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Emotion recognition grows to an important factor in 
future media retrieval and man machine interfaces. 
However, even human deciders often experience 
problems realizing one�s emotion, especially of strangers. 
In this work we strive to recognize emotion independent 
of the person concentrating on the speech channel. Single 
feature relevance of acoustic features is a critical point, 
which we address by filter-based gain ratio calculation 
starting at a basis of 276 features. As optimization of a 
minimum set as a whole in general saves more extraction 
effort, we furthermore apply an SVM-SFFS wrapper 
based search. For a more robust estimation we also 
integrate spoken content information by a Bayesian Net 
analysis of ASR outputs. Overall classification is realized 
in an early feature fusion by stacked ensembles of diverse 
base classifiers. Tests ran on a 3,947 movie and 
automotive interaction dialog-turns database consisting of 
35 speakers. Remarkable overall performance can be 
reported in the discrimination of the seven discrete 
emotions named in the MPEG-4 standard with added 
neutrality. 

The importance of emotion recognition for multimedia 
retrieval, and human computer interaction is commonly 
agreed [1]. Speech information is the most promising 
among other sources as mimic, physiological or context 
data analysis. A number of systems already exist that are 
capable of recognition by acoustic or linguistic 
information. However, it is mostly reported that speaker 
dependent recognition leads to far better results. This is 
hardly surprising since first psychological assumptions 
could be confirmed by a survey conducted to measure 
human performance on this task. 12 individuals were 
asked to re-classify their own 70 emotional audio samples, 

previously recorded, on basis of an emotional category set 
of seven described later on. Thereby mean accuracy of 
83.7% was observed. Unlike this result the recognition 
performance dropped to 64.7% on the task of determining 
the expressed emotions of unknown persons. In this 
contribution we therefore aim to focus on speaker 
independent performance, which is a must have for many 
applications as call centers, media segmentation, public 
transport observation or further scenarios, where the 
speaker is either unknown or no sufficient material for a 
model adaptation, not to mention a complete training, 
exists. 

The paper is structured as follows: Section 2 deals 
with the description of the databases used, section 3 
provides insight in acoustic feature selection, section 4 
introduces the ensemble classification variants considered, 
section 5 shows linguistic content processing which is an 
important factor [2][3], and finally conclusions are drawn. 

The emotions used resemble the far spread MPEG-4 set, 
namely joy, anger, disgust, fear, sadness, surprise and 
added neutrality. Within acoustic feature selection and 
classifier evaluation 2,440 samples of 35 speakers of 
automotive interaction dialog-turns are used [4]. The 
emotions are almost evenly distributed among the 
individuals, meaning that 10 samples per emotion and 
speaker exist in average. 

In order to get a high number of samples with 
acoustic and linguistic content in sufficient quality 
considering speech recognition and extraction of acoustic 
emotion features we decided for acted emotions as a 
further corpus. The textual content was taken from movie 
scripts of seven U.S. American movies from the years 
1977 until 1999. Namely these are 

and . Herewith a wide bandwidth of genres, 
i.e. Science-Fiction, Comedy, Drama, Horror, and Fantasy 
could be covered and has been selected in order to include 

                                  



all emotions desired. The utterances were annotated 
phrase-wisely by two test persons and 1,144 phrases 
consisting of 7.0 words in average with identical labeling 
could be obtained. The set was supplemented by emotions 
of text-based Internet conversation labeled accordingly 
until 1,507 utterances were collected in total. The phrases 
were acted and recorded as single utterances in an 
anechoic chamber with a condenser microphone AKG-
1000S MK-II over a long period to avoid anticipation 
effects of the three actors in total.  
 

 
Large numbers of diverse acoustic high-level features 
based mostly on pitch, energy, and durations were 
discussed considering their performance. However, sparse 
analysis of single feature relevance by means of filter or 
wrapper based evaluation has been fulfilled, yet. Within 
here we apply a Support Vector Machine ( ) based 
Sequential Forward Floating Search ( ) as search 
function within feature selection ( ). SFFS is known for 
its high performance as showed in [5]. Thereby the 
evaluation function is the classifier, in our case SVMs, as 
described in the next section, which optimizes the features 
as a set rather than finding single features of high 
performance. The search is performed by forward and 
backward steps eliminating and adding features to an 
initially empty set. 276 static acoustic high-level features 
form the basis for this analysis.  
 

1 0.279 Pitch maximum gradient 
2 0.187 Pitch mean value, adapted 
3 0.072 Energy mean value, normalized
4 0.187 Pitch mean value gradient 
5 0.097 Signal number of zero-crossings
6 0.073 Signal median of sample values
7 0.122 Pitch relative maximum 
8 0.046 Duration of silences mean value
9 0.082 Energy maximum gradient 

10 0.140 Pitch range 
11 0.116 Pitch mean dist. between reversal 
12 0.057 Duration of voiced sounds std. dev.
13 0.069 Energy median of rise-time 
14 0.030 Duration of silences median 
15 0.151 Duration mean value of voiced sounds
16 0.066 Spectral energy below 250 Hz 
17 0.067 Energy std. dev. dist. of reversal 
18 0.050 Energy mean of fall-time  
19 0.051 Energy mean dist. of reversal points
20 0.035 Energy relative maximum 

 
Figure (1): Acoustic feature set selection with SVM-SFFS 

and single feature Gain Ratio calculation 

These consist of the named pitch, energy and duration 
features, of higher order formants, spectral features, and 
further ones which cannot be described here in detail. 
Feature pre-processing and extraction is described in [6]. 
Nevertheless in the table also single feature relevance 
information is provided by Gain Ratio. It can be clearly 
seen that the set comprises features of low single feature 
importance which cover aspects missing in the set. By 
reduction of the feature set different classifiers showed 
diverse behavior as will be seen in the next chapter. 

It shall also be mentioned that in comparable works 
features are reduced by means of the well known 
Principal Component Analysis ( ) and selection of the 
obtained artificial features corresponding to the highest 
Eigen-values [7]. However, the feature selection 
procedure based on PCA leads to a higher extraction 
effort. This is due to the fact that PCA requires extraction 
of all original features prior to linear superposition, which 
endangers real-time requirements. Such reduction has 
therefore not been considered herein. 
 

With a relatively small number of training samples 
compared to the dimensionality of the data, a high danger 
of bias due to variances in training material is present. In 
order to improve instable classifiers as Artificial Neural 
Networks or Decision Trees a solution besides 
regularization or noise injection is construction of many 
such weak classifiers and combination within so called 
ensembles. Two of the most popular methods are Bagging 
and Boosting [8]. Within the first random bootstrap 
replicates of the training set are built for learning with 
several instances of the same classifier. A simple majority 
vote is fulfilled in the final decision process. In Boosting 
the classifiers are constructed iteratively on weighted 
versions of the training set. Thereby erroneously classified 
objects achieve larger weights to concentrate on hardly 
separable instances. Also a majority vote, but based on the 
weights leads to the final result. 

However, these methods both use only instances of 
the same classifier. If we strive to combine advantages of 
diverse classifiers, Stacking is an alternative. Hereby 
several outputs of diverse instances are fused. In [8] 
StackingC as improved variant is introduced, which 
includes classifier confidences, e.g. by Maximum Linear 
Regression. It is further shown that StackingC can 
simulate most ensemble learning schemes, making it the 
most general and powerful representative of its kind. One 
major question however is the choice of the most suitable 
base classifiers for the ensembles. In [8] two optimal sets 
built of seven and four classifiers are introduced. 
However, the performance with the smaller set shows 
similar results at less computational effort for training. We 
chose a slightly changed variant of their smaller proposed 



set, which delivered better accuracy as seen in Figure 2. 
Therein results on the various tasks are presented with 
StackingC, Bagging, Boosting and selected base-
classifiers are shown. However, due to space limitations 
we can provide only a very brief introduction of the latter 
in the ongoing. A comprehensive description is available 
in [9]. The major drawback of the firstly selected and well 
known, though rather simple, Naïve-Bayes ( ) classifier 
is the underlying assumption that feature values are 
uncorrelated given the class and no hidden attributes may 
influence the estimation. In general, it is a very trivial 
variant of a Bayesian Network as introduced in section 5. 
Another simple variant is a k-Nearest-Neighbour instance 
basedclassifier with Euclidean distance ( ). Support 
Vector Machines ( ) show a high generalization 
capability due to their structural risk minimization 
oriented training. In this evaluation we used a couple-wise 
decision for multi-class discrimination and a polynomial 
kernel. As Decision Tree we chose an unpruned C4.5. In 
general these consist of a simple structure where non-
terminal nodes represent tests on one or more features and 
terminal nodes reflect decision outcomes.  

The following tests have been carried out on the 2,440 
sample acoustic dataset described in section 2. The 
evaluation was done in a �leave-one-speaker-out� manner. 
Only mean performance is shown as the standard 
deviation throughout cycles never exceeded 2%. The 
effect of feature reduction is also shown. While some 
performances initially increase, losses for all classifiers 
were observed at higher reduction rates.  
 

NB 37.84 44.59 
kNN, k=1 63.51 68.91 
SVM, p=2 50.01 70.27 
C4.5 50.00 44.59 
Bagging C4.5 64.87 54.05 
Boosting C4.5 63.51 67.56 
StackingC 
SVM NB C4.5 kNN 

 
Figure (2): Accuracy of single classifiers and ensembles 

acoustic classification 
 
The next table deals with reduced emotion sets.  
 

MPEG4+Neutral 71.62 
Anger, Neutral, Surprise 84.85 
Surprise, Neutral 90.91 
Anger, Neutral 97.12 

 
Figure (3): Mean Performances for reduced emotion sets, 

Leave one speaker out evaluation

The optimal classifier configuration was each used and 
the tests ran on the same database as in the previous table. 
A significant increase in performance can be observed 
when focusing on the discrimination of one emotional 
state and a neutral state. However, this may be already 
sufficient in many cases. 
 

 
As acoustic analysis shows significant speaker 
dependence, we strive to improve on independence by the 
constructive integration of content analysis. Automatic 
Speech Recognition  units nowadays show good 
performance for different unknown speakers. It only 
remains questionable whether a general learned semantic 
model applies sufficiently for new speakers. In general 
only a small amount of user utterances will contain 
emotional information. Even if an utterance carries 
information about the actual user emotion, it will in most 
cases be only fragments of the complete utterance. 
Therefore a spotting approach seems a must in search for 
emotional keywords or phrases in natural language. As a 
basis we use a standard Hidden-Markov-Model-based 
ASR engine with zero-grams as language model. It 
provides the n-best hypotheses including single word 
confidences of its estimation of the spoken content. As a 
mathematical background for the spotting we chose 
Bayesian Networks  for their capability to handle 
uncertain and incomplete information. However, we will 
not deal with further approaches as vector space modeling 
or n-grams herein. In this paper we can provide only a 
very brief insight in the theory of BN, which enjoy 
growing popularity in pattern recognition and knowledge 
modeling tasks. Each network consists of a set of nodes 
related to state variables , consisting of a finite set of 
states. The nodes are connected by directed edges 
expressing quantitatively the conditional probabilities of 
nodes and their parent nodes. A complete representation 
of the network structure and conditional probabilities is 
provided by the joint probability distribution. Let  
denote the total of random variables, and the distribution 
can be calculated as: 
 

N

1 N i i
i 1

P(X ,..., X ) P X | parents(X )
 

 
Methods of interfering the states of some query variables 
based on observations regarding evidence variables are 
provided by the network. Similar to a standard approach 
to natural speech interpretation, the aim is finding the 
emotion hypothesis that maximizes the posterior 
probability of the word sequence given the acoustic 
observation. Each emotion is modeled in its own network. 
The root probabilities are distributed equally in the 
initialization phase and resemble the priors of each 



emotion. If the emotional language information 
interpretation shall be used stand-alone, a maximum 
likelihood decision takes place. Otherwise the root 
probability for each emotion is fed forward to a feature-
level fusion with the acoustic features. In four lower 
levels a clustering from words to super-words, phrases, 
super-phrases, and finally emotions takes place as can be 
seen in the following figure.  

Observation

Word

Super-word

at all

Positive

good . . . super

Negation

not no

Easing

too. . . . . .

Decision Max

Emotion Joy Anger. . .

Super-phrase Positive Negative

Phrase Neg.Pos Negative1 LowPositive1

I do not feel too good . . .

Extent

Figure (4): Principle of Belief network based phrase 
spotting 

 
On the word layer the evidences are fed into the net 
according to the word confidences of actually observed 
words. As we integrate the confidences of the ASR 
hypotheses the traditionally certain evidences are 
extended as uncertain evidences. The quantitative 
contribution  of any word  to the belief in an 
emotion  is calculated in a training phase by its 
frequency of occurrence under the observation of the 
emotion on the basis of the speech corpus described in 
section 2. The training and evaluation was fulfilled in a 
five fold stratified cross validation resulting in 302 test 
phrases per run. Mean performance was observed 64.8% 
correct assignment within the seven named emotions. 
Thereby, the absence of any emotionally co-notated terms 
or phrases, leading to indifferent root probabilities of the 
BN-models, has been considered as the neutral state. In a 
fusion within one feature vector consisting of the acoustic 
features and the linguistic estimates as further features the 
accuracy can be raised, as firstly reported in [10]. On the 
second described set of 1,507 sample utterances of movie 
and automotive interaction dialogs turns acoustic only 
reached 90.21 %. By inclusion of linguistic analysis this 
could be raised by another absolute 3.5%.  
 

Within this paper we demonstrated improved emotion 
recognition by early fusion of acoustic and linguistic 
analysis. Ensemble classification helped to slightly 

improve overall performance. Still computational effort is 
considerably increased thereby. Considering speaker 
independent recognition high accuracy of 71.62% for the 
MPEG-4 set with added neutrality and up to 97.12% for 
the single recognition of anger can be reported. Feature 
reduction helped to decrease extraction time and improve 
recognition performance initially. However, too high 
reduction rate worsened the overall performance. 
 In our future work we focus on genetic feature generation 
and multi-task learning in speech emotion recognition for 
higher recognition performance. 
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