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We consider an ensemble of indistinguishable quantum machines and show that quantum statistical
effects can give rise to a genuine quantum enhancement of the collective thermodynamic performance.
When multiple indistinguishable bosonic work resources are coupled to an external system, the internal
energy change of the external system exhibits an enhancement arising from permutation symmetry in the
ensemble, which is absent when the latter consists of distinguishable work resources.
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Introduction.—Technological advances have allowed us
to miniaturize thermal machines to the nanoscale and
beyond, where quantum effects can play an important role
[1]. A paradigmatic instance of a thermal machine is a
quantum heat engine (QHE). First conceived in the late
1950s, a QHE is a quantum system that serves as the
working fuel of a thermodynamic cycle [2–7]. More
recently, a synergy between technology and progress on
the foundations of quantum thermodynamics [8–13] has led
to a surge of activity on the study of quantum machines
[14–22], consolidating it as an active area of research [23].
A prominent challenge in this context is the identification
of situations where quantum effects govern and lead to an
enhanced performance with no classical counterpart
[19,24–26]. One strategy to identify such situations is to
consider thermal machines composed of multiple compo-
nents [17,24,27–42] described by collective quantum states
with mutual coherence. In this setting, the enhancement
requires either interaction among the components or the
performance of collective unitary operations on the con-
stituents. Furthermore, the natural process of extracting
work from a QHE by outcoupling it to drive another
quantum system [43,44] or even the process of storing
work in a quantum system [32,39] can also lead to the
manifestation of genuine quantum effects. In this Letter, we
identify a third route, in which quantum statistics leads to a
genuine quantum enhancement of the performance as a
result of the statistical indistinguishability of the constituent
work resources. Specifically, we consider multiple work
resources, each composed of a single QHE with an

individual piston [20,45], coupled to a single external
system and show that the internal energy change
of the external system displays quantum enhancement
when the QHEs are indistinguishable. We note that such
a setting is fundamentally different from a single QHE
with a working fluid consisting of multiple particles
[24,30,34,37,41,46–48].
Setup.—Consider a collective work resource R made of

N heat engines E1;…; EN interacting with two heat baths
(B1 and B2) and an external quantum system S on which the
work is performed. The coupling between R and S is solely
established via the heat engines; see Fig. 1. The global
Hamiltonian of the whole system is the sum of that of the
work resources, the external system, and the coupling C
between them:

HðtÞ ¼ HRðtÞ þHCðtÞ þHS; ð1Þ

where the external system is assumed to be time indepen-
dent. If the work resources are QHEs, HRðtÞ collectively
represents the Hamiltonian for N engines and the two
common baths. For simplicity, we consider the following
form of the coupling Hamiltonian HC:

HCðtÞ ¼ gCðtÞVR ⊗ VS; ð2Þ

where gCðtÞ is a time-dependent coupling constant, and VR
and VS are operators of the work resource and of the
external system, respectively. In the analytical treatment
below, we assume a sufficiently weak coupling between the
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work resources and the external system justifying a
perturbative treatment [49].
In this Letter, we characterize the work performed by the

work resources on the system S by its internal energy
change ΔU. A more in-depth discussion as to what extent
ΔU represents work will be provided in the conclusions.
ΔU is evaluated by energy measurements on the external
system S at the beginning and the end of the cycle at t ¼ 0
and T, respectively [44]. For simplicity, we turn off the
coupling gCðtÞ at t ¼ 0 and T, and, thus, ½HS; HðtÞ� ¼ 0 at
these moments in time. Consequently, measurements of the
system energy HS at these two times do not affect the state
of the work resources R. The external system is initially
prepared in its ground state j0iS, and the initial state ρ0 of
the total system is ρ0 ¼ ρR0 ⊗ j0iSSh0j with ρR0 being the
initial state of the work resources.
Average energy delivered by outcoupled work

resources.—We consider the average internal energy
change of the system S, hΔUiN , caused by the coupling
to the N work resources. In the rotating frame with
respect to H0ðtÞ≡HRðtÞ þHS, the propagator in the

interaction picture is UðIÞðt; 0Þ ¼ T exp ½−i R t
0 H

ðIÞ
C ðt0Þdt0�,

where T is the time-ordering operator and HðIÞ
C ðtÞ≡

U†
0ðt;0ÞHCðtÞU0ðt;0Þ with U0ðt;0Þ≡T exp½−iR t

0H0ðt0Þdt0�.
Regarding the coupling Hamiltonian HC in Eq. (2), HðIÞ

C ðtÞ
reads HðIÞ

C ðtÞ ¼ gCðtÞVðIÞ
R ðtÞ ⊗ VðIÞ

S ðtÞ with VðIÞ
R ðtÞ≡

U†
Rðt;0ÞVRURðt;0Þ, VðIÞ

S ðtÞ≡eiHStVSe−iHSt, andURðt; 0Þ≡
T exp ½−i R t

0 HRðt0Þdt0�.
Setting the energy of the ground state j0iS of the system

to be zero without loss of generality, the average internal
energy change is given by hΔUiN ¼ P

i≠0 ε
S
i pi, where the

probability pi for measuring the ith eigenvalue εSi of HS as
an outcome of the energy measurement at t ¼ T reads

pi ¼ TrR½ShijUðIÞðT; 0Þρ0UðIÞ†ðT; 0ÞjiiS�: ð3Þ

Here, TrR½� � �� is the trace over the Hilbert space of the
work resources and jiiS is the ith eigenvector of HS. To
gain an analytical insight, we first resort to the weak
coupling regime where

R
T
0 gCðtÞdt ≪ 1. In this limit,

expanding the propagator to leading order as UðIÞðT; 0Þ ≈
I − i

R
T
0 dtgCðtÞVðIÞ

R ðtÞ ⊗ VðIÞ
S ðtÞ in Eq. (3), the excitation

probability of the system reduces to

pi ≃
Z

T

0

dt
Z

T

0

dt0gCðtÞgCðt0ÞShijVðIÞ
S ðtÞj0iSSh0jVðIÞ

S ðt0ÞjiiS
× hVðIÞ

R ðt0ÞVðIÞ
R ðtÞiρR

0
; ð4Þ

with h� � �iρR
0
≡ TrR½� � � ρR0 �.

Quantum statistical enhancement.—To demonstrate the
genuinely quantum mechanical advantage of indistinguish-
able bosons in comparison to distinguishable particles as

the work resources, we consider N QHEs, each performing
an Otto cycle with the two lowest internal energy levels of a
bosonic atom prepared in its center of mass (COM) ground
state as a working fluid, i.e., the temperature β−1COM of the
COM degrees of freedom is set to be zero. As sketched in
Fig. 1, the work resources R contain these engines, together
with the hot and cold heat baths.
The four strokes of the Otto cycle are performed as

follows: (0) Initial state.—In the absence of the coupling to
the external system S, gCð0Þ ¼ 0, all two-level atoms are
prepared in thermal equilibrium with the common cold
bath at inverse temperature βc. Thus, the initial reduced
density matrix ρE0 ≡ TrBρR0 of the engine part is ρE0 ¼
Z−1
βc

exp ½−βcHEð0Þ� with Zβc ≡ TrE exp ½−βcHEð0Þ�,
where TrE½� � �� and TrB½� � �� are the trace over the Hilbert
space of the engines and that of the baths, respectively. The
baths are assumed to be time independent and in the
canonical state of HB throughout the cycle. (1) Isentropic
compression.—From 0 < t < T=2, all the engines are
decoupled from the baths, HEB ¼ 0, and the level distance
of all the two-level atoms is slowly increased in the same
manner. (2) Hot isochore.—At t ¼ T=2, setting gC ¼ 0,
all the two-level atoms are brought into weak contact with a
common hot bath and thermalized at inverse temperature
βh. At the end of this process, the state of the engine
is given by ρET=2 ¼ TrBρRT=2 ¼ Z−1

βh
exp ½−βhHEðT=2Þ� with

Zβh ≡ TrE exp ½−βhHEðT=2Þ�. (3) Isentropic expansion.—
From T=2 < t < T, all engines are decoupled from the
baths, HEB ¼ 0, and the energy separation of each two-
level atoms is decreased slowly in the same way. (4) Cold
isochore.—At t ¼ T, setting gC ¼ 0, and all the two-level
atoms are brought into contact with the common cold bath
again and quickly return to the initial state.
First, we focus on the case of indistinguishable atoms.

We choose VR ¼ 2Sx in the coupling Hamiltonian (2):

B
Q S

HSB2

B1

E1

E2

EN

E

H (t)C

H (t)R

R

HB

H (t)E

H  (t)EB
ΔU

FIG. 1. Schematic picture of the setup. Multiple work resources
collectively denoted by R deliver energy ΔU to an external
system S through the coupling Hamiltonian HC. If the work
resources are N quantum heat engines E1;…; EN , all the engines
and the heat baths collectively denoted by E and B, respectively,
are included in R.
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HCðtÞ ¼ gCðtÞ2Sx ⊗ VS; ð5Þ

with Sx ≡ ða†bþ b†aÞ=2, where a† and a are creation and
annihilation operators of the ground-state atoms in the
lowest COM level, and b† and b are those of the excited-
state atoms, respectively. While we keep the external
system general in this discussion, we note that if the
external system is a harmonic oscillator (HO) and VS ¼
c† þ c with c (c†) denoting the annihilation (creation)
operator of the HO, Eq. (5) reduces to the standard dipole
coupling between an ensemble of atoms and a single-mode
HO. In order to compute hΔUiN using the probability in
Eq. (4), we now choose the following engine Hamiltonian:

HEðtÞ ¼ 2ΩðtÞSz þ 2ΔSx; ð6Þ

with Sz ≡ ða†a − b†bÞ=2. In the Otto cycle, both the
compression and expansion strokes are done without

coupling to the heat baths, and, hence, they are described
by unitary dynamics governed by the engine Hamiltonian
(6). For quasistatic changes of ΩðtÞ, the propagator can be
written as

URðt; t0Þ ≈
XN=2

m¼−N=2

jm; θtiEEhm; θt0 je−imϕðt;t0Þ; ð7Þ

with ϕðt; t0Þ ¼
R
t
t0
dt02Et0 . Here, we denote by jm; θtiE

the eigenstate of the instantaneous engine Hamiltonian
HEðtÞ with eigenvalue 2Etm, where Et ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðtÞ2 þ Δ2

p
.

Furthermore, θt is defined by tan θt ¼ −ΩðtÞ=Δ. The initial
time is t0 ¼ 0 for the isentropic compression and t0 ¼ T=2
for the isentropic expansion strokes. With this adiabatic
propagator, we obtain the autocorrelation function of the
operator VR (see [50] for details), when t0≤ft;t0g≤t0þT=2,
in Eq. (4) as [54]

hVðIÞ
R ðt0ÞVðIÞ

R ðtÞiρRt0 ¼ 4 cos θt cos θt0hm2it0 þ sin θt sin θt0
X
σ¼�

e−iσϕðt0;tÞ
�
N
2

�
N
2
þ 1

�
− FσðN; βt0Et0Þ

�
; ð8Þ

with β0≡βc, βT=2≡βh, and F�ðN;βt0Et0Þ≡hm2it0�hmit0 ,
where the expectation values are defined with respect to
the thermal state of HEðt0Þ at βt0 . On the other hand, if
t and t0 are separated by the thermalization process
at t ¼ T=2, for instance, t < T=2 and t0 > T=2, the
autocorrelation function takes the factorized form

hVðIÞ
R ðt0ÞVðIÞ

R ðtÞiρR
0
¼ hVðIÞ

R ðt0ÞiρRT=2hV
ðIÞ
R ðtÞiρR

0
with

hVðIÞ
R ðtÞiρRt0 ¼ 2 cos θthmit0 : ð9Þ

Next, we examine the case in which all the atoms are
distinguishable. In this case, the coupling Hamiltonian (5)
reduces to HCðtÞ ¼ gCðtÞ2

P
N
j¼1ðσj;x=2Þ ⊗ VS and the

engine Hamiltonian (6) to HEðtÞ ¼ 2ΩðtÞPN
j¼1ðσj;z=2Þ þ

2Δ
P

N
j¼1ðσj;x=2Þ, where σj;x and σj;z are the Pauli matrices

of the jth atom. Assuming quasistatic changes of ΩðtÞ like
in the indistinguishable case, we find the following
autocorrelation function:

hVðIÞ
R ðt0ÞVðIÞ

R ðtÞiρRt0 ¼ cos θt cos θt0 ½N þ NðN − 1Þ tanh2 ðβt0Et0Þ� þ
N
2

sin θt sin θt0

cosh ðβt0Et0Þ
X
σ¼�

eσ½iϕðt
0;tÞ−βt0Et0

�; ð10Þ

and the average

hVðIÞ
R ðtÞiρRt0 ¼ −N cos θt tanh ðβt0Et0Þ; ð11Þ

allowing the calculation of the probability in Eq. (4) for the
distinguishable case. We emphasize that in the distinguish-
able case, while taking the trace over the engine states, all
the possible 2N configurations of the atomic pseudospins
have to be considered, while in the indistinguishable case
the trace is taken over only N þ 1 symmetrized eigenstates
of Sz. Thus, the collective nature of the latter set of states
gives rise to an enhanced coupling with the external system
and results in the enhancement of ΔU that we demonstrate
next.

To clearly evidence that Bose statistics leads to a quantum
advantage,we specialize the coupling protocol to the impulse
form gCðtÞ ¼ gδðt − t1Þ, with 0 < t1 < T=2. In this case, the
expressions for the probability (4) are simplified greatly, and
the average internal energy change equals

hΔUiN ≃ g2h½VðIÞ
R ðt1Þ�2iρR

0

X
i≠0

εSi jShijVðIÞ
S ðt1Þj0iSj2: ð12Þ

Thus, for the impulse form of the coupling, hΔUiN for the
indistinguishable and distinguishable cases differ by the

value of the variance h½VðIÞ
R ðt1Þ�2iρR

0
that can be evaluated

from Eqs. (8) and (10). Remarkably, we find that, in the
indistinguishable case, this variance is larger than or equal to
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that of the distinguishable case for any values of the
parameters N ≥ 1, βcE0, and θt1 (see [50]). This fact
guarantees that hΔUiindistN due toN indistinguishable bosonic
engines is always larger than hΔUidistN arising from the same
number of distinguishable engines. The resulting enhance-
ment can be quantified by the ratio E ¼ hΔUiindistN =hΔUidistN .
In Fig. 2(a), we compare our analytical result for the

enhancement E, for different values of θt1 and N, with
numerical simulations for a specific choice of the system as
a HO with frequency ω, i.e., HS ¼ ωc†c and VS ¼ c† þ c
in the coupling Hamiltonian (5). For the engine
Hamiltonian HEðtÞ, we consider linear sweeps of ΩðtÞ
as ΩðtÞ ¼ Ωð0Þ þ vt and ΩðtÞ ¼ Ωð0Þ þ vðT − tÞ for the
isentropic compression and expansion strokes, respectively.
Hereafter, let us focus on the situation with Δ ¼ 0 (i.e.,
θt ¼ −π=2), where the difference between the indistin-
guishable and distinguishable cases is most prominent [55].
When Δ ¼ 0, using Eq. (10) we see that hΔUiN ∝ N for
the distinguishable case, while in the indistinguishable case
using Eq. (8) the dependence on N; βcE0 is more involved

(see [50]). In general, although h½VðIÞ
R ðt1Þ�2iρR

0
contains both

terms proportional to N2 and N, we find that hΔUiN shows
N2 scaling for moderate values of N with NβcΩð0Þ≲ 1
[56]. We see this behavior in Fig. 2(b), where we plotffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihΔUiN=hΔUi1
p

to bring out the quadratic scaling. We
also note that, for sufficiently large N, the N2 scaling of

h½VðIÞ
R ðt1Þ�2iρR

0
for the indistinguishable case turns into a

linear scaling with an enhanced slope of coth βcΩð0Þ > 1,
while it is unity in the distinguishable case.
Considering general coupling protocols gCðtÞ, when

Δ ¼ 0, we find that the autocorrelation hVðIÞ
R ðt0ÞVðIÞ

R ðtÞiρR
0

is factorized and, hence, vanishes when t and t0 are
separated by a thermalization step with the hot bath. This
allows us to simplify (4) and write the probability of
excitation of the driven system in the indistinguishable
case as

pindist
i ≃

X
t0¼0;T=2

σ¼�

jcσi ðt0Þj2
�
NðN þ 2Þ

4
− FσðN; βt0Et0Þ

�
ð13Þ

and in the distinguishable case as

pdist
i ≃

X
t0¼0;T=2

σ¼�

jcσi ðt0Þj2
�
N
2
ð1þ σ tanh ðβt0Et0ÞÞ

�
; ð14Þ

where the positive, coupling-protocol-dependent terms are
determined by the amplitudes c�i ðt0Þ ¼

R t0þT=2
t0 dtgCðtÞ×

ShijVðIÞ
S ðtÞj0iSe�iϕðt;t0Þ. Comparing the terms in brackets in

Eqs. (13) and (14), we have that pindist
i ≥ pdist

i . Thus, for
Δ ¼ 0, our central result of the enhancement of internal
energy change for indistinguishable bosonic engines still
holds for arbitrary coupling protocols and external system
Hamiltonians.
In order to widen the scope of our results, we also

consider engine strokes with Δ ≠ 0 as described in more
detail in Ref. [50]. There, we find that the enhancement
persists for small values of N independently of the form of
the coupling and the external system Hamiltonian. The fact
that the enhancement is guaranteed for small N most likely
will be of particular relevance to experiments in the near

(a) (b)

FIG. 2. Quantum-enhanced performance of multiple identical
engines in the perturbative impulse coupling. (a) Ratio E ≡
hΔUiindistN =hΔUidistN for an outcoupling with an impulse of
strength g ¼ 0.01 to an external system. The atomic energy
gap is driven with a linear speed of v ¼ 0.1Ωð0Þ2 over a
total protocol time of T ¼ 20=Ωð0Þ. The impulse kick occurs
at t1 ¼ 0.35T=2, and θt1 is tuned by changing Δ ¼
f4.2Ωð0Þ; 1.4Ωð0Þ; 0g (different curves). The bath temperatures
are given by βcE0 ¼ 2 and βhET=2 ¼ 1=4. Solid lines are from
analytical expressions derived in the perturbative limit, and dots
are from a numerical calculation with the external system given
by a HO of frequency ω ¼ 2π × 0.05=T. (b) hΔUiindistN pro-
duced by indistinguishable particles when Δ ¼ 0 and βhET=2 ¼
1=4 as a function of N and βcE0 for impulse-type coupling and
other parameters as in (a). Regions with linear scaling in N of
the contour gradients correspond to quadratic scaling of hΔUiN
with N.

(a) (b)

FIG. 3. Quantum performance of multiple identical engines
with continuous nonperturbative coupling. (a) hΔUiindistN done
by N indistinguishable engines outcoupled via a continuous
nonperturbative coupling. A quadratic scaling is shown for
small N. (b) Scaling of the enhancement E. Engine parameters
are v ¼ 0.1Ωð0Þ2, T ¼ 20=Ωð0Þ, Δ ¼ 0, and Ωð0Þ ¼ 1. The
coupling gCðtÞ, to the external HO system of frequency
ω¼2π×0.05=T, is chosen with g¼0.5, δt¼0.9, α ¼ 2142=T,
ton ¼ ð1 − δtÞT=4, and toff ¼ ton þ δtT=2.
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future that will presumably have access to small N.
Furthermore, we demonstrate for a given choice of the
Hamiltonian how to identify generic parameter regimes and
coupling protocols that lead to enhancement. We also
extend our results to nonperturbative continuous coupling
gCðtÞ [see [50] for the exact functional form of gCðtÞ] using
numerical simulations for a HO external system. From
Fig. 3, we see that, for small values of N and moderate
values of the coupling strength, there is enhancement and
hΔUiindistN scales as N2. The fact that we are able to find
enhancement for a generic set of parameters as in Fig. 3
without fine-tuning suggests the general applicability of our
result. Finally, we note that the performance in the case of
engines made of N identical noninteracting fermionic
two-level atoms, considered in Ref. [50], is generally
diminished for even N and converges to that by a single
engine for odd N in the limit of small β−1COM due to the Pauli
blocking effect.
In conclusion, we have demonstrated that the statistical

indistinguishability of work resources can be exploited to
gain a genuine quantum enhancement in quantum thermo-
dynamics. While we identify this enhancement in terms of
the internal energy change of an external system coupled to
the engines, the question arises as to how much of this
change is attributable to the actual action of the engines and
how much results from the time dependence of the part of
the Hamiltonian describing the interaction between the
system and the engines. Our preliminary analysis indicates
that an accordingly corrected work contribution of engines
also displays enhancement in the parameter regimes con-
sidered here [50]. The predicted enhancement of the energy
output from multiple indistinguishable heat engines to a
generic external system is readily testable with current or
near-future experimental realizations of quantum heat
engines, e.g., in nitrogen-vacancy centers [17], trapped
ions [59], and ultracold gases. While we have considered
bosonic and fermionic statistics [50], exotic fractional
statistics [41,60] may lead to further interesting results.
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