parts of an utterance. Yet, recognition 
accuracy is expectantly lower even though more training 
material is available. 
Next, we want to compare the other two introduced variants, 
which lead to a super feature vector: GRTI and GATIR. Table 
4 shows for each type the chosen number n of segments, the 
accuracy obtained by once the full feature vector of n times 
276 features and once the optimum number of features after 
SVM-SFFS reduction and the according accuracy. As 
reference conventional utterance-level only (GTI) 
performance is shown here, too. 

Table 4: Comparison of segmentation schemes, full 
276 dim. and optimal feature vector by SVM-SFFS, 

10-fold SCV, EMO-DB

EMO-DB Segments 
[#]

All
Features 
[%]([#]) 

Optimized 
Set 

[%]([#]) 
GTI 1 84.8

(276)
87.5
(75)

2+1 86.9
(829)

93.6
(295)

GRTI

3+1 87.9
(1105)

96.5
(304)

GATIR 3+1 84.3
(1105)

94.6
(293)

The table shows that the optimum result was obtained favoring 
3+1 segments compared to 2+1 and taking GRTI rather than 
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GATIR. Feature reduction leads to an impressive 
improvement in any case. GTI is clearly outperformed, and 
thereby the results presented in [9, 10] are likewise 
outperformed.
It also seems interesting to highlight which segments show 
most relevance, and how good each segment would perform 
on its own. These numbers are shown in table 5 for the 
variants GATIR and GRTI having 3 segments plus the global 
features. GRTI segments always outperform GATIR ones 
already without feature reduction. This comes, as GATIR 
segments are always only 500 msec long and are therefore 
mostly shorter than GRTI ones. The decrease compared to the 
equivalently 500 msec long ATI features comes, as in this 
evaluation only the 488 samples of EMO-DB are available, 
compared to ATI where the database was split up firstly. In 
the case of the superior GRTI segments we also provide a per-
segment feature-space optimization with according optimum 
number of features.

Table 5: Relevance of single segments

Segment Index 1 2 3 
GATIR 3+1
All features [%] 

63.7 66.7 57.9 

GRTI  3+1 
All features [%] 

71.0 75.1 67.5 

GRTI  3+1 
Optimized set 
[%]([#]) 

75.9
(91)

81.9
(76)

80.7
(89)

As can be seen in the table the highest accuracy is observed 
for the middle part of an utterance in each case. Especially in 
the case of GRTI with optimized feature sets astonishingly 
high accuracy can be obtained. Likewise the middle third of 
an utterance is in terms of accuracy already close to regarding 
the whole utterance on this database. 

7. Conclusions

Within this work we discussed three variants of sub-utterance-
level features in speech emotion recognition. Absolute time 
intervals of 1 sec already led to 70.7% accuracy with respect 
to emotion recognition with a constant frame rate. However, 
processing a whole phrase leads to significantly higher 
accuracy, as one would expect. Astonishingly however, 
knowledge of the middle third already leads to 81.9% on 
EMO-DB compared to a maximum of 87.5% if only phrase-
level features are used. By construction of a super-vector 
incorporating features on diverse time-levels overall accuracy 
could be raised as high as 96.5% which is the highest 
recognition rate reported on this database, yet. Thereby sub-
dividing a phrase in relative parts proved superior to absolute 
lengths at relative positions. The choice of three segments 
further more proved superior to having only two segments, 
which led to 93.6% accuracy on EMO-DB. However, this high 
performance comes at a price: 305 features need to be 
extracted opposing 75 for phrase-level only. As future work 
the comparison to dynamic classification of absolute time 
intervals with HMM or DBN remains, which may be a new 
chance for dynamic modeling in speech emotion recognition. 

Alternatively multi-instance learning may be used to stick to 
static classifiers popular in speech emotion recognition. 
Thereby a weighting as the segment length or confidences for 
each segment could be used. Apart from that more intelligent 
segment construction shall be investigated as word-, or 
voicing segments [11]. Finally, we aim at demonstration of the 
effectiveness of the methods shown in this work on further 
databases as Danish Emotional Speech Database (DES) or 
Speech Under Simulated and Actual Stress (SUSAS). 
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