
                                                       
                                          

             

Algebra from Al Khwarizmi to Galois, 830-1830

J.-H. Eschenburg1

                                                                                        
                               

Abstract
Galois has completed a programme started by Al Khwarizmi 1000 years before.
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1 A Day of Misery

On the early morning of May 30, a shot was fired in a park in the south of Paris. A
20-year-old student of mathematics was hit into his stomach; nobody cared for him.
Only hours later, some passerby found him and brought him into the nearby Hôpital
Cochin. The next day he died there from peritonitis.

This was the miserable end of a young man whose short life was marked by a
chain of personal and professional disasters. Yet he had answered a central question
of algebra posed 1000 years before: For which equations

xn + a1x
n−1 + · · · + an = 0 (1.1)

(a1, . . . , an given numbers) is it possible to compute the unknown x by basic arithmetic
operations and extraction of roots (of any order), and for which equations is this
impossible? The name of the young student was Évariste Galois; it was the year
1832.1

1 Évariste Galois, 1811 (Bourg-la-Reine)—1832 (Paris). For more details, cf. [3].
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2 The Beginning of Algebra

Galois’ work was the completion of a development started 1000 years earlier. Around
the year 825, the Khalif Al Mamun, a son and successor of Harun al-Raschid, founded
the “House ofWisdom” at Baghdad. He gathered excellent scientists from everywhere
in order to translate foreign scientific works from Greek, Persian, Aramaic, Indian
and other languages into Arabic. An envoy was sent to Constantinople in order to
acquire copies of the important works of ancient Greek science from the Byzantine
emperor Theophilos.2 He might have spoken: “Mighty Emperor: You are owning a
huge number of phantastic works from ancient times, papers of Euclid, Archimedes,
Diophant, Ptolemy, Aristotle, Galen, and many others. Our Prophet (peace be upon
him) has taught us to strive for knowledge and wisdom. Our scientists would like
to translate these scriptures into our language to make them understandable for us.
Therefore we would like to purchase some copies. Please accept our poor gold for it
...”
But theHouse ofWisdombecame not only a place for translations but also for research.
One of the most brilliant minds was the Persian scientist al Khwarizmi.3 Around
830 he wrote the book “Hisab al-jabr wa-l-muqabala” (Calculation by Completion
and Balancing). Both words, completion and balancing, denote certain transforma-
tions of equations: al-jabr = completion means removing differences by addition of
terms on both sides and muqabala = balancing means substraction of terms on both
sides. Later on, the word “al-jabr” was used for the whole mathematical area from
which our word “algebra” is derived. The notion of equation was new; only Diophant
has used a similar concept. It is a kind of a riddle: find a number (the Unknown)
with certain properties, e.g. the square of the number, increased by 21, is ten times
that number, x2 + 21 = 10x . The general form of this equation is x2 + q = 2px
or

q = (2p − x)x (2.1)

for given numbers p, q. This was only one of several forms of quadratic equations
since negative numbers were not used. Formulas were also unknown and everything
had to be expressed in words. How did al Khwarizmi solve such equation? [1, p. 169]

p

p−x
p−x

p−x

x
x

He subdivided the square with edge length p into two domains: the small white square
with edge length p− x and the L-shaped remainder. By moving the shaded rectangle,

2 https://upload.wikimedia.org/wikipedia/commons/c/c5/Mamun_sends_an_envoy_to_Theophilos.png.
3 Muhammad ibn Musa al Khwarizmi (al-Tabari), ca. 780 (Khwarazm, Aral Lake?) - 850 (Baghdad?) His
name al Khwarizmi is the origin of the word “algorithm”.

   

https://upload.wikimedia.org/wikipedia/commons/c/c5/Mamun_sends_an_envoy_to_Theophilos.png


                                                       615

we see that the remainder has the area of the lower rectangle with edge lengths x and
2p − x , which equals q by (2.1). Then, (p − x)2 = p2 − q, hence

x = p +
√
p2 − q = 5 + √

25 − 21 = 7 (2.2)

when p = 5, q = 21. (The second solution p − √
p2 − q is negative.) Thus, the

unknown x , the hight of the lower rectangle, can be determined by the figure.

“The algebra consists in discovering the mathematical methods by which one
can determine the Unknown, either arithmetically or geometrically.” (Omar
Khayyam in: “Treatise on Algebra and Muqabala”, 1079)

3 Geometric Solutions of the Cubic

Already Archimedes4 investigated problems which lead to equations involving the
third power of the Unknown, cubic equations. One of these problems he solved by
means of a compass and a ruler with an adjustable mark on it: the trisection of the
angle. In modern language, this problem is equivalent to solving the complex equation
(x + iy)3 = a + ib for given a, b with a2 + b2 = 1. After substituting y2 = 1 − x2,
the real part of the complex equation is a cubic, 4x3 − 3x = a. How did Archimedes
solve it?

ε

γ1
δ δ

ε 1
1

The triangle within the circle has the angle sum

180◦ = 2ε + (180◦ − δ − γ ),

hence 2ε = γ + δ (∗). The angle sum of the left isosceles triangle amounts to 180◦ =
2δ + (180◦ − ε), hence ε = 2δ, and with (∗) we obtain γ = 3δ.
Another problem was the calculation of the height of a spherical segment of given
volume.5 Archimedes had announced a solution of this problem, but it seems that he
never worked it out.
The Islamic mathematicians found solutions of cubic equations using the intersection
of two conic sections. E.g. the x-value of the intersection point (x, y) �= (0, 0) between
the circle x2 + y2 = 2r x and the parabola y = ax2 solves x2 + (ax2)2 = 2r x ; hence

4 Archimedes of Syracuse, ca. 287–212 B.C.
5 The volume of the spherical segment of radius r and height h is Vh = π

3 (3rh2 − h3).
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(after division by x) the cubic equation x + a2x3 = 2r . Vice versa, given such cubic
equation, one can find the corresponding circle and parabola.

x

y

2 2x + y  = 2rx

2r

y

x

y=ax 2

A similar method was carried through for all possible types of cubic equations by
OmarKhayyam.6 Hismotivation to investigate cubic equations was another geometric
problem described in his first treatise “On the division of a quadrant of a circle”. It
amounts to finding a right triangle such that the hypothenuse equals the sum of one
leg plus the altitude over the hypothenuse.

x

x

This “Khayyam triangle” seems to be realized in the dome of the Friday (Jameh)
Mosque at Isfahan, built in 1088/89, which might indicate that Omar Khayyam con-
tributed to the construction of this magnificent mosque.7 Concerning cubic equations
in general, Omar Khayyam admits in his comprehensive work “Algebra and Muqa-
bala” that he (like his predecessors) has not been able to find an arithmetic solution in
the way al Khwarizmi did this for quadratic equations:

“Perhaps someone else who comes after us may find it out in the case, when
there are not only the first three classes of known powers, namely the number,
the thing [= the Unknown] and its square.”

6 Omar Khayyam, 1048–1131, was born and died in Naishapur, Persia (Iran). His most fruitful time he was
spending at Isfahan (1074–1092) where he wrote “On the division of a quadrant of a circle” and “Algebra
and Muqabala” (1077). He contributed to the reform of the Persian calender (1079) and calculated the
length of the year as 365.24219858156 days. In 2000, this length was 365.24219052 days which shows the
size of loss of rotational energy of the earth. He wrote a large number of quatrains, https://en.wikisource.
org/wiki/Quatrains_of_Omar_Khayyam_(tr._Whinfield,_1883), e.g. No. 117:

Alas for that cold heart, which never glows
With love, nor e’er that charming madness knows;
The days misspent with no redeeming love; –
No days are wasted half as much as those!

7 Alpay Özdural: AMathematical Sonata for Architecture. Omar Khayyam and the FridayMosque of Isfa-
han. Technology and Culture 39 (1998), 699–715, in particular Fig. 6, Seite 710, siehe auch Alpay Özdural:
Omar Khayyam and the Friday Mosque of Isfahan, http://www.ensani.ir/storage/Files/20120427103533-
5207-449.pdf, in particular Fig. 5, page 147.
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In fact, this took more than 400 years to happen! In his treatise “On the division of
a quadrant of a circle” he interrupts the mathematical discussion for the following
remark which might characterize his way of thinking [4, VK:100]:

“Self-satisfaction, however, is the privilege of the mediocre people, for their soul
can understand only a tiny part of the sciences. And once they have understood
this, they believe that this few encompasses and unites all science. That Godmay
save us from such views that lead us astray and prevent us from recognizing the
truth and finding our salvation.”

4 Algebraic Solution of the Cubic

The cubic equation8

x3 + 3ax = 2b (4.1)

was solved arithmetically only after 1500 in Italy. It was the time of ItalianRenaissance
when the ancient scientific works had been rediscovered, many centuries after they
were collected and translated at the “House of Wisdom”. This was only possible after
Europe got in contact with the Islamic culture. A most influential book was “Liber
Abaci” by Leonardo of Pisa, named Fibonacci (Pisa 1202 and 1228). He introduced
the Arabic numerals and also the number zero and the negative numbers which had
beendiscovered probably by the IndianmathematicianBrahmagupta (598—after 665),
well known at the “House of Wisdom”. Negative numbers were needed in Europe for
economic reasons: the credit system was started in Italy in late medieval times.
Three Italian mathematicians, del Ferro, Tartaglia and Cardano9 found the solution
formula for the cubic. Scipione del Ferro was the first, but he kept the formula secret
and told it only to one of his students, Antonio Maria del Fiore. The latter challenged
one of the leading calculation masters, Nicolo Tartaglia from Venice, by sending him
some cubic equations to be solved. Tartaglia did not know the formula, but he sat
down and rediscovered it on his own; thus, he won the competition against del Fiore.
GirolamoCardanowas awell-known scientist andphysician and friendofTartaglia.He
asked Tartaglia to reveal the formula to him which he finally did, in form of a poem.10

But Cardano had to swear that he would keep the formula secret. His friend and co-
worker Ludovico Ferrari (1522–1565) had solved even the fourth degree (“quartic”)
equation, using the cubic. However, without the solution of the cubic, this was useless,
and Tartaglia refused to publish his formula. When Cardano learned that del Ferro had
found the formula before Tartaglia, he felt himself no longer committed to his oath
and published the solution of the cubic together with a proof in his algebra textbook
“Ars Magna” (1545):

8 The general cubic equation x3 + ax2 + bx + c = 0 can be reduced to (4.1) as follows. Substituting the
Unknown x by the expression x̃ − a/3, one obtains an equation for x̃ of the form (4.1).
9 Scipione del Ferro, 1465–1526, Bologna; Nicolo Tartaglia, 1499–1557, Breschia and Venice; Gerolamo
Cardano, 1501–1576, Pavia, Milan, Rome.
10 http://www.math.toronto.edu/alfonso/347/Tartagliaspoem.pdf.

   

http://www.math.toronto.edu/alfonso/347/Tartagliaspoem.pdf


618                                                        

x = 3
√
b + √

D + 3
√
b − √

D, D = a3 + b2. (4.2)

Since then it is called “Cardano’s formula” though Cardano reported the full story,
back to the Islamic mathematicians.
How was this solution found? The contemporary witnesses kept silence about this, we
rely on guess work. However, these guesses are not made out of thin air. Then and now,
the path to the solution opens up by reflecting about the task.11 The given Eq. (4.1)
seems difficult; we cannot see any solution. But there is another cubic equation whose
solution is apparent,

(x + u)3 = v3 (4.3)

with the solution

x + u = v, or x = v − u. (4.4)

Now the idea is to bring the easy Eq. (4.3) into the form of the difficult one, (4.1), by
expanding (x + u)3 and using (4.4):

v3 = (x + u)3 = x3 + 3xu(x + u) + u3
(4.4)= x3 + 3xuv + u3.

Now, (4.3) has been transformed into (4.1) with

a = uv, 2b = v3 − u3. (4.5)

Vice versa, we can calculate u and v from a, b by means of (4.5):

u = a

v
, v3 = 2b + u3 = 2b + a3

v3
, hence (v3)2 = 2bv3 + a3.

The solution of this quadratic equation for v3 is v3 = b±√
D with D = a3 + b2, and

from 2b = v3 − u3 one obtains −u3 = 2b − v3 = b ∓ √
D. Thus Cardano’s formula

(4.2) for x = v − u follows.

5 The Discovery of Complex Numbers

Let us consider two examples of cubic equations x3 + 3ax = 2b:

Example 5.1 x3 − 6x = 9. Then

a = −2, b = 9/2, D = a3 + b2 = −8 + 81

4
= 81 − 32

4
= 49

4
.

11 I owe the following consideration to Urs Kirchgraber.
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Hence
√
D = 7

2 and b + √
D = 9+7

2 = 8 and b − √
D = 9−7

2 = 1, thus x =
3
√
8 + 3

√
1 = 2 + 1 = 3. Check: 33 − 6 · 3 = 27 − 18 = 9.

Example 5.2 x3 − 6x = 4. Then

a = −2, b = 2, D = −8 + 4 = −4.

Now, we have got a problem: since D is negative, the square root
√
D does not

exist! The solution method seems to fail. All what Cardano could do was to give
this case the name “Casus Irreduciblis”, the unreducible case. But actually this was
a scandal: The equation x3 − 6x = 4 has apparently the solution x = −2, since
(−2)3 − 6(−2) = −8 + 12 = 4. However, nobody knew its relation to Cardano’s
formula.

But only a generation later, around 1570, the “unreducible case” was solved, not by a
mathematician, but by a water engineer from Bologna, Raffael Bombelli.12 Of course,
he would say, square roots of negative numbers cannot exist, since squares are positive.
But let us pretend for a moment that such numbers still existed (later they would be
called imaginary), and let us calculate with such “numbers” as usual. Actually, we
only would need one such number, later called i (for “imaginary”), which squares to
−1, then, e.g. 2i would square to −4, etc. Cardano’s “solution” now would look as
follows:

x = 3
√
2 + 2i + 3

√
2 − 2i . (5.1)

But what should we do with such a result? How can we draw the cubic root of 2+ 2i?
Bombelli could not answer this question, but instead he could compute the third power
of such “numbers”, e.g.:

(−1 + i)3 = −1 + 3i − 3i2 + i3

= −1 + 3i + 3 − i

= 2 + 2i

and similarly (−1−i)3 = 2−2i . Luckily enough, the third powers of−1+i and−1−i
are precisely the “numbers” whose third root we want to calculate. Hence, these are
cubic numbers, third powers of known numbers, like 1 and 8 in the first example. Thus,
3
√
2 ± 2i = −1±i , and from (5.1)weobtain the solution x = (−1+i)+(−1−i) = −2

which we already know. The “imaginary” square roots of negative numbers have been
magically disappeared!
Thiswas a truemagicmoment in the history ofmathematics. Bombelli dared to surpass
the limits of traditional conception: “there are no square roots of negative numbers”,
and he reached correct results on this path. The third time inmathematics history (after
the discovery of irrational numbers by scholars of Pythagoras and the zero and the
negative numbers by Indian mathematicians) the number concept became drastically

12 Rafael Bombelli, 1526–1572, Bologna.

   



620                                                        

extended. It should take more than two centuries until the “imaginary numbers” had
lost their mysticism and were fully accepted. Sums of real and imaginary numbers as
in the previous computations were called complex numbers. One had to re-think the
geometric idea of numbers: they would no longer form a scale or a line, but a plane,
using real and imaginary parts as planar coordinates (Wessel 1797, Argand 1806).13

Eventually, the twentieth century’s quantum physics should prove the fundamental
importance of the complex numbers for the physical reality of our world.
Mathematically, the complex numbers turned out to be true miracles. Not only
quadratic and cubic equations but every equation of type (1.1) could be solved by
complex numbers (“fundamental theorem of algebra”). This was known since mid of
eighteenth century, but for a complete proof one had to wait for the Ph.D. thesis of
C.F. Gauß (1799).14 As a consequence, the Eq. (1.1) of degree n has not just one, but
n solutions (counted with multiplicities): if x = a is one solution, one obtains from
(1.1) another equation of degree n − 1 by dividing the left hand side through x − a.
This new equation again has a solution, etc.

6 Galois: the Limits of Algebraic Calculations

By the “fundamental theorem of algebra” it was known that Eq. (1.1) has always a
(possibly complex) solution x . But was it possible to calculate x by means of basic
arithmetic operations and roots of arbitrary order? Paolo Ruffini (1799) and Niels
Henrik Abel (1824)15 had recently shown that this was impossible for the general
quintic equation, the one starting with the 5th power of the Unknown. What was the
precise condition? Could one determine for every equation whether or not it is possible
to calculate a solution?
On the evening before the fatal duel, Galois wrote a letter to his friend Auguste
Chevalier in which he summarized his essential mathematical findings. The algebraic
papers had beenwritten 2 years ago (1830) but had not been published.His comment on
the equation problemamounts to the following statement: “If each of these groups has a
primenumber of permutations then the equationwill be solvable by radicals; otherwise,
not.” (“Sinon, non”).16 Galois had defined a group of permutations (renumberings) of
the solutions x1, . . . , xn , today called Galois group. More precisely (cf [5, Appendix

13 CasparWessel, 1745 (Vestby, Norway)–1818 (Copenhagen), Jean-Robert Argand, 1768 (Geneva)–1822
(Paris). Argand who (like Wessel) was not a professional mathematician is also known for his elementary
proof of the “fundamental theorem of algebra”.
14 Carl Friedrich Gauß, 1777 (Braunschweig)–1855 (Göttingen). Gauß’ proof used that the polynomial
expression p(x) = xn + a1x

n−1 + · · · + an is close to xn when |x | is large. To apply this, one had to
compute the n-th power xn for every complex number x . This was done by Leonhard Euler, 1707 (Basel)–
1783 (St. Petersburg) who introduced the exponential expression ei t = cos t + i sin t : we have x = rei t

for real numbers r , t and therefore xn = rneint . A modern version of Gauß’ proof would use the winding
number which counts the number of turns around the origin for a closed curve. The winding number w of
the closed curve p(rei t ), t ∈ [0, 2π ], equals n when r is large (since p(rei t ) ≈ rneint ) and zero when
r is very small (unless an = 0, but then p(0) = 0). Thus, w must change its value at some ro which (by
continuity) means that the curve p(roei t ) meets the origin 0.
15 Paolo Ruffini, 1765 (Valentano)–1822 (Modena), Niels Henrik Abel, 1802 (Finnøy, Norway)–1829
(Froland, Norway).
16 https://www.ias.ac.in/article/fulltext/reso/004/10/0093-0100, http://langevin.univ-tln.fr/notes/Galois/.
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D], [2]), the Galois group contains those permutations which preserve the algebraic
relations between the solutions.17 When this group is “solvable”, that is decomposable
(by a normal series) into factors of prime order,18 then Galois indicates an algorithm
by which the equation can be solved, and else he shows that there are no solutions by
radicals (expressions in the coefficients a1, . . . , an which involve only basic arithmetic
operations and roots of any order). The complicated Eq. (1.1) had been replaced by a
much easier object, a finite group whose structure carries essential information about
the equation and, in particular, it decides whether or not the equation is solvable by
radicals.
I would like to explain the ideas of Galois using the example of the general quartic
equation (n = 4),

x4 − ax3 + bx2 − cx + d = 0. (6.1)

As mentioned before, this equation was already solved in sixteenth century by Car-
dano’s friendLudovico Ferrari. He represented the left hand side of (6.1) as the product
of two quadratic expressions in the Unknown, and the coefficients of these expressions
could be determined by solving a cubic equation. Of course one tried the samemethod
also for the quintic equation (n = 5), by representing its left hand side as a product
of a quadratic and a cubic expression in the Unknown. Again one had to calculate the
coefficients of these expressions, but this time the computation led to an equation of
10th degree which remained unsolvable. Why does this idea work for the quartic but
does not for the quintic? This remained a secret for centuries; the calculation did not
give a clue.
However, in Galois’ approach, the distinction between the cases n = 4 and n ≥ 5
became quite apparent. For the general equation of degree n, the Galois group is the
full permutation group (symmetric group) Sn . The group S4 has a special property:
the three pairwise transpositions, (12)(34), (13)(24), (14)(23) form together with
the identity permutation (which does not change anything) a normal subgroup H :
the composition of two elements of H is again in H , and for all σ ∈ H and every
permutation τ we have τστ−1 ∈ H (if σ is a pairwise transposition, the same is true
for τστ−1). Therefore, S4 can be decomposed (in the sense of a normal series) into the
factors H and S4/H ∼= S3. Decomposing H and S3 further, the group S4 is decomposed
into four factors with order (number of elements) 2, 2, 3, 2. But for Sn with n ≥ 5, the
pairwise transpositions form no longer a subgroup; in fact there is no proper normal
subgroup other than An , the set of even permutations, where |Sn/An| = 2, and An

itself has no proper normal subgroups at all. Note that |An| = n!/2 is never a prime
number except for n = 3 (the case of a cubic).

17 E.g. the solutions of the equation xn = a (“pure equation”) are x j = n√a · ζ j for j = 1, . . . , n,

where ζ = e2π i/n , thus xk = ζ k− j x j . Therefore, a permutation σ in the Galois group of this equation

must preserve this relation: xσ(k) = ζ k− j · xσ( j). Thus, σ(k) − σ( j) ≡ k − j mod n, and since there
are no other relations, the Galois group is the cyclic group of order n, generated by the cyclic permutation
(12 · · · n).
18 More precisely: if there is a descending series G = G0 ⊃ G1 ⊃ · · · ⊃ Gk = {e} with the property that
G j+1 is a normal subgroup of G j and that p j = |G j /G j+1| is a prime number for j = 1, . . . , k − 1.
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The decomposition of the Galois group leads to an algorithm for calculating the solu-
tions. The numbers a, b, c, d are given, the four solutions x1, x2, x3, x4 are wanted.
The inverse process (computing a, b, c, d from x1, x2, x3, x4) would be much easier:
when (6.1) has the solutions x1, x2, x3, x4, the polynomial

p(x) = x4 − ax3 + bx2 − cx + d, (6.2)

on the left hand side of (6.1) can be represented as

p(x) = (x − x1)(x − x2)(x − x3)(x − x4) (6.3)

since there is just one quartic equation with these solutions. Expanding the right
hand side of (6.3) and comparing coefficients with (6.2) we see that a, b, c, d are the
elementary symmetric polynomials in the variable x := (x1, x2, x3, x4),19

a = x1 + x2 + x3 + x4 = σ1(x),

b = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = σ2(x),

c = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = σ3(x),

d = x1x2x3x4 = σ4(x). (6.4)

This is the generalization of Vieta’s theorem for the coefficients of quadratic equa-
tions.20 By the fundamental theorem on symmetric polynomials,21 any symmetric
polynomial in x can be written as a polynomial expression in the elementary symmet-
ric polynomials which are the coefficients a, b, c, d.
Now one looks for “resolvents”. These are polynomials in x which are not invariant
under the full permutation group, but only under the normal subgroup H . The simplest
such expressions (lowest degree) are

y1 = (x1 + x2)(x3 + x4) = x1x3 + x1x4 + x2x3 + x2x4
y2 = (x1 + x3)(x2 + x4) = x1x2 + x1x4 + x3x2 + x3x4
y3 = (x1 + x4)(x2 + x3) = x1x2 + x1x3 + x4x2 + x4x3 (6.5)

19 We are considering simultaneously all quartic equations. Any of them is uniquely determined by its four
solutions x1, x2, x3, x4 which now will be considered as variables and, thus, the coefficients a, b, c, d can
be considered as functions in these variables.
20 François Viète (lat. Vieta), 1540–1603 (Paris).
21 In a symmetric polynomial, for any term x

k1
1 x

k2
2 · · · xknn there exists another term with the same powers

k1, . . . , kn , but in decreasing order, k1 ≥ k2 ≥ · · · ≥ kn . We put
(
x
k1
1 · · · xknn

)
the symmetric polynomial

which arises from x
k1
1 · · · xknn by adding all permutations of this term. These polynomials are lexicograph-

ically ordered by the weakly decreasing sequences (k1, . . . , kn), e.g. (3, 3, 1) > (3, 2, 2). The symmetric

polynomial σ
k1−k2
1 σ

k2−k3
2 · · · σ kn

n has the same highest term as
(
x
k1
1 · · · xknn

)
. Hence, the difference of

both expressions has a highest term of lower order in our lexicographical ordering. Continuing this proce-
dure, we finally end with the zero polynomial and, thus, we have written our given symmetric polynomial
as a polynomial expression in the variables σ1, . . . , σn .
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By construction, y1 is invariant under (12)(34), which transposes the pairs x1, x2 and
x3, x4, but y1 is also invariant under (13)(24) (and thus under (14)(23)) since

(x3 + x4)(x1 + x2) = (x1 + x2)(x3 + x4) = (x4 + x3)(x2 + x1).

The same holds for y2, y3.22 These new expressions y1, y2, y3 are the solutions of the
cubic equation

0 = (y − y1)(y − y2)(y − y3) = y3 − uy2 + vy − w, (6.6)

u, v, w being the elementary symmetric polynomials in y = (y1, y2, y3):

u = y1 + y2 + y3 = σ1(y)

v = y1y2 + y1y3 + y2y3 = σ2(y)

w = y1y2y3 = σ3(y) (6.7)

After inserting (6.5), these expressions become symmetric polynomials23 in the vari-
ables x = (x1, x2, x3, x4). E.g. the first coefficient is

u = y1 + y2 + y3
= x1x3 + x1x4 + x2x3 + x2x4

+x1x2 + x1x4 + x3x2 + x3x4
+x1x2 + x1x3 + x4x2 + x4x3

= 2b (6.8)

and similarly (but with more computations)

v = b2 + ac − 4d (6.9)

w = abc − a2d − c2 (6.10)

Now, we know the coefficients of (6.6), hence we can solve this cubic equation. From
the solutions y1, y2, y3 and (6.5) we obtain x1, x2, x3, x4.24

Example 6.1 x4 − 2x3 − 13x2 + 14x + 24 = 0. Then, u = 2b = −26, v = b2 + ac−
4d = 169 − 28 − 96 = 45, w = 28 · 13 − 96 − 14 · 4 = 14 · (26 − 14) − 96 = 72.
Thus, the cubic equation is y3 + 26y2 + 45y − 72 = 0 with the solutions y1 = 1,

22 In fact, {y1, y2, y3} is the orbit of y1 under the permutation group G = S4 which acts on the space of
polynomials in x = (x1, x2, x3, x4) by permutation of the four variables.
23 SinceG permutes the orbit {y1, y2, y3}, a symmetric polynomial τ iny = (y1, y2, y3) is also a symmetric
polynomial τ̃ in x, namely τ̃ (x) = τ(y(x)). For this argument, we do not need that H is a normal subgroup.
By the fundamental theorem for symmetric polynomials (cf. footnote 21), it can be expressed by the
coefficients σi (x). To find this expression explicitly, one has to apply the algorithm given in footnote 21.
24 The cubic equation corresponds to a field extension (passing from u, v, w to y1, y2, y3) with Galois
group G/H ∼= S3, and the last step, solving quadratic equations for zi , corresponds to the field extension
passing from y j to xi with Galois group H = (Z/2Z) × (Z/2Z).
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y2 = −24, y3 = −3. Then, z = zi := x1 − xi (i = 2, 3, 4) solves the equation
z2 − 2z = −y with y ∈ {1,−24,−3} and, hence, (z − 1)2 = −y + 1 ∈ {0, 25, 4}
and z ∈ {1, 1± 5, 1± 2}. Which sign is right has to be checked, here we find z2 = 1,
z3 = 1 − 5 = −4, z4 = 1 + 2 = 3. The sum of the three terms zi , i = 2, 3, 4 is
2x1 + a = 2x1 + 2, on the other hand, it is 1− 4+ 3 = 0, hence x1 = −1 from which
we get xi = zi − x1 = zi + 1; thus, x2 = 2, x3 = −3, x4 = 4 which are the correct
solutions of the above equation.
In general, one has to consider the “pure equations” xn = a corresponding to n-
th roots. In footnote 17, we saw that the corresponding Galois group is the cyclic
group generated by the cycle σ = (12 · · · n). Vice versa, if an arbitrary Eq. (1.1)
of order n has this Galois group, it can be reduced to a pure equation, using an
old argument of Lagrange.25 However, applying this argument needs proving that
expressions in the solutions x1, . . . , xn which are invariant under the Galois group are
“known quantities”: they can be computed from the coefficients by means of basic
arithmetic operations. This is a cornerstone of Galois theory, however, see footnote 21
for the case when the Galois group is the full permutation group.

When the Galois group can be decomposed into cyclic groups (which holds in partic-
ular if the orders of all factors are prime numbers), the problem of finding solutions is
decomposed into partial problems of finding solution of pure equations corresponding
to the factors,which amounts to drawing roots.Otherwise, the equations corresponding
to the (minimal) factors are not pure and thus cannot be solved by roots.
Since geometric methods can be expressed arithmetically, Galois has fulfilled the
programme of algebra as stated by Omar Khayyam:

“discovering the mathematical methods by which one can determine the
Unknown, either arithmetically or geometrically.”
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