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33.1 INTRODUCTION

MACHINE learning is a major discipline in computer science, dealing with the question of 
how to imitate biological learning for technical purposes. Within the audio domain, a field 
of growing interest is computational paralinguistics (i.e. the machine analysis of ‘how’ and 
what* a speaker says aiming at the automatic recognition of speaker states and traits). This 
has numerous possible applications, such as, for example, automated market research or 
a more natural human-computer interaction through a virtual agent. Speaker states such 
as emotion evolve quickly over time. Speaker traits, in contrast, are describing permanent 
characteristics of a person such as gender, personality, or mother tongue, and alter—if at 
all—only in the long run. Somewhere in between are longer-term speaker states such as 
being intoxicated, having flu, or age.

The task of the machine is to find the optimum mapping between a speech signal and, 
for example, the current emotional state of the speaker. One of the first questions when 
building an intelligent machine is how the different possible states, the so-called targets, are 
modelled. There are two generally different approaches: speaker states and traits can be ex­
pressed either by a finite set of categories or as a value on a continuous scale. One example 
for categories is the ‘Big Six* emotions by Ekman (Ekman, 1999)—anger, disgust, fear, happi­
ness, sadness, and surprise. For the continuously-valued representation, the most common 
way is to use the two dimensions arousal and valence when dealing with emotion. As not 
all emotions can be described on this two-dimensional plane, further dimensions, such as 
dominance (Burkhardt et al., 2005), are sometimes added. As another example, one typical 
approach to model speaker personality-related traits is the Big-Five (‘OCEAN’) model of 
personality (Wiggins, 1996), consisting of five dimensions—openness, conscientiousness, 
extraversion, agreeableness, and neuroticism.



720  MAXIMILIAN SCHMITT AND BJÖRN SCHULLER

When the targets are defined, a classifier or, in the case of continuous targets, a regressor 
must usually be learned. In machine learning or, to be precise, in supervised learning, this is 
accomplished by giving the machine a large number of examples of speech signals, together 
with the corresponding targets. These examples are the so-called training data; their number 
and selection has a crucial influence on the performance of the final system. If the training 
database is too small, the examples are not (sufficiently) representative, or, if the target labels 
are not reliable, the classifier (or regressor) will not generalize well enough, meaning that the 
accuracy of its predictions is insufficient for the application.

For supervised learning, many different approaches exist, and some of them are intro­
duced in Section 33.3. Most of those methods, however, do not work on the raw audio signal 
but on features, which are extracted from the signal in a first step. A typical chain for the ana­
lysis of human affect (or other states and traits) is displayed in Figure 33.1. As described, the 
first step is usually the extraction of acoustic low-level descriptors (LLDs) onframe level (i.e. 
the computation of feature vectors that describe short-term properties of the speech signal) 
(Schuller, 2012). As the frame-level audio features (i.e. the LLDs) do not contain enough in­
formation to recognize the state of the speaker, several successive frames must be observed 
and summarized. The duration of those segments depends on several aspects (e.g. the target 
labels and the employed machine-learning scheme). Very often, the speech is segmented 
on utterance level (i.e. a spoken sentence or statement of the speaker). In a fully automatic 
approach, this segmentation can be the result of voice-activity detection (Eyben, Weninger, 
Squartini, & Schuller, 2013).

There are different ways to summarize the information of the frame-level features from 
one segment. Two common approaches to get such suprasegmental features are described in 
Section 33.2—functionals and the bag-of-words method.

As an alternative to or complement for the acoustic feature space, linguistic features can 
be considered. For the recognition of emotion and further states and traits in speech, the 
exploitation of emotional keywords or phrases can be of benefit, especially for the predic­
tion of valence. To obtain a textual representation of the spoken words (i.e. the transcrip­
tion of what is said in written language), automatic speech recognition (ASR) (Schuller et al., 
2009; Wollmer, Weninger, et al., 2013) is usually applied. The resulting text document is 
then further processed using techniques from natural language processing (NLP), such as a 
bag-of-words representation (Schuller, Mousa, & Vasileios, 2015).

F IG U R E  33.1 Exemplary speech-processing chain for the analysis of human affect and 
further states and traits.
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The features are finally fed into a machine-learning scheme. As described in Section 33.3, 
methods may work on different representations, on segment level, frame level, or even on 
the raw audio signal.

33.2 VOCAL FEATURES

In this section, the most common acoustic low-level descriptors are first introduced; then, 
two techniques are explained that can be used to obtain a feature-space representation of the 
whole audio segment—functionals and bags-of- words.

33.2.1 Low-Level Descriptors

LLDs are extracted from the audio waveform in order to obtain the short-term acoustic 
properties of the human voice signal. The computation is based on frames of approxi­
mately 25-60 ms in length. During these short periods of time, the audio signal is as­
sumed to be quasi-stationary (i.e. its properties are not supposed to vary during these 
time intervals). Successive frames usually have an overlap of between 50 % and 75 % (i.e. the 
distance between the centres of adjacent frames, the so-called hopsize, is between 6 ms 
and 30 ms).

Most LLDs are based on the magnitude spectrum of the signal frames, which is mostly 
obtained by the discrete Fourier transform (DFT) (Schuller, 2013). For the computation of 
the DFT, a fast algorithm exists with the fast Fourier transform (FFT). In general, the Fourier 
transform is based on the fact that a signal can be represented by the sum of a limited number 
of weighted sinusoids. Prior to the DFT, the samples within each frame are weighted with a 
window function, such as the Hamming, the von Hann, or a Gaussian window. Each window 
has specific properties which make it more or less suitable with regard to the application 
(Schuller, 2013).

A commonly used group of features are the prosodic features, which are related to:

• Intensity: can be approximated by the signal energy of the frame. The more sophisti­
cated approach of (perceived) loudness modelling also takes into account psycho­
acoustic effects, such as masking or frequency dependencies (Zwicker & Fasti, 2013).

• Intonation: is usually derived from the fundamental frequency of the human voice 
(£Fo*). Fo or (perceived) ‘pitch* tracking is a quite challenging task, where many dif­
ferent approaches have been proposed (Schuller, 2013).

• Speed: describes the rhythm of the speaker. One simple method to obtain a rhythmic 
feature is to exploit the rate of changes between voiced and unvoiced frames and the 
duration of pauses.

Note that in voiced frames, a fundamental frequency can be detected, whereas this is not the 
case for unvoiced frames.

Another relevant group are the voice-quality features. Very well-known voice-quality 
features are the harmonic-to-noise ratio and the microprosodic features, jitter and shimmer.
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Jitter is a measurement of the slight variations in successive period lengths of the funda­
mental frequency; shimmer describes the variations of the loudness of the voice between 
those periods.

Further feature types comprise the spectral and cepstral features. The spectral features 
are computed directly from the spectrum. Typical examples are the spectral centroid, spec­
tral flux, or spectral roll-off. Cepstral features, on the other hand, are computed from the so- 
called cepstrum, which can be computed by the inverse Fourier transform of the logarithm 
of the spectrum. This procedure is motivated by the concept of the source-filter model, in 
which a voice or similar signal is modelled in the frequency domain as the product (multi­
plication) of a harmonic source signal (usually an ‘excitation’ pulse train in the time do­
main) and the frequency response of a filter that shapes the (excited) sound. The filter 
represents the transmission path of the source signal, which is, in the case of a speech signal, 
predominantly the vocal tract. Taking the logarithm in the frequency domain converts the 
product of the source and filter spectra into a sum. This sum is preserved during the inverse 
Fourier transform due to its linear property. As a result, harmonic content with low ampli­
tudes can be recognized and separated easily from the filter part. The probably most-spread 
feature in speech analysis is derived from cepstral analysis—the Mel-frequency cepstral co­
efficients (MFCCs). Compared to the coefficients of the cepstrum, two modifications are 
applied to the algorithm in order to obtain MFCCs. First, the bands of the power spec­
trum are summarized according to the Mel scale (i.e. a non-linear frequency scale aiming to 
model the human auditory perception of frequencies). The Mel scale can be approximated 
by (O’Shaughnessy, 1987)

= 2 5 9 5 . 1 0 ^ 1 + ^  (1)

The filters have a triangular shape in the frequency domain where their centre fre­
quencies are distributed according to the Mel scale. With this mapping step, a dimen­
sionality reduction is performed. After taking the logarithm, an inverse transform is 
applied in order to decorrelate the Mel-spectrum coefficients. Instead of the inverse 
discrete Fourier transform (IDFT), the discrete cosine transform (DCT) is applied 
more often, and further alternatives are used. The whole processing chain is shown in 
Figure 33.2. From the resulting coefficients, those with the indexes o to 12 are mostly 
used in speech analysis. In ASR (speech-to-text), Mel-frequency cepstral coefficients 
are the most widely spread feature; pitch, which is mainly a speaker-dependent feature 
in non-tonal languages, is attenuated during the computation process, whereas the filter 
responses of the vocal tract, which contain the information on the articulated vowels, 
are preserved.

An overview of further relevant acoustic features can be found in Schuller (2013). From all 
described LLDs, their differences in evolution over time—the so-called delta coefficients— 
can also be computed, to augment the feature space, since, after all, the speech signal is repre­
sented as a contour of acoustic frame-level features over time. In order to reduce the impact 
of noise on the speech-analysis process, smoothing can be applied (e.g. using a moving 
average filter).
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FIGURE33.2 Computation of Mel-frequency cepstral coefficients.

33.2.2 Functionals

Once the contour of all LLDs over time has been extracted, the typical (yet optional) next 
step is to derive some statistics of them over a longer segment, to reach a suprasegmental 
feature vector representation. The most popular functionals used are the mean value and 
the standard deviation of the LLDs over each segment. Other commonly used functionals 
comprise higher-order moments (e.g. variance, skewness, kurtosis), extrema (maximum and 
minimum), quartiles, percentiles, and regression coefficients, as well as spectral LLD analysis. 
Note that hierarchical processing can be chosen, just as in the case of LLDs, where derived 
LLDs are frequently found. Examples include means of extrema or spectral coefficients of 
the number of segments, etc.

Naturally, the optimum choice of LLDs and corresponding functionals highly depends on 
the task at hand, just like the employed machine-learning model does. Nevertheless, some 
standardized feature sets have broadly established themselves in the community of com­
putational paralinguistics. A recent dominant example is the ComParE feature set, which 
was introduced with the INTERSPEECH 2013 Computational Paralinguistics Challenge 
(Schuller et al., 2013) and has been used since in follow-up challenges. This set is a large-scale 
‘brute-forced’ feature set, which consists of functionals from sixty-five LLDs and their delta 
coefficients—in total, 6,373 features per segment. It has been the result of steady refinement, 
and proven to be suitable for a variety of speech-recognition tasks including personality 
(Schuller et al., 2012), pathology (Schuller et al., 2013), cognitive and physical load (Schuller 
et al., 2014), and eating condition (Schuller et al., 2015). One drawback of such large-scale
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feature sets is, however, that there is a risk of over-fitting (i.e. the model adapts too much to 
the given training examples and does not generalize in a way that provides the same per­
formance on unknown data).

In contrast to the ComParE feature set, the Geneva Minimalistic Acoustic Parameter 
Set (GeMAPS) is a small, expert-knowledge-based feature set recommendation made by a 
larger group of experts. It comprises only eighteen LLDs with selected functionals, resulting 
in a feature vector of size 62 (Eyben et al., 2016). An extended version of this set (eGeMAPS) 
has been introduced, comprising eighty-eight features in total. GeMAPS has proven to be 
suitable for the prediction of short-term speaker states (Ringeval et al., 2014, 2015). The 
criteria for the selection of the acoustic features were mainly their potential capabilities to 
model the physiological changes in voice production related to emotion and affect.

Compared to this expert-based, handcrafted selection of features, methods of automatic 
feature selection exist (Eyben et al., 2013). Applied to large-scale acoustic feature sets, such as 
ComParE, an improvement in performance can possibly be achieved.

Various tools have been introduced to extract acoustic LLDs and corresponding 
functionals from audio data. One popular example is openSMILE (Eyben, Weninger, Groß, 
& Schuller, 2013), which provides a large number of features relevant for the analysis of 
human speech, general sound, and also music. It provides the aforementioned standard fea­
ture sets and several further feature sets used in challenges in the field.

33.2.3 Audio Words

Instead of using functionals, LLD contours can be further processed in other ways. The 
LLDs of one frame can be considered as a vector of ‘continuous numbers’, which may then 
be subject to vector quantization. This means that the whole vector is assigned to a template 
vector from a codebook of audio words, sometimes also referred to as a dictionary. It is usu­
ally learned from the LLDs computed from training data by applying a clustering algorithm, 
such as k-means (Pancoast & Akbacak, 2012) or expectation maximization (EM) (Grzeszick 
et al., 2015) clustering. An even simpler way to generate a codebook is to select the required 
number of feature vectors randomly or distributed equidistantly from the training data 
(Rawat et al., 2013).

The assignment step is based on the distance between the LLD vector and the audio words 
from the codebook. Typically, the audio word w with the smallest Euclidean distance or 
further-suited distance measure is then assigned to each LLD vector F:

i 2w = argmin - C ^ , )  , (2)
W ' V W!=l

with the w'-th audio word Cw, the index of the LLD m, and the number of LLDs M. In 
Figure 33.3, the process of vector quantization is exemplified by a short segment of audio 
consisting of fifteen frames of Mel-frequency cepstral coefficients with indexes 1-12 and 
logarithmized energy as LLDs. A codebook of five audio words has been learned before­
hand. For each LLD vector, the index of the audio word which is closest in terms of the 
Euclidean distance is specified.
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Index
1 2 3 4 5 — ► 2 2 2 2 2 1 4 4 4 4 4 4 3 3 3

Audio word index

FIG U R E  33.3 Example for vector quantization. The codebook consists of five audio words.

The motivation behind vector quantization is to obtain a compact representation of each 
frame in the audio signal. Given the fact that a whole segment can now be described by a 
sequence of integers (specifying the audio word indexes in the codebook), this results in a 
very compressed representation of the speech signal. This can be compared to the most fre­
quent type of linguistic features (i.e. the transcription of the spoken words in a speech seg­
ment). Thus, the audio words’ are suitable for further processing with methods inspired by 
natural language processing. The first of these methods is the bag-of-words method, which 
is then called bag-of-audio-words and will be described in Section 33.2.4. Other potential 
ideas would include stemming or retagging, which is similar to part-of-speech tagging (i.e. 
assigning broader word classes such as noun, verb, and adjective), by, for example, a hier­
archical clustering of audio words. Obviously, also ‘stopping’ by selection of audio words is 
feasible. Additionally, more refined versions of audio words could be reached (e.g. with vari­
able length) by means of, for example, dynamic warping-enabled clustering. Finally, audio 
words can be built from functional-based vectors rather than LLDs.

33.2.4 Bag-of-Words

In the bag-of-words (BoW) method, the words (or other linguistic cues, such as syllables 
or characters) within a document are represented as a histogram of their frequencies of oc­
currence. This means that, for each term in a dictionary, it is counted how often it is pre­
sent in the text at hand. The histogram vector of term frequencies, which is of the same size 
as the dictionary, is then the feature vector to be fed into the classifier (Schuller, Mousa, & 
Vasileios, 2015).

In the audio domain, once the frame-level features have been assigned to audio words, the 
same procedure can be performed as for linguistic units. This bag-of-audio-words (BoAW) 
method has received increasing attention in various audio-recognition tasks, but mostly 
in acoustic event detection (Grzeszick et al., 2015; Lim et al., 2015; Plinge et al., 2014) and 
multimedia event detection (Liu et al., 2010; Pancoast & Akbacak, 2012; Rawat et al., 2013), 
although also in music information retrieval (Riley et al., 2008), speech-based emotion recog­
nition (Pokorny et al., 2015; Schmitt, Ringeval, et al., 2016), and healthcare (Schmitt, Janott, 
et al., 2016). Also, in the field of image and video content analysis, the corresponding bag-of- 
visual-words is now a well-established approach (Fei-Fei & Perona, 2005; Sivic et al., 2005).
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Moreover, in recognition tasks where different modalities are available, the bags from dif­
ferent domains can be easily fused in an early fusion approach, where the bags are simply 
concatenated to form a single, larger-feature vector (Joshi et al., 2013). This applies especially 
for speech-recognition tasks as both the acoustic and linguistic domains are always available.

The open-source toolkit, termed openXBOW, has recently been published (Schmitt & 
Schuller, 2016), providing bag-of-words-based ‘crossmodaT representations of arbitrary nu­
merical (acoustic and video) and symbolic (textual) features.

In the basic bag-of-words approach, the order of each word, and hence its context, is 
not taken into account, even though it might imply some important information. To over­
come this problem, n-grams can be exploited (Schuller, Mousa, & Vasileios, 2015). Using n- 
grams, the dictionary does not only consist of single words, but also of sequences of up to 
n words. The grams that are present in the dictionary are again learned from the training 
data, so that only relevant sequences are considered. The approach can easily be adopted 
for bag-of-audio-words, by adding sequences of audio words to the framework (Pancoast & 
Akbacak, 2013).

The resulting bags (i.e. frequency histograms) can further be processed in order to make 
them more robust, with the ultimate goal to improve the recognition performance on un­
seen data samples. The necessity to apply the methods introduced in the following depends 
on both the data and the used machine-learning scheme, as different methods are able to 
cope, more or less, with differing histogram-based feature representations.

In order to compress the range of the (words’) term frequency (TF) i, the logarithm is 
very often applied, as expressed in the equation

TFIog>ł=log(TĘ +c), (3)

where c is a constant, mostly chosen as 1 in order to avoid negative values. Another very 
common modification is to choose the termfrequency inverse document frequency (TF-IDF), 
in which the TF is multiplied with the inverse document frequency (IDF) measure. The IDF 
for each term i is computed as

IDĘ = log (4)

where N is the number of instances in the training data, and DĘ (document frequency) is the 
number of instances therein where the term (e.g. word) i is present. Instance here refers to 
one sample in the available data (i.e. one speech segment in the case of voice analysis). The 
motivation behind IDF is to increase the weight of rare words in the histogram, which are 
assumed to be more meaningful than words occurring very often.

In a further step, the bag-of-word histograms can be normalized. This might be beneficial 
if the given segments vary in length, as the ranges of the TFs are then larger for segments of 
longer duration. Normalization can be considered by, for example, dividing each TF by the 
absolute or the Euclidean length of the histogram, or even by the number of frames in the 
segment.

Finally, it must be stated that the described extensions of bag-of-words are not always 
beneficial and that their usefulness depends on many parameters (Schmitt, Janott, et al.,
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FIG U R E  33,4 Bag-of-features processing chain for multimodal input.

2016). Thus, the optimum configuration is ideally evaluated each time a term frequency 
histogram-based representation is used. The whole process of multimodal bag-of-words’ 
generation with early fusion of acoustic and linguistic (and potentially further) features 
is displayed in Figure 33.4. In general, one can also speak of bag-of-features implicating 
linguistic, acoustic, and/or visual words. As an initial step, a preprocessing of the LLDs (in 
case of linguistics, these are usually strings) might be necessary if the ranges of their values 
differ. If we consider, for instance, Mel-frequency cepstral coefficients and pitch, the vari­
ance of the pitch contour is usually larger, so that pitch would have a higher impact on 
the Euclidean distance in the word-assignment step. Thus, either a standardization, unity­
based normalization, or further suited representation of the LLDs is mostly beneficial. The 
difference between both techniques is that in unity-based normalization (also known as 
feature scaling), all values are mapped onto a scale of, for example, -1 to +1 (by normal­
ization to the minimum/maximum occurring value), whereas in standardization, after 
subtraction of the mean value, each LLD is divided by its standard deviation. Therefore, 
standardization is less prone to outliers in the LLDs; however, the resulting range of stand­
ardized values is not fixed. Both techniques can be conducted in an online approach, in 
which the required parameters (e.g. in the case of standardization, mean and standard 
deviation for each LLD) are computed from all LLDs in the training data and then stored 
in the system to be used with all sample instances that need to be classified. Postprocessing 
in Figure 33.4 refers to the aforementioned term frequency weighting and histogram nor­
malization methods.

33.3 D ECODING

Once a suitable representation of all acoustic and/or linguistic information in a speech 
segment has been found, the representation needs to be decoded in order to reach a 
prediction for the respective target (e.g. the emotion). The most critical aspect is typ­
ically the availability and the proper selection of the training data. As shown in the fol­
lowing sections, each machine-learning model needs a large number of examples in each 
category (in case of a classification task) or in different ranges (in case of a regression 
task). If the training data has not been chosen carefully, the resulting model will usually 
not generalize well enough. This could be the case if, for instance, training data has been 
recorded only in silent environments but the system is supposed to work also in noisy or 
more generally speaking mismatched’ environments. Another problem can arise if the
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subjects have not been well selected. Speakers should be balanced in both age and gender, 
and ideally represent all ages and types of the general population, if expected to work for 
these. However, the low amount of available training data is usually the most problematic 
bottleneck.

Decoding can be done on different levels: (i) on frame level; (2) on segment level; and 
(3) even on the plain signal, usually referred to as end-to-end learning. This section gives 
a brief review of machine-learning methods that can be employed on the aforementioned 
levels.

33.3.1 Frame-Level Decoding

In frame-level decoding, the sequence of LLDs—or the sequence of audio words—is 
directly fed into a machine-learning algorithm. In this section, two types of models that 
can be used with sequential data are introduced—hidden Markov models and (recurrent) 
neural networks.

33.3.1.1 Hidden Markov Models
Hidden Markov models (HMMs) (Rabiner, 1989) are one of the most used learning algo­
rithms in many speech-processing tasks. They are based on Markov chains, a statistical pro­
cess given by a number of states and transition probabilities between all states. The main 
characteristic of Markov chains is that the subsequent state depends only on a finite number 
of previous states (in a first-order Markov chain, only the current state). In HMMs, the cur­
rent state cannot be observed directly, but only estimated through its emission (also called 
observation) based on a second probabilistic process in addition to the probabilistic state 
transitions. HMMs are especially suitable for ASR, where the spoken words are modelled 
on different levels: on the first level, there is often an HMM for each phoneme where the 
emissions are the measured LLDs (e.g. Mel-frequency cepstral coefficients) (Gales & Young, 
2008); on the second level, an HMM can, for example, model a linguistic word with the 
phonemes as their emissions.

Formally, an HMM is given by a set of states (5) and a set of possible emissions (X). The 
transition probabilities between all states are described by a matrix (A), and the probability, 
that a state emits a certain element of X  is defined by another matrix (B). For each HMM, 
the two Markov properties apply: (1) the probability of the following state depends only 
on the current state, and (2) the probability of the current emission depends only on the 
current state.

Different models of HMMs have been introduced so far, differing in the number of states 
and in the positivity of their state transition probabilities. In Figure 33.5, a three-state linear 
left-right model is shown. A linear left-right model (‘stay or move’) is commonly used in 
ASR as linguistic information in speech is encoded in an ordered sequence of phonemes. 
By having self-transitions (loops) in the model, different durations of, for example, spoken 
sounds, or simply different speech rates, can be captured. Thus, an HMM is able to warp the 
signal in time. The ‘start’ and ‘end’ state in the model shown in Figure 33.5 have been intro­
duced to simplify the further calculations.
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FIGURE33.5 Linear left-right hidden Markov model with three hidden states.

In general, each HMM represents the conditional probability p(x|c), which denotes the 
probability of observing the sequence x under the hypothesis that it belongs to class c. Given 
a sequence of T  observations in an audio segment, this probability can be computed as

T

$eq t= l
(5)

where the summation is executed over all possible sequences of states. Alternatively, ex­
ploiting the Viterbi algorithm, a speed-up is achieved while still obtaining good results 
(Jelinek, 1997). In this case, the conditional probability turns into the following equation, 
taking only the most probable state sequence into account:

p(x|c) =
T

t= i
(6)

So far, the assumption has been made that there is a finite number of observations 
(e.g. audio words) and, therefore, the probabilities in matrix B are discrete. In audio­
recognition tasks, however, the emission probabilities in B are usually modelled continu­
ously by Gaussian mixture models (GMMs) (Jelinek, 1997) as, for example, the LLDs are 
continuously valued. The emission probability density functions (PDFs) for each state s are 
determined by

Af

m=l

for a GMM consisting of M  mixtures, mixture weights c ^ ,  and the PDF of the multivariate 
Gaussian distribution A^ (•; p, X) with mean vector p and covariance matrix X.

In order to train the model, its parameters (i.e. the elements of matrices A  and B) need to 
be learned based on a given training data set of audio sequences and corresponding labels. 
In the case of ASR, the labels are the transcriptions of the speech segments (one HMM is 
then usually trained per phoneme or word); in the case of emotion recognition, the emotion
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labels (one HMM is then usually trained per emotion class). For parameter estimation in 
HMMs, the Baum-Welch algorithm is usually employed, which is an instance of the previ­
ously mentioned expectation maximization algorithm. For further details, we refer to the 
corresponding literature (Baum et al., 1970; Schuller, 2013).

In the recognition phase, all HMMs are evaluated applying, for example, the Viterbi al­
gorithm. Consequently, the HMM with the highest posterior probability is supposed to be 
the correct model for the respective target (e.g. a word, an emotion, further speaker state or 
trait). Classification can be realized by the maximum a posteriori (MAP) estimate,

c -  arg max p(c|x), c = l, (8)
c

where c is the most likely out of C classes, and x is the sequence of observations. Exploiting 
Bayes’ theorem,

( 9 > 
p(x)

and as the prior probability p(x) is the same for all classes, Equation 8 can be trans­
formed into

c = arg maxp(x|c) • p(c), c = 1,..., C (10)
c

If all classes are presumed to have the same probability, the MAP is identical to the max­
imum likelihood (ML) estimate.

In the case of ASR, the term in Equation 10 splits up into an HMM, denoted by p(x\c) and 
defining the acoustic model (AM), and a prior probability p(c), defining the language model 
(LM). In fact, the acoustic model usually consists of several HMMs. Also, the language 
model can be refined by using the aforementioned n-grams with linguistic words. Then, a 
whole sequence of words W is modelled as

f < )  = n p ( w ,  I (11)

This is especially advantageous for homophones (e.g. ‘piece’ and ‘peace’) or words with 
similar pronunciations (e.g. ‘affect’ and effect’). As an example, the language model would 
favour ‘I read a book’ over ‘I red a book’.

Though HMMs are most popular in ASR, they can be used for arbitrary classification 
problems (e.g. emotion recognition in speech) (Schuller et al., 2003). As mentioned, each 
emotional state is then represented by an HMM, where the one with maximum likelihood is 
chosen based on the given speech signal. The language model can then model the probability 
of emotion transitions, such as whether it is more likely to change from angry to neutral to 
happy, or to change from angry to happy to angry, etc. Several open-source toolkits have 
been published providing training and decoding of HMMs, such as Sphinx (Walker et al., 
2004), HTK  (Young et al., 2006), and Kaldi (Povey et al., 2011).
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33.3.1.2 Artificial Neural Networks

In recent years, however, research on computational paralinguistics (and ASR) has mostly 
abandoned HMMs due to their susceptibility to background noise and other factors such as 
the fact that discriminative learning is harder to realize. Ihe prevailing research is now re­
focusing on another fundamental approach in machine learning—artificial neural networks 
(ANNs). The basic idea is to create a model which is inspired by the information processing 
in the human brain, or more generally, in the human nervous system.

First research in this domain was published in the 1940s by McCulloch and Pitts, who 
were proposing a model of neurons as simple cells providing the processing of binary signals 
(McCulloch & Pitts, 1943). A common neuron model is displayed in Figure 33.6. The elem­
ents of an Af-dimensional input vector x  are weighted individually and summed up, and a 
bias w0 is added. Then, a non-linear activation function is applied to the result, which can be 

realized by, for example, a step function or a sigmoid function f  (u) = — — j  with the 

steepness parameter a . The optimum activation function depends on the task at hand. The 
whole (multilayer) ANN is then a network consisting of several neurons, where the output of 
each neuron (y ) is an input to another neuron:

M  \
b *o = 1

»1=0 J
(12)

As displayed in Figure 33.7, the cells are arranged in different layers, where all outputs of 
one layer are propagated to all inputs to the next layer in the case of ̂ feedforward neural net­
work. In a recurrent neural network (RNN), the outputs are also propagated to the same or 
even previous layers. The step of one propagation is then synchronized with a clock where, in 
each clock cycle, a new input feature vector is given to the input layer of the recurrent neural 
network. Altogether, the ANN involves a sequence of non-linear transformations of the 
input data, providing the final predictions in the output layer. The input layer usually simply

F IG U R E  33.6 Neuron—the basic component of artificial neural networks.
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FIG U R E  33.7 A feedforward neural network with one hidden layer. Each circle represents 
a neuron.

propagates the input values to the second layer and involves no weighting, summation, or 
non-linearity. The layers, which are neither input nor output, are called hidden layers. The 
output layer usually has a dimensionality according to the number of possible targets. Thus, 
if it handles a binary decision task (two classes), there are two neurons in the output layer, 
each one providing a likelihood for the corresponding class. Suited functions such as the 
softmax function can be used to normalize the output to the range of 0 to 1, and thus reflect 
posterior probabilities per class. In the case of a (single-task) regression problem, there is 
usually one neuron per predicted variable.

The process of learning the weights of all neurons is time-consuming and computation­
ally intensive. The common practice is the back propagation method with stochastic gradient 
descent (Rumelhart et al., 1986).

Whilst research on ANN was on the fringes from the 1970s onwards, it has experi­
enced a powerful revival since the first decade of the twenty-first century. This has been 
driven mainly by two factors: (1) the increasing performance of computers, especially 
parallel architectures such as graphics processing units (GPUs), that are a fundamental 
requirement to the time-consuming training of ANNs; and (2) the proposal of new archi­
tectures, particularly long short-term memory recurrent neural networks (LSTM-RNNs) 
(Hochreiter & Schmidhuber, 1997). In this context, new methods of (pre-)training ‘deep’
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networks (i.e. up to hundreds of hidden layers) such as layer-wise unsupervised learning 
and ‘drop-out’ learning (randomly omitting neurons during iterations), or suited activa­
tion functions such as rectified linear units’, are to be mentioned.

Nowadays, ANNs are mostly deep neural networks, which have at least two hidden 
layers. Deep learning has evolved as a new research field of machine learning in computer 
science and is applied to a large variety of tasks, such as handwriting recognition, ASR, 
medical image analysis, and music synthesis, to mention only a few. Popular modern archi­
tectures of deep learning (LeCun et al., 2015) comprise restricted Boltzmann machines 
(RBMs) (Hinton & Salakhutdinov, 2006), convolutional neural networks (CNN) (Simard 
et al., 2003), and the aforementioned LSTM-RNN. CNNs are mostly used in the context 
of spatially distributed data (e.g. images). In this approach, local regions in the signal are 
iteratively processed in a convolutional layer of neurons with globally equal weights. By a 
successive pooling layer, the outputs of the convolutional layers are downsampled. The final 
layers of a CNN are then fully connected, so that the compressed information from all re­
gions can be combined.

In contrast, recurrent neural networks are preferably used with sequential data, such as 
speech signals, as they can model both the long-term and short-term evolution of the signal, 
based on the sequence of LLDs. The core of LSTM-RNNs are the long short-term memory 
cells. They are able to store activations from an earlier time instant in the signal for an arbi­
trary time. For this reason, they overcome the vanishing gradient problem, which was one of 
the major drawbacks of recurrent neural networks in audio recognition. The fundamental 
principle of an LSTM cell is displayed in Figure 33.8. A common neuron (shown at the top 
of the cell) is complemented by a memory and three gate neurons, controlling the flow of 
the activation by scaling it with their outputs at different stages of the cell. The input gate 
scales the input to the memory. The incoming activation is then stored in the so-called error 
carousel, where it can remain for an arbitrary number of time steps. This is accomplished 
by a loop which is controlled by the forget gate, scaling the recurring activation of the cell 
memory. The actual output of the LSTM cell is controlled by the third gate, the output gate. 
Besides the activations from outside the cell, the stored activation itself is also passed to all

FIG U R E  33.8 Long short-term memory cell. I: input gate, F: forget gate, O: output gate, 
M: memory.
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gates as an input. The behaviour of the gate neurons has to be learned in addition to the ori­
ginal neuron. However, the same set of three gates can control several neurons to reduce the 
number of free parameters to be learned from data.

LSTM-RNNs have successfully been used for a great variety of audio-recognition 
tasks, such as voice-activity detection (Eyben, Weninger, Squartini, & Schuller, 2013), 
social-signal detection (Brückner & Schuller, 2014), acoustic-novelty detection (Marchi 
et al., 2015), emotion recognition (Wöllmer, Kaiser, et al., 2013), and feature enhance­
ment (Zhang et al., 2016) in paralinguistics. It seems noteworthy that dynamic-sequence 
learning is possible with recurrent neural networks, similar to the warping abilities 
in HMMs.

In LSTM-RNNs, all weights in each cell of the network must be learned, based on the 
given training data. Several open-source tools that are able to train LSTM-RNNs and 
other neural architectures have been published, including CURRENNT (Weninger et al., 
2015) and TensorF low (Abadi et al., 2016). This simplifies the application tremendously 
as efficient implementation is a challenge.

33.3.2 Segment-Level Decoding

In segment-level decoding, the feature vector representing the segment (e.g. the vector of 
functionals and/or the bag-of-words derived per spoken unit, such as words or phrases) 
is fed into the machine-learning model to predict either a discrete class or a continuous 
label. Formally spoken, in the case of classification, the class cA with the highest pos­
terior probability given the feature vector x  is chosen according to a MAP estimation (see 
Equation 8).

Many different learning methods have emerged (e.g. Bayes classifier, k-nearest neighbour, 
decision trees, random forests) and each one has its pros and cons. However, probably the 
most commonly used method in the field of speaker-state and trait analysis, including emo­
tion recognition from speech, is the support vector machine (SVM) for classification tasks 
and its counterpart support vector regression (SVR) for regression tasks (Cortes & Vapnik, 
1995). In the following, only SVM will be further discussed, but most of the theory can easily 
be adapted to derive SVR (Schuller, 2013).

The principle of SVMs is to find an optimum separating hyperplane between two classes 
in the feature space. The feature space is constructed from the feature vectors x  in the 
training data. The goal of an SVM is now to find the hyperplane in the feature space which 
separates the classes with the widest ‘channel’ between the instances of both classes. Likewise 
as in ANNs, training is discriminative, as in general, an ideal separation is not feasible due 
to outliers in the training data; slack variables have been introduced, through which a cer­
tain number of outliers are allowed. The amount of error can be controlled by the so-called 
complexity parameter of an SVM. The basic principle is exemplified in Figure 33.9. The mar­
gins on both sides of the hyperplane are represented as dashed lines and the area in between 
should ideally be free of instances. The instances on the margins on both sides are named 
support vectors and define the equation of the hyperplane in the feature space. With the 
binarylabelsy; G {-1,4-1}, the feature vectors x l where >0 for the support vectors, a scalar 
bias b, and the size of the training set L, the prediction for a sample instance x t is based on the 
following decision function:



MACHINE-BASED DECODING OF PARALINGUISTIC VOCAL FEATURES 735

FIG U R E  33.9 Support vector machine classifier in a binary classification task based on a 
two-dimensional feature space. Outliers are present in the training data.

/ L \
/ ( x ^ s i g n  X y ^ - X ' + b l ,

where

sign(u) =
+1 ifu  > 0, 
0 if u = 0, 
-1  ifu< 0.

(13)

(14)

As shown in the example, it is usually better to tolerate some training samples within the 
margin in order to get a wider channel. The result is consequently called a soft margin. If no 
outliers were allowed between the margins on both sides, the result would be a hard margin 
and a narrower channel. Such a model normally does not generalize well and is subject to 
overfitting. That is why the complexity parameter must always be tuned in order to be sure 
to obtain a good model. This process is referred to as hyperparameter optimization, in which 
several SVMs are trained with different complexities, typically in a certain range of values 
< 1. Each SVM is then evaluated on independent validation data and the SVM with the best 
performance (the lowest error) is finally selected as the optimum model.

So far, we were making the assumption that, disregarding the outliers, the feature space 
was somehow linearly separable into two parts. This might not always be the case though, 
especially if the space is low-dimensional. In order to tackle this problem, the feature vectors 
can be transformed into a space of higher dimension, using a non-linear transformation. In 
an SVM, (suited) transformations do not need to be computed explicitly as in the final de­
cision function; only the dot product between the training instances and a sample instance 
is present (see Equation 13). Such suited functions describing the dot product between the
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transformed feature vectors are named kernels and the way of using them is called kernel 
trick. A multitude of kernel functions have so far been introduced, and the most established 
ones are the linear, the polynomial, and the Gaussian (RBF) kernel. Selection of the most 
suitable one is normally subject to trial and error (Hsu et al., 2003). Empirically, we can say 
that the linear kernel normally works well with large-feature vectors (e.g. with the aforemen­
tioned ComParE feature set). However, combinations of multiple kernels can also be used.

Finally, one might need to build a classifier for more than two classes. As SVMs can, in 
their usually preferred ‘basic’ version, only do binary decisions, multiple SVMs are trained 
and their outputs are combined. The two most popular schemes applied are referred to as 
one-vs-one and one-vs-all (Hsu & Lin, 2002), where each class is trained against each other or 
all remaining ones.

So far, many implementations of SVM have been published and are available to the re­
search community. One popular example is the open-source library LIBSVM (Chang & Lin, 
2011) which supports several kernels, optimization methods, multi-class classification, and 
regression.

Deep neural networks (e.g. LSTM-RNN) can also be employed for classification or regres­
sion on the segment level. In the special case of recurrent neural networks, the information 
from adjacent segments is usually also taken into account for the predictions at the present 
moment in time, similar to a language model.

33.3.3 End-to-End Learning

Besides exploiting the extracted acoustic features from the speech signal, a machine-learning 
model can also be learned directly on the raw audio signal, in a procedure called end-to-end 
learning. It has successfully been applied to speech-based emotion recognition (Trigeorgis 
et al., 2016) and is also of great interest in ASR (Graves & Jaitly, 2014), even though most ap­
proaches that have been proposed, so far, still use a handcrafted time-frequency transform 
in the first step. It has, however, already been shown that it is feasible to automatically learn 
meaningful representations from the speech signal by methods of deep learning (Jaitly & 
Hinton, 2011). This process is usually referred to as feature learning.

An architecture for end-to-end learning for emotion recognition, similar to that proposed 
by Trigeorgis et al. (2016), is shown in Figure 33.10. It learns a suitable representation of the

Raw waveform 
at 16 kHz

Convolutional layer 
5 ms window LSTM layers

Convolutional layer 
500 ms window

FIG U R E  33.10 End-to-end learning architecture for speech-based emotion and further 
states and traits recognition.



MACHINE-BASED DECODING OF PARALINGUISTIC VOCAL FEATURES 737

signal incorporating all information relevant to the emotion. Hence, the first layers in the 
network replace the conventional handcrafted acoustic features in a certain way. The first 
step is a temporal convolutional layer consisting of forty parallel filters with a window size of 
5 ms, extracting fine-scale spectral information. Then, a half-wave rectifier is applied, which 
means that all parts of the band signals that are below zero are set to zero. This step is motiv­
ated by the rectifying property of the cochlear transduction in the human ear. The rectified 
band signals are then pooled by a factor of two, resulting in a downsampled representation. 
Subsequently, there is another convolutional layer of forty parallel filters, this time with a 
window size of 500 ms, in order to capture characteristics of the speech signal on a longer 
scale. The output signals are then again maximum pooled, this time across the channels, 
which results in a huge dimensionality reduction. Finally, the remaining compressed rep­
resentation is fed into a conventional LSTM-RNN, which provides the emotion predictions 
in terms of the two dimensions, arousal and valence. The number of LSTM cells found to be 
sufficient for this task was 128.

Interestingly, the outputs of some cells within a neural network trained for emotion rec­
ognition were observed as closely correlated with ‘typical’ prosodic features such as loudness 
and fundamental frequency (Trigeorgis et al., 2016). This accounts for the finding that af­
fective states are encoded in prosody (Gunes et al., 2011). It has also been found that the fil­
ters learned by deep neural networks have a bandpass behaviour which is very similar to the 
filtering process in the human inner ear (Tuske et al., 2014).

33.4 CONCLUSION

Finally, it must be stated that there is an almost infinite number of methods with regard to 
both features describing the content of a speech signal and models to decode the audio infor­
mation. The best-suited approach always depends on many parameters, such as the final ap­
plication, the recording environment, and the amount of available training data, to mention 
only a few. This chapter is, by far, not exhaustive and accounts only for a reasonable selection 
of ways to proceed in machine recognition of human voice. More information about specific 
topics is found in the corresponding references.

In the future, one can assume a trend towards cross-lingually, cross-culturally, and en­
vironmentally robust speaker-state and trait analysers. These will likely target a whole 
range of speaker attributes simultaneously rather than assessing, for example, emotion 
in isolation, to exploit interdependencies of the states and traits such as between emo­
tion and personality. Their high interdependence is obvious, as all different states and 
traits impact on the same one vocal-production mechanism and the cognitive process 
choosing the words to be said. Likely, these engines will be trained on huge amounts 
of data which will be increasingly labelled in weakly supervised ways such as by ac­
tive, semi-supervised, and reinforcement learning. Likely, deep learning or similar ap­
proaches of ‘holistic’ end-to-end learning will play an increasing role, ultimately leading 
to the advent of such technology in a broad range of everyday applications, such as, for 
example, emotionally sensitive virtual agents, health monitoring, and personalized rec­
ommendation engines.
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